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ABSTRACT The problem of detecting weak random signals is addressed in a generalized observation model incor-
porating multiplicative noise which has recently been introduced. It is shown that the locally optimum random-signal
detectors in the multiplicative-noise model are interesting generalizations of those which would be obtained in the
purely-additive noise model. Examples of explicits results for the locally optimum detector test statistics are given

for two typical cases of well-known pdfs.

1. INTRODUCTION

Detection of random signals is of interest in

various situations. For example, in underwater
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applications it is often impossible to represent
desired signals by known or parametric signal
models because of random dispersion resulting
from turbulence or inhomogeneities in the me-
dium, and also because of the very nature of the
signal source.

For the most part problems of random-
signal detection have been idealized as being those
of detecting (random) signals in purely-additive
noise. The use of a purely additive noise model,
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which is usually an approximation of the physical
mechanism producing noisy observations, may
cause a considerable performance degradation in
detection applications where the observations
have significant non-additive noise components
such as signal-dependent and multiplicative noise
(1), Explicit use of non-additive noise models
is necessary in such situations. For example,
additive signal and noise components may produce
multiplicative or signal-dependent noise due to
nonlinearities in the observation system.

A generalized observation model for noisy
signals has recently been proposed in{??, in which
the effects of multiplicative or signal-dependent
noise can be represented. This model was used in
studying locally optimum detection of krnown
signals in'®. In this paper we will mainly be
concerned with finding test statistics of detection
schemes for weak random signals in observations
governed by the generalized noisy signal model
introduced in{”. More specifically, we will
find the test statistics of locally optimum (LO)
detectors, which are optimum in detecting signals

in the case of weak signals (SNR-*0), for the
problem of random-signal detection in the general-
ized observation model. It should be noted that
although much effort has been devoted to the
problem of locally optimum detection of (known
or random) signals, most of the results from the
effort are based on the purely-additive noise
model.

A special case of the generalized observation
model to be used in this paper will be reviewed
in Section 2. In Section 3 we will find the test
statistics of locally optimum detectors for random-
signal detection based on this observation model.
Examples of the locally optimum nonlinearities
constituting the test statistics of the locally
optimum detectors for two specific pdfs will be
considered in Section 4, which will be followed
by a summary in Section 5.

2. THE MULTIPLICATIVE-NOISE MODEL

For an array of L receivers the multiplicative-
noise model describes the discrete-time observa-
tion X, at time instant i for receiver j by

X=08S,+8SN;u+W,, (1)
where {=1,2,--a and j=1,2,---, L. Here
n is the size of the sample (number of observa-
tions) collected at each input channel; ¢ is the
signal amplitude parameter, which may be zero
(null-hypothesis) or positive (alternative hypo-
thesis); W,, is the purely-additive noise com-
ponent in the j-th channel at the ;-th sampling
instant; S, is a zero-mean random signal compo-
nent with amplitude # at each channel at the
7 -th sampling instant, which is assumed to have
variance ¢/, i=1,2,--,n. The joint probability
density function (pdf) of (S,,S,, -, S,) will be
denoted by fs (s) and we will denote by r5 (i, k)
the covariance between S, and S, ; that is,
r:(i,k)=E|S.Skl. The purely-additive noise
components W,, will be taken to be independent
and identically distributed (i.i.d.) random variables
with common pdf f, and means zero and vari-
ances ¢4, with the signal and noise being sta-
tistically independent. The N,, are i.i.d. random
variables independent of the S, but with N, and
W, generally not independent. The random-
signal term #S, multiplies N, to produce an addi-
tional multiplicative noise term generally cor-
related with the purely-additive noise component
W .. Let the variance of the N,, be o} and
let fy be the common pdf of the N, We will
denote by fvw  the common joint pdf of the
(Ns, W), which are iid. bivariate random
variables for i=1,2,--- n and  j=1,6 2, ---, L.
Clearly, ;2 =() yields the usual zero-mean random
signal and purely-additive noise model. In this
paper, we will focus on the random signal detec-
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tion problem in the above multiplicative-noice
model for noisy signal.

We can now formulate our detection problem
as a statistical hypothesis testing problem of
choosing either a nuil hypothesis H or an alter-
native hypothesis K describing the joint pdf
f (x18)of the observation matrix X={ X, | ,where

x is a realization of X. Under H we have §=0

and under K we have § >0, with

fxlg)= st (s) tf}x Jtll

Sf” s, Tn—0s;,—0s;ny)dnsds (2)

Only 6#>0 is assumed to be unknown under the
alternative hypothesis; § =0 in (2) yields the null
hypothesis pdf.

Assumptions

In computing the test statistics of the locally
optimum detectors in Section 3, the following
quantities are assumed to exist and to be finite:

fwix)

g:(x)=—fw(x) , (3)
_ v @)

gz(-'l')— .fw(I)_' (4)
_fie)

M) = 5}
B u//(x)

k, (I)_Mfw(x) (6)

and
B v//(x)

hy @)=y 7

where
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u(x)= Snf,w(n,x)dn
=fuw@)EINIW=x| (8

and

v (1'): Sﬂzf/vw (n. x)dn

=fw(x) El N |W=x| (9)

The functionsg,(x ), h.(x) and k,(x )are gene-
ralizations of the usual locally optimum non-
linearities g, (x) and A, {x), and arise from the
dependence of the two noise processes N and

W through the weighted conditional average
u (x )and the weighted conditional variance
v (z). It should be noted that E{ N|W | =0implies
that N and W are uncorrelated but the converse
is not necessarily true; for example, N=W?™-+ Zwith
an m positive integer, Z and Windependent and
with symmetric pdf for W we have a counter-
example against the converse. If, however, N and
W are independent, E{ N W | =0.It should also be
noted that g, (x) =0 if and only if E| NW=ux{=0.
We will also be assuming in the following develop-
ment that the pdfs fy, fw and fx are smooth
enough and satisfy regularity conditions justi-
fying mathematical operations such as inter-
changes in the order of differentiation with respect
to a parameter and integral of a function.

3. TEST STATISTICS FOR RANDOM-SIGNAL
DETECTION IN MULTIPLICATIVE NOISE

In this section we will find the locally opti-
mum detector test statistics in the multiplicative-
noise model (1) so that a test function for detect-
ing random signals can be established. Detailed
discussions on the general properties and con-

www.dbpia.co.kr



@/ HAA gl ofd g Al Ay AHEAND

cepts of locally optimum (LO) detectors can be
found in a number of other available work |
(e.g. 8).

Now from the generalized Neyman-Pearson
lemma (9,10)  the locally optimum detector test

statistic for #=( versus 4 >0 is obtained as the

ratio
&[0
d 8
TLO (X) = “f’.(x—ld“)— (10)

TLO(X)zi

In (10) v is the first non-zero derivative of f(x|8)at
0=0; that is v is defined by

d*P, (01l D B . B

10 =0, i=1,2,»,v—1, (b
for allDin Do and

YP D

d¥*P, (01D o) >0, 12

dg¥

where D, is the class of all detectors of size a for
Hversus K, P,(61|D) is the power function of a
detector D for signal strength ¢ and D,, isa
locally optimum detectorin D,

For random-signal detection in the purely-
additive noise model, it can easily be shown that
v=2and that the locally optimum detector test

statistic is(!1),

Tro+ (X) :!Z:i: Z—:‘: kZ::[ ?; Ts (iv k)81 (Xu)gn (X k)
+31 5 allhy (X)—gf (X0 13

The detector whose test statistic is (13) will be

called the LO+ (locally optimum detector in the
purely-additive noise model). In the single-channel
case ], =] in (13) gives the usual locally optimum
detector test statistic.

We now consider locally optimum detection
of random signals in multiplicative noise in addi-
tion to the purely-additive noise. It can be shown
as in Appendix . 1of (7 that ¥ =2 and that
(10) vyields for the locally optimum detector
test statistic in multiplicative noise the result

L L

Z TS(iy k)[gl (Xit)'{”gz (le)}

=1

Fest gn
'[51 (X1x) tg2 (Xu:)] ""g; g Utz[hx Xs0)

+th (Xfl)*hs (Xu)*ign (th)+gz ( /1”2]'
(14

=1

where g, g,, h,, h, and h; are defined in
(3)4(7) of Section 2 and 75(i,k) is the covariance
function of S, and §, witho! =7(i, i)being the
In (14) the terms g&:, k.

hs represent the effects of the multiplicative

variance of S, and
noise, and of the dependence between the two
noise processes N and [ on the test statistic.
It should be noticed that even when E} N| =0,
8:(x),h, (x) and hs (x)do not vanish if Nand W are
correlated.

From the expression (14) for the locally
optimum detector test statistic in multiplicative
noise, the following general observations can be
made:

(a) The

statistic of (14) is of the same form as (13)

for the LO+ detector, and would be obtained

in the purely-additive noise model with

locally optimum detector test

g: (x)replaced by g.x)+g,(x) and &, ()
replaced by h, (x)-+2h, (x) +h, (x). A similar
observation has been made for the known
signal detection problem in [6].
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(b) The test statistic depends on the random
signal through the covariance function r (i, k)
and the variances o/ but does not depend on
the exact functional form of the pdf of ran-
dom signal. This is a consequence of the
assumption that the random signal is weak.
(c) Since the function hs (x) will not general-
ly vanish identically, it will generally always
exist in the test statistic. This implies that
the multiplicative noise term will in most
case have an effect on the locally optimum
detector test statistic; it has an effect on the
test statistic through g,, A, and h; when
E{N|W}!is not identically zero and through
hs(x) even when E|N|W| =0,
(d) In general, the test statistics (13) and
(14) are clearly not the same; they do, how-
ever, become equivalent as Loocif EINIW|=(,
because the quadruple summations in (13)
and (14) dominate over the double summa-
tions. This implies that the detectors based
on the test statistics (13) and (14) will have
similar performance characteristics when
L islarge and E{ N|W | =0.

Table 1 shows which of the functions g, g,, ki, h:

and A, remain in the test statistics under different

conditions.

Tabie 1. Locally Optimum Nonlinearities Contained
in the Test Statistics for the Multiplicative-

Noise Model.
under under
quadruple double
summat ion summation
E{NIWl #0 g1, 82 hi, he, hy
EINIW|{=0 & hy, hs

4. EXAMPLES OF TEST STATISTICS

We will now consider two specific examples to
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illustrate some of the above results. First, let us
take a bivariate Gaussian pdf 7 (0,0,s, 1,7) for
frw with nlm,, my, 51, 5,, 7 )denoting a bivariate
Gaussian pdf for which E{| Ni=m,, E\W |=m,,
oi=s? oL = s andris the correlation coefficient
between N and W In this case we can easily

obtain

g (x)=x, 20
g x)=rsx*~1), @1
hy (@x)=x*—1, (22)
hy (c) =7s (' —3x), 23
and

hy @)=s*r’x*+ (1—67")x*+3r* =11, (29

Note that for bivariate Gaussian pdf fyw,
E|{N{W! =0if and only if N and W are un-
correlated, and A, (x) with =0 hasthe
same functional form as g, (x) with r #0,
The locally optimum detector test statistics can
now be found from (14) using (30)-(24); that is,
we get explicity

Ts (i, k){Xu +rs (sz“l)'
n L
'1X1k+73(xtzn—“1)|+2 Edf [TZSI“STSXH

+Sz (1781'2)ij1] (25)

as the locally optimum detector test statistic.
The terms containing s in (25) represent the
effects of the multiplicative noise on the test
statistics.

As the second example, let us consider a
vibariate t-distributiont(m, m, s,,s,,r k) whose
joint pdf is given by (12)
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" - 1 and
faw (x, 5) 22s18. (1—77) 7"
1+ | (x—m,)*  2rxy 4 hy (x)
k(1—r*) H 518; ks 1+ Gk—2)r fxt (167" )k~ 1 +EkG@r? —1)]
_ 2 _k+2 - T2
4 (y zmz) e 08) (k +x*)
S2 (32)
2
Here E|N|=m, E\W|=m, o5 = ks, P= For the bivariate ¢ -distribution also &: (x) =0 if

, Ow™

kss k—2
k—o T is the correlation coefficient between
Nand W, &
the algebraic rate of decay of the pdf and the

is a parameter that determines

variances o0+ and oy are defined only for

k>2; if k=2  (26) represents a bivariate
Cauchy pdf and for k- oo (26) tends to a bivari-
ate Gaussian pdf. If we take the pdf correspond-

and only if 7 =0andh; (x)with r =0has the same
functional expression as g, (x) with r #0. Using
(28)-(32) we can also obtain the locally optimum
detector test statistics for bivariate t -distribution.

For the bivariate ¢t -distribution function
also the locally optimum detector test statistics
have additional terms containing the factors

which represent the effects of the multiplicative

ingto 0,0,s, 1,7. k) for for which
_E|W| = . ks® 4.2 k noise. We also observe that the results for the
E|N| W IWi=0, ox k—2 3¢ ow= o vibariate ! -distribution become those for the
we obtain k—2 ibariat istribution C S t
Gaussian case for ¢ —»co, A few important quanti-
ties for bivariate Gaussian and bivariate t -distri-
g (x) z(_:gxlz)_x_ ' (28) bution functions are shown in Table 2
rsk (x* —1)
8 (&) =———F— (29
’ k+ax? 5. SUMMARY
k-+1){ k+2)x* —k}
hy (x) = TR ’ 30 In this paper we employed the generalized
rsk (k+1) (2 —3x) observation model introduced in a recent paper
hy (x) = RSy @D and addressed the problem of locally optimum
Table 2. Values of Key Quantities for Two Typical Bivariate Probability Density Functions.
7(0,0,s, 1, r) t©0,0,s,1,r, k)
k 2
on s? —};%Ed k>2
k
ow 1 —2 ,—‘ k>2
E{NIW=x | rsx rsx
H . L 3 P
E{N' |W=x| | (rs©)*+s’ (1—r1*) S'(“L(L“zl)’)" LIS T
k
NW ISk _
El } rs —— k>2 }
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detection of random signals in multiplicative
noise. Morea specifically, the test statistics of the
locally optimum detectors which were derived
for the multiplicative-noise model for detecting
random signals were shown to be generalizations
of those for the purely-additive noise model.
For situatio=ns in which the strength of the
multiplicative noise term is different from that
of the signal term, the locally optimum detectors
can be obtained after derivations similar to those
given for signal-dependent noise situations in©)

Study of adaptive and robust detection
schemes for good overall performance when
exact specifications of parameter values and
characterization of pdfs cannot be determined
a priori would be in interesting investigation to

perform in extending these results.
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