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ABSTRACT Although CDP stacking of common depth gathering is used to get the zero-offset-section, the explod-
ing reflector concept is examined for the modeling of zero source to receiver offset sections in this paper. The
acoustic wave equation is compared with a one way wave equation which represents the upgoing wave field only.
The one way wave equation used is not derived through an expansion and, therefore, can represent dips up do
90 degrees and may not lost the signals by the dipping angles. There is apparently no simple counterpart of this
equation in the space domain and it can be conveniently implemented only by a Fourier method. This paper
compares their modeling technique with ray tracing and wave method for over thrust structure which is one of the
geological structures are difficult to process and interpret. As the result of modeling much clean and accurate
signals, especially, diffractions from the corner and dipping angles can be gathered.
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the first performing a spatial Fast Fourier Trans-
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for the forward problem. The 2D seismic respon-
se, due to a localized source, over geologic
structures with both density and velocity varia-
tions can be calculated and compared to theore-
tical and physical modeling results. When both
density and seismic wave velocity are functions
of space, the two dimensional acoustic wave
equation is:

a [ 1 o], 2f 1 2 |
ox L p(x,z) ox oz L p(x,z) 9z

—
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=W P+S (1)
where o(x,z) is the density,K(x,z) is the bulk
modules, P(x,z,t) is the pressure and S(x,z,t) is
the source term, which equals the divergence of
the body force divided by the density.p in the
above equation denotes second order differen-
tiation with respect to time.

A discrete approximation to above equation

may be given by

. 1 RV 6/
Lp"(\.))—‘—‘m“—[p" Y, 1) —2p"(h, )

+p* ' (i, )) ] +s™ (i, ) (2)

where p"(ij) ands"(i,j) respectively represent
the value of pressure and the source at the
spatial location X=XoH(i-1)AX,Z=ZoHj-1)AZ
and at time t=nAT. In the equation (2),Lp~(ij)
represents the discrete numerical approximation
of the left-hand side of the equation (1)(”(2).

The term Lp»(ij) in equation (2), which
represents the numerical approximation of the
left-hand side of the equation(l), is calculated
in two separate passes, one for the terms contain-
ing X derivatives and one for the terms contain-
ing Z derivatives. A differentiation in the space

domain corresponds to a rmultiplication by
i in the wave number domain. In the pass for

o[13p]
the X derivatives,'—‘[ -cP !is calculated for
oxiLp Ix |

each of the grid lines which parallels the X
direction. Along each h'nea“:is calculated by
the first performing a spatial Fast Fourier Trans-
form (FFT)on P. The result is then complex
multiplied by the spatial wave number iK, This

operation is followed by an inverse FFT back

o
into spatial X domain to yield-é-s. In the space-

ap.

time dornaina——.l thereafter mutliplied by
X

the spatial derivative of the result,
p(x, z)

_@,[} ?_E] then being approximated by repeating
oxlp 9x

the above mentioned FFT operations.

. 2 [1op
The calculation of — {,, ==
° o ax

]this involves for
xLp

FFTs and a complex multiplication with —iR
to obtain‘:%:, a multiplication of this resuik
by;}in' the spatial domain, and two additional
FFTs and a complex multiplication byiKto ob-
tainagx[{;lg—s

along all computation grid lines parallel to

When this calculation is completed

the X direction, a similar procedure is applied
in a second pass through the discretely sampled

pressure value to formé{!gglalong all the grid
dzlp oz

lines in the Z direction. The results of both
passes are then simply added together to yield
LP"(iJ) in equation (2)(?),

II. Exploding Reflector Concept

The forward modeling reviewed in the pre-
vious chapter can directly simulate a common
shot gather by locating the source at a single
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point close to the surface. However, if a zero
source to receiver offset or a common depth-
point-stacked section simulation is desired, then
apparently numerous shot gather need to be
obtained and combined, which requires large
amounts of computer time. For this reason the
exploding reflector concept was developed to
enable the approximation of the zero offset
section in a single computer run with consider-
able savings in computation. This concept
assumes that sources are located at the material
boundaries and their strengths are proportional
to the reflection coefficients at the same time,
t=0. The time histories at the surface (Z=0)
approximate a zero offset section. In order to
match arrival times, the material velocities must
be one-half of the actual velocities. The zero
offset section obtained using this concept con-
tains only events which have the same raypath
on the way down and up. Events which follow
different raypath before and after reflection
will not be represented in the exploding reflec-
tor model(!),

Approximate zero offset seismic sections
associated with this exploding reflector concept
can be easily obtained by means of the for-
ward modeling presented in the previous chapter.
The source at a single point is turned off and
sources are located along the material bound-
aries instead. The strength of every source
point is equal to the reflection coefficient at
that location, This is achieved in the previous
chapter and then calculating the reflection co-
efficients for the grid points. The actual mater-
ial velocities are halved in order to match the
arrival times of the reflections with physical
results.

III. Exploding reflector modeling with
one-way wave equation

A one way wave equation derived by Gazdag
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(1981) is adopted for this modeling a_lgorithm(l).
The equation is obtained through the splitting
of the acoustic wave equation in the wave
number domain, into two one-way wave equa-
tions, one for up goiné and one for down going
energy. Derivatives of the velocity field are
ignored. For an acoustic medium in which the
density is constant, the acoustic wave equation
is

2 2 H
°p ,op 1 _2Op (3)

ox? ozt C*(x, z) ot

Where X and Z are cartesian coordinates, p(x,z,t)

is the pressure and C(x,z) is the acoustic velocity.
2 2
— ond
PYD +a zzcorresp s

in the wave-number domain to -(Kx’+Kz*) Equa-

Noting that the Laplacian

tion (3) is formally rewritten as

1 o'

—(ki+k?)P=
( ) ¢t ot

(4)

where a ~ symbol denotes a 2D Fourier Trans-
form with respect to X and Z. For homogen-
eous media (c=constant) it is possible to write
the one-way wave equations as follows:

i sign(ky) (Kl +k,0) " P= L 2

ot

k=1}

(5)

Ql—

The sign in (5) is chosen depending upon whe-
ther one desires an upgoing or a downgoing
one-way wave equation(l("’)@) This equation
has no explicit counterpart in the space domain
and therefore can be used conveniently only
by a Fourier method.

For the time integration of (5) a second
order explicit differencing scheme is chosen.
Denoting p"(x,z,t=nat) by p"(x,z), this appro-
ximation is

apn pn+1_pn—1

31 AL (6)
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with this differencing scheme one obtain dis-
persion and stability relations which resemble
the equivalent relations for the full acoustic
wave equation. In the second order scheme
used for this study, the accuracy of the compu-
tations can be controlled by decreasing the

time-step size.

IV. Seismic Source representation

The source term in equation (2) is usually
applied at a single point at the top of the grid
in order to simulate a seismic shot. The source
as a function of time must be carefully chosen
because its frequency band has to be limited to
a range which is appropriate for the spatial
grid used. If this is not done, erroneous long-
period components can enter the solution due
to aliasing in a manner which can not be easily
remedied by subsequent filtering.

The maximum frequency in the source
term will govern the overall resolution of the
result., Thus a source frequency band is chosen
which is appropriate for the geological model
divided by the maximum frequency will de-
termine the shortest spatial wave length that will
be used in the modeling. Sampling theory then
dictates that half this shortest wavelength must
be the maximum spatial sample increment,
Thus the formula adopted for the maximum
spatial sampling increment become

Crin
2 -max (Ax, Az)

Irlnn x =

where Cmin.in the lowest velocity in the input
model and F,,,, is the highest significant frequency
component in the source wavelet.

V. Test and Interpretation

To generate the zero-offset section through

model des:gn
Input data parameter define
setting boundary condition

T

‘Memory space
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Fig. 1. Flow diagram of the modeling algorithm

this algorithm, we used VAX 780 system with
FPS 100 array processor. The flow diagram of
the algorithm is shown in Figure 1,

The model we study here is an overthrust
structure (Figure 2). Overthrust are spectacular
geological features for which large masses or
rock are displaced great distances. As shown in
the figure 2, line EE’ is the thrust fault, in which
the right hanging walls A, B, and C move up
relatively to left foot wall. The compressive
forces deformed and folded the overthrust
hanging wall®® If we draw a vertical line
FF’ and check the geological section along it
we see the geological sections of A, B, and C
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Fig. 2. Overthrust model
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Six layers with four different velocities

" repeated. The order formations have overthrust

the younger formations. This kind of geological
structure has been the subject of infuse investi-
gation recently in the Rocky mountain area.
Overthrust form important traps and there
delineation a difficult exploration problem.

The velocities increase from 6000 ft/sec to
12000 ft/sec and then decrease to 6000 ft/
sec through formations. Scismic surveying over
such a structure is difficult because of the
relatively complicated folding and faulting, and
varied velocities. The overthrust model we
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Fig. 3. Common Source Synthetic Time Section
(Fourier Transform Method)
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Fig. 4. Plane Wave Synthetic Time Section
(Fourier Transform Method)

use here includes six layers with four different we divided boundaries of the formations into
velocities (Figure 2). The velocities of the layers several interfaces as the velocity varied between
are 6000 ft/sec, 8000 ft/sec, 10000 ft/sec, and the top and bottom of the model.

12000 ft/sec. The density is assumed to be con- Figure 3,4, and 5 are the synthetic time
stant. For this relatively complicated structures, sections which were simulated by Fourier for-
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Fig. 5. Zero Offset Synthetic Time Section
(Fourier Transform Method: One Way Ex-
ploding Reflector)
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ward modeling; figure 3 for common source
shooting, figure 3 for plane waves and figure 5
for a one-way exploding reflector model. As
can seen in the figure 3 and 4, the first events
for reflections occurred at times differing by
50 ms, because we used wavelet source of dif-
ferent period. For common source shooting, a
symmetric source with 200 ms period was used
and for the plane wave 100 ms period symmetric
wavelet was used and peak arrives 100 ms and 50
ms latter, respectively. In the plane wave and
common source shooting, multiple waves record-
ed around 700 ms and diffractions from corner
interfaces appeared. In the one-way exploding
reflector system, there are no multiples and the
diffractions are much clear. Figure 6,7 and 8
show the synthetic time sections by ray method
and a wave method, respectively. These sections
by the ray method and the wave method do not
show significant differences. But it looks like
the wave method handles the diffracted waves

i
i

R
i } < jx}
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A

Fig. 6-1. Snapshots
(One Way Exploding Reflector)
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more accurately. As seen in the figure 3,4,5,6,7,
and 8. Fourier transform method"shows every
events clearly, especially multiples and diffrac-
tions. The synthetic section by the one-way
exploding reflector (Figure 5) shows very clearly
every events from the interfaces.

Figure 6-1 and 6-2 shows snapshots which
were generated by a one-way exploding reflector
model at times of 120 ms, 220 ms, 320 ms,
400 ms, 500 ms, and 600 ms. Because our over-
thrust structure is so shatlow and the arrival
time difference is so short, it is somewhat
difficult to pick up every event using snapshots.

V1. Conclusion

As can be seen in this study, overthrusts
are one of the most complicated structures we
need to investigate in exploration geophysics.
We have developed efficient algorithm using
Fourier transform method to simulate synthetic
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Fig. 6-2. Snapshots
(One Way Exploding Reflector)
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section of promising structures. Synthetic
sections by the Fourier transorm method show
every events clearly, especially multiples and

diffractions. The exploding reflector algorithm

was utilized to simulated approximate zero
source to receiver offset seismic sections, The
use of the acoustic wave equation in the explod-
ing reflector model generates suprious secon-
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Fig. 7. Common Source Synthetic Time Section
(Ray Tracing Method)
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Fig. 8. Zero Offset Synthetic Time Section

(Ray Tracing Method)
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Fig. 9. Zero Offset Synthetic Time Section
(Kirchhoff Integration)

dary events in the results. A one-way wave equa-

tion is preferable because of its elimination of

inappropriate reflections at the material inter-

faces.

developed

For the further study, we will continue to

algorithm for inverse problems.
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