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A Study on the Construction Methods
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ABSTRACT In a DES-like cryptosystem, the S{ubstitution)- boxes determine its cryptographic strength as well
as 1ts nonlinearity. When in an S box a part of the output depends on a part of the input, it can be broken by the
chosen plaintext attack, To prevent this attack, every output bit should change with a probahility of one half when
ever a single mput bit is complemented, We call this criterion Strict Avalanche Criterion{ SAC), which was proposed
by Webster and Tavares. In this paper, we propose simple construction methods of Booleun functions satisfying the
SAC and bigctive functions satistying the maximum order SAC in order to design cryptographically desirable S-boxes,
Also, practical construction examples of S-hoxes are provided,

1. Introduction

We are now living in a so-called era of
information society. A wvariety of electronic
communications such as FAX, teletex, electr
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onic mail, mobile telephone, ctc. are replacing
paper media in a rapid way. This not only
makes a great impact in our ordinary lives
but also increases the amount of the inform-
ation to available to an eavesdropper, and to
make the act of eavesdropping easier.

When valuable or secret information is stored
or transmitted, it is often protected physically
through the use of safes, armed couriers,
shielded cables, and the like. As electronic
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forms of communication and storage take over
from their predecessors, however, such meas
ures often become inapplicable, insufficient or
uneconomical, and other techniques should be
employed.

One of the practical techniques 1s cryptog
raphy : the use of ransformation of data mnt
ended to make‘the data useless to one’s opp
onents. Such transformations can solve two
major problems of information secunty, the
privacy problem : preventing an opponent from
extracting information from a communication
channel, and the authentication problem :
preventing an opponent from injecting false
data into the channel or altering messages so
that their meaning s changed.

Let us briefly review the historical backgr
ound of symmetric cryptosystems (which
means that encryption and decryption keys
are the same). In 1949, Shannon|1] proposed
the out standing notion of mixing transform
ations, which randomly distnibutes the mean
ingful messages uniformly over the set of all
possible ciphertext messages. Mixing transfo
rmations could be implemented by alternatively
applying permutation and substitution boxes.

In 1977, NBS(National Bureau of Standards)
adopted DES(Data Encryption Standard)|5 |
which was proposed by IBM as a federal
standard of commercial cryptosystem in the
United States. NTT in Japan proposed in 19
88 a new cryptosystem célled FEAL(Fast
Encryption ALgorithm)[10] whose purpose
1s to make encryption and decryption operation
faster than DES in the software or hardware
implementation, FEAL has two types : FEAL
4 and FEAL -8 depending on the number of
rounds, In 1990, Brown et /[ 17] proposed one
symmetric cryptosystems called LOKI for
banking securities in Australia,
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It could be considered that the above men
tioned symmetric cryptosystems are the good
design practices of the mixing transformations,
We call these cryptosystems “DES like cryp
tosystme” altogether,

In DES like cryptosystems, the S(ubstitut
ion) boxes behave like nonlinear table tran
slation mappings from some numbers of nput
bits to some numbers of output bits and play
an important role in the algorithm. This is
because the remainder of the algorithm 1s
linear, severe weakness in the S-boxes can
therefore lead to a cryptosystem which can
be casily broken,

For the good S box design, Webster and
Tavares! 81 proposed the concept of Strict
Avalanche Crterion (abbreviated as “"SAC™)
—defined in Section 2 —in order to combine
the notions of the avalanche cfject 2] and the
completeness) 6], Forre'[ 11] extended this con
cept of SAC into a higher order SAC and
discussed the Walsh spectral properties of
S boxes satistying the SAC.

On the other hand, Hellman ¢f «/{3] have
pointed out that any cryptosystem which
implements linear or affine functions can be
easily broken. By employing exponentiation
over 1°(2"), Pieprzyk{ 121 proposed one con
struction method of S-boxes satisfying the
maximum nonlinearity dfined by Rueppel[9].
Also, Meier and Staffelbach{14] discussed the
cryptographic application of bent functions| 4
|71 for satisfying the nonlinearity criterion.

However, there are rare publications propo-
sing constructions of cryptographic functions
satisfyving the SAC as well as the nonlinearity
criterion, We will propose simple construction
methods of cryptographic functions satisfying
these two important criteria,

The organization of this paper is as follows
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: After defining the necessary notation and
definitions in Section 2, we state our previous
results [191][20] on the proved properties of
Boolean functions satisfying the SAC in Sec
tion 3.

In Section 4, we propose two methods to
enlarge the given Boolean functions(s) satisf-
ying the SAC into any input size. One method
1s to enlarge a 2 bit input function into a 2
[-bit(/=2) input function satisfying the SAC
by using the Kronecker(or direct) product, The
other one is to enlarge two distinct » bit input
Boolean functions satisfying the SAC into an
unique (n-+1)-bit input Boolean function
satisfying the SAC as many as possible,

In Section 5, Llovd{13] suggested that the
counting function of the Boolean function
satisfying the maximum order SAC is 2"
We will extend Lloyd’s result and suggest the
counting function of a balanced and unbalan
ced Boolean function satisfying the maximum
order SAC, Also we propose a new construction
method of all bijective functions satisfying the
maximum order SAC,

In Section 6, we make some concluding

remarks and suggest some left problems,

II. Notation and Definition

We define here some necessary notation and
definitions. Let / denote the set of integers
and /, denote the » dimensional vector space
over the finite field Z,=¢1(2). Also let @
denote the addition over /4, or, thebit wise
exclusive-or,

Notation For a function /: Z,/'— /. denoted
by /i (1=<;<m) the function Z,-> 7, such that

f(x) = (fm(X), fn1(x), - ., fo(X), S1(x)).

We identify an element

zZ= (zkazl'—lv'-yz?»ZI)

S : : Y g
of 7, with an integer3,.,22" To represent
a specific function f:/7,/— 7, we often use

the integer tuple

< f>=[f(0), f(1), £(2),..., f(2" = 1)]
and call 1t the integer representation of f. This
representation can be obtained by combining

< fm > < fne1 >, 00 < fo >,
<hA>a<f>=TR, < f;>-27

Throughout this paper, wi/( ) denotes the
Hamming weight function and %" denotes and
n dimensional vector with Hamming weight
1 at the /-th position, fi|1/, denotes the conc
atenation of {f,> and (/).

Let us define one of the most important
criteria to design cryptographic functions,
Definition 1 (SAC) 1 sav that a funclion
A X satisfies the SAC, if for all §(157<

) there hold the following equations :

T fx) @ flix@dM)y = (2~ 2nt L 2,

x€z;

(n

When [ Zy—> Zy satisfies the SAC, [ is som-
ctimes referved to as a Boolean function satisfving
the SAC.

If a function satisfies the SAC, each of its
output bits should change with a probability
of one half whenever a single input bit is
complemented.

If some output bits depend on only a few
input bits, then, by observing a significant
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number of input output pairs such as chosen
plaintext attack, a cryptanalyst might bo able
to detect these relations and use this inform
ation to aid the search for the key. And
because any lower dimensional space appro
ximation of a mapping yields a wrong result
n 267,181 of the cases, cryptographic func
tions satisfving the SAC play sigmticant roles
In cryptography.
Forre'[ 11! extended this defimtion of the
SAC into a higher order SAC.
Definition 2 (1-st order SAC) .I function
I So=s 200 said to satisfy the Vst order S
o and anly if
o [ salisfies the SAC dand
o coery Junction obtained from [oby keepong the
1-th dnput bil constant and cqual to c sabisfics
the SAC as well for cvery (el 20, and
Jor c=0 and ¢=1.
Naturally, the SAC defined in Definition
1 can be said of the O # order SAC too. To
verify whether an »-bit input Boolean function
satisfies the 1 st order SAC or not, at most
n4n - (n—1) checks are required. » checks
correspond to the () th order SAC and n - (n—
1} checks correspond to the 1 ¢ order SAC.
This definition can be extended to the &
order SAC where 1<i=<»—2 f 4 mput bits
of /(N) are kept constant.
Definition 3 (k-th order SAC) 1 junctinu
I Lo /._:“ isosaid do osabisfy o the kot order S
o and anlyvoif
o [ satisfres the (k1) th SAC and
e qnv function obtained fronr | by keeping koof
s input bits constant satisfies the SAC as well
(this must be trie for anv choice of the post
tions and of the values of k constant bils.)
Therefore, verifying whether an » bit input
Boolean function satisfies the m-th order SAC

or notr equires as most n-+n - =1+ )
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(n—2) 4+ (n—h) checks,

Afterward, when we say that a function
satisties the SAC without specitying the order,
the function as least satisfies the (0 th order
SAC. Moreover, i an » bit input Boolean
function satisfies the (n—2) ¢ order SAC,
the function 15 referred to as a Boolean fun
ction satisfying the maximum order SAC in
the sense that the (#1—2) th order SAC s

maximally achievable m Boolean functions,

lil. Properties of Boolean Function
Satisfying the SAC

In this section, we outline our previous results
on the properties of Boolean function satistying
the SAC.

1. Previous Resuits

Wei 191 1207 proved that any function
satistying the SAC holds the folowing prope
res.

1. It 15 netther Imear nor a ffine,

2 Lor n==1, or 2, any biective function / form
/1 Into /. never satisfies the SAC,

3.0 et ooand ¢ respectively denote an affine
function from 7 and /0 into themselves
with a permutation matrix and an arbitrary
hinary vector. Then, a function 1 /= /3
satisfies the SAC 1f and only if the comp
osite function gofoe : /s> 7, satisfies the

SAC.

Due to Property 1, if we use any function
satistving the SAC for the S boxes of a
DES like cryptosystem, the cryptosystem can
be guaranteed to be neither linear nor affine.
Property 2 ensures that we must treat at least

quadratic function of at least three variables
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in order to obtain bijective functions satisfying
the SAC. And by using Property 3, when we
find a function satisfying the SAC, we can
make many different functions satisfying the
SAC with the same number of input bits,

2. Basic Functions Satisfying the SAC

When the number of input bits is 2 in a
Boolean function, we searched all Boolean
functions and obtained those satisfying the
SAC. Table 1 shows all 2 bit input Boolean
functions satisfying the SAC. The inside of
{ - ) In the table is a hexadecimal represent
ation of a function, We refer to these functions

as “basic functions satisfying the SAC”,

Table 1. Basic functions satisfying the SAC

| No. } 0123
1 0001 (1)
2 0010(2)
3 010004
4 10000K)
5 0111(T)
6 1011(B)
7 1101(D)
8 LTIO(E)

By employing these basic functions, we will
construct a function satisfying the SAC in

Section 4 and Section 5.

V. Construction of Boolean function
satisfying the SAC

Experimental results gave us that as the
number of input bits(>5) increases in a
Boolean function, 1t becomes more and more

difficult to find even one Boolean, function
satisfying the SAC by random search on an
engineering workstation, So, it is necessary to
construct Boolean functions satisfying the SAC
trom a relatively smaller number of inputs to
any arbitrary number of inputs in a systematic
way.,

Here we propose two construction methods
of a Boolean function satisfying the SAC from
given basic functions satisfying the SAC,

1. Use of the Kronecker product
[Let 4 and B be mXxXn matrix and x4k

matrix respectively such that

a;;  aj2 Qin

A= Q2 0.22 Q2n
Gm) Qm2 - Qmn

and

biy b1 - b

by by - by

B=| T .
by brp - by

then the Kronecker product A®[ is defined
by

anB apB -+ a.B

anB apB --- a.B
A@B=| - TET W

amB ameB - am.B

which 1s an (mr) X (#k) matrix. By using the
Kronecker product,we can generate 2/-bit input
Boolean function satisfying the SAC from basic
functions satisfying the SAC, At this moment
we use a mapping 0—1 and 1—- —1. We
denote this mapping as

fx)=1-2-f(x) or f(x) = (~1)/*®
105
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where /(1) 15 a 0/ 1 valued function,

Theorem 1 Whew an 1/ —1 calued basic fun
ction /f satisfying the SAC s vioen, thew an ]/
=1 valued 20-il ({=Z23) input Boolean function

g extended by

~

<ig>=<f>e<f>® --®<f>

-1 timeas

satisfies e SAC

Proof = See the Appendix.
Example 1 4 1/ —1 calued basic function
satisfving the SAC 0s green beloi,

< f>=11,1,-11].

Then,

<@P> = <f>0<f>

= [1,1,~-1,1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1].

@ty s an LS =1 ealued g-bit input Boolean

finiction satisfving the S0

2. Construction by Concatenation

We can enlarge two given distinct o bit
input Boolean functions satisfying the SAC
into one (#+1) bit mput Boolean tunction
satisfying the SAC,
Theorem 2 When too distinet Boolean functions
foand /o Ao Ly satisfving the SO are given.
the concatenated  Booleaon function g /'1 > /.

le.
9= fillf; (2)

satisfies the SAC of and onlv i

wt(< fi > < f,>)=2""1 ()
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Proot - We will show that 30 " Me(v)y e (v
Sy =0 for any Aol 20 n+1i Let us
denote the (w+4-1) bit input vector of ¢ as 1=

(v o) where v =0, e 100, ) Also let

)

v dentote (0, 2 Jand let sy denote (1, v,
Note that

(](X) — { fi(xl) lf Tyl =

F) 3 ZTasy =

b
O

IFor k=1, 2., n,

> g egxec)

xezpt!

= Y Q(Xo)@g(xo@cinﬂ))

xez;*!

+ 5 gx) @ g(x @)

Zr4l
x€eZ;

= Y fiX)e (X ecd)

x‘'€Zy
+ 5 LX) f(x @cl)
x'€Z3

— Qn-—l 4 on-l
e 2"

When k=n+1, let v denote the left half
ot o oand let «p denote the night hall of
voo b this case, the condition of SAC ness

cant be alternatively checked like,
wi(< g > & < g, >)=2""1

This 15 equivalent to Equation (3).
Therefore ¢ satisfies the SAC for all A=
1,2, n+1. We complete the proot.
Example 2 When o=1000,1] and <fo=
[0.0,1.0,
o=l
=10,0,0,1,0,0,1,0]
salisfres e SAC

We applied recursively this method to enlarge
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basic functions satisfying the SAC to any bit
input Boolearn functions satisfying the SAC.
We can generate 48 3 bit input Boolean fun
ctions satisfying the SAC from ¥ basic func
tions satisfying the SAC and 1,440 1 bit input
Boolean functions satisfying the SAC from
48 3 bit mput Boolean functions satisfying the
SAC. The results generated by thismethod
are summarized m Table 2, In Table 2, .1,
denotes the number of all »—bit input Boolean
tunctions, B+ denote the number of #—Dbit input
Boolean functions satisfying the SAC and ¢,
denotes the number of » bit input Boolean
functions satisfying the SAC generated by this

method.

Table 2. Generated results of unique Boolean functions
satisfving the SAC,

n 2 3 1 D
A 16 256 65,536 o
B 8 64 1,128 ?
g 8 18 1,410 980,160

But, this method can not generate all fun
ction satistying the SAC. The following exa
mples are two 3 bit mput Boolean functions
satisfying the SAC which this method could

not generate,

10,1,1,0.0,0,0,01,
10,1,1,0,1,1,1.1 ]

From this example,we may consider that
some parts of the functions might be constr
ucted by employing the exclustve or’s of some
basic functions satisfying the SAC as the

function to be concatenated in this method.

V. Construction of Bijective Functions
Satisfying the Maximum Order SAC

An » bit biective function ensures that all
possible 2" »n-bit input vector will map to
distinct output (7.¢. the S-box is a permutation
of the mtegers from () to 2"—1) and ensures
that all output bits appear once, This Is a
necessary condition for invertibility of the
S box which may or may not be important
depending on the structure of the DES like
cryptosystem,

We can conceive that if there 1s a statistical
dependence between resultant input and output
vectors of S boxes with some number of input
bits fixed to constant, a cryptanalyst will use
this relationship to break a cryptosystem.

Therefore, 1o prevent this possible way of
cryptanalysis, we propose th construction
method of bijective S-hoxes satisfying the
maximum order SAC in this Section.

First we review the proposed construction
methods of Boolean function satisfying the
maximum order SAC.

{Method F]

Forré [11] proposed on recursive construction
method which can generate Boolean functions
satisfying the maximum order SAC. Her
method can generate, for exampie, 3 bit input
Boolean functions ¢*(y) satisfying the maxi
mum SAC from the basic functions fi#(v), f!
?(v) satisfying the SAC by applying Equation
(4) recursively,

Let f"): 23 — Z; and gi"+): 23+ — 7,
g(mH)(x) = Tpgp- fl(")(x)+m f](")(x) (4)

for integers [, j €{1, 2,--+, 2"},

This method can generate all Boolean fun-
ctions satisfying the maximum order SAC, but
It 15 necessary to check whether an enlarged
function satisfies the maximum order SAC

or not,
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{Method A]

Adams and Tavares| 16| proposed one str
uctured method that an enlarged Boolean
function always satisfies the maximum order
SAC. They utilized the idea of the construction
method[ 15] of bent functions,

Let /™ 7,
satisfying the

— /, represent a Boolean function
(n—2) th order SAC. Further
more, let £ be the bhitwise reversal of
(7o if ¢"D=Tb, by bea], = [he
1 b b,1) and let 7 be the bitwise
complement of £

If »1s even,

(n+1)
9 FO (5)
gt = g g (6)
are two distinct {(#+1) bit mmput Boolean

functions satisfying the (n—1) ¢ order SAC,

and
(n+2 e
R = g ) g
(n+2) n n n n
Wyt = O e
(n+2) n
hj SENLFE ) £
(n+2}) (n n n n
R = ) ) e
are four distinct (#4+2)-bit input Boolean

functions satisfying the w-th order SAC.

This construction method can be appled
recursively to easily create Boolean functions
satisfying the (n—2) th order SAC for any
n. Also it was proved in [ 16 that all Boolean
SAC

Since hent functions are

functions satisfying the {(#—2) th order

are bent for even x.
0/ 1 unbalanced, we can se that all Boolean
functions satisfying the maximum order SAC
are unbalanced for even nu.

By using this method, when the

)

of mput 15 3 (or 1), we give all Boolean

108

number

Tabte 3. All 3 bt mput Boolean functions satisfying
the 1 st order SAC,

| No. | 0123 1567
1 01 1000(18)
2 000l 01111
3 010 0T00(26)
1 0010 1011(2B)
B O1a0 0010042)
6 )} L1olc4b)
7 1000 0001(81)
3 1000 1110(8E)
9 Ot 1110078
10 OL1T « (71
11 1011 1101(BB
12 1011 0olocB2)
151 1ol ooLLebis)
8 1161 0100¢1D4)
15 1110 OLLHCET)
16 1110 1000(ES)

Table 4. All 1 it nput Boolean functions satisfving

the 2 nd order SAC.

[ No [ o=t [ Ne [ o=
1 (188t L7 (7113)
2 SETE 13 (71D
3 trrsh 19 (7E1T
1 (177l 20 (7RI
5 (2441 21 (B2
£ (21B82) 22 (B2Db)
n (2B 23 (BD2B)
s (2BBD) 24 (BDD1)
B (42280 25 (D442)
10 (12D1) o4 (D1BD)
11 (ib2y) 2 (DBD)
12 (1DODB) 28 (DBB2)
13 (811 2y (Exs1)
11 (B1ES) 30 (E8710
15 (8l138) 3l (E78E)
16 BEETY o3 (E771)
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functions satisfying the maximum order SAC
in Table 3 {or Table 1),

However, these two methods did not suggest
how to construct a bijgective function satisfying
the maximum order SAC. We can extend these
two methods to generate the bijective function
satisfying the maximum order SAC.

From the unbalance of bent functions and
Method A. the following theorem is easily
obtained.

Theorem 3 Lt u denote ithe smber of tnput
of a Boolean function and n =2 When nis odd,
half of all functions satisfying the maximion order
SAC are balanced and the other hall ones dre
withalanced . Thercfore, when i is odd, the totul
numther of the halaneed Boolean functions safis
Sving the maxiviem order SAC 0s 200 When n
Is cven,all functions satisfyong the maximaom
ordey SAC aqre wihalaneed.

Proof © Let £
denote any » bit input, odd bit input, and

", and FLSL respectively

even-bit input Boolean function satisfying the
maximum order SAC.

For even »u, 1t is known[4][7] that each
bent function has Hamming weight 2" '42"
21¢; ¢ unbalanced). So any bitwise complem
ent of abent function has Hamming welght
2MIFOI (Case 1@ F.Jw) We can see that
the (u-1)-bit input function ¢ expanded
by Equation (5) has Hamming weight
on=1 4 gn/2=1 4 gn=1 4 on/2-1 on 4 on/2.

Moreover, the (n41)-bit input function g
"v expanded by Equation (6) has Hamming
weilght

2n—1:t2n/2—-1+2n—1 q:Qn/?—~l = 9"

Since any £« can be expressed by g

Vor ¢, the number of balanced F."..equals

the number of unbalanced /" . Moreover
since Lloyd [13] proved that the number of

ECIRN et n

the number of balanced F.:u =2

it
~ »

(Case 2 : Fi0w ) All 4 (n+2) - bit input fun-
ctions A, P (for 1=1, 2, 3, 4) expanded by

Equation (7) has Hamming weight

2n——1izn/2—1+2n—l¥2n/2—1+2n—1

ign/?—l+2n—l izn/Z—l 2n+li2n/2.

Since any /77" can be expressed by i%*
s

opdrE oYt or h ¥ all FoCe are unbala
nced. We complete the proof,

Thus in order of obtain a bijective function
satisfymg the maximum order SAC, the num
ber of mput bit should be odd.

[Method K]

By using Theorem 3. we can generate all
bijective functions satisfying the maximum
order SAC. In order that » Boolean functions
fi. foreofe satisfying the maximum order SAC
become an »-bit bijective function, the follo
wing equation gives as a necessary and suff
lclent condition that »-bit biective function,
the following equation gives as a necessary
and sufficient condition that » combined fun-
ctions must be bijective and satisfying the
maximum order SAC.

wt(@Paif;) = 27! (8)
i=1

where a. € {0}, 1} and (a,, ay---a.)¥ (0, 0,
()). In other words, the Hamming weight of
any nonzero linear combinations of / should
be 2"' To vernft Equation(8) requires (;)+
(3) 4+~ () checks,

Therefore, after selecting » functions from
a set of x-bit input (balanced) Boolean fun-

ctions satisfying the maximum order SAC, we
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oY
I

|
i L@

fo )

‘ nonzero tuple

Weight

\g|

—
Check bij. func.

Figure 1. Hlustrative description of Method K

Table 5. Combimatorial scarch result of 3 bt biective
functions satstving 1o order SAC,

]NLIHIMINH [MA]urmzmr

1 nl2aesne? 17 o loh2e T
¢ nl3szing 18 ST IR
i [SART IRTIC TI 19 [ S AT T
! n3s ety k] 1T o6
0 1243576 i N IR TR T
t 1o35 217 & I U T
v 120137046 I Shuln T
" P25 T0 5 ! R I A T
4 121073508 A I TR I
10 127310506 o R O DR
11 13052718 7 LI S TR NI
12 132705186 s VA N BT
13 350721t ] TR A
Bl 13725016 s T1a 160
15 17231508 3] TALYOH6 T
16 17325104 32 TALELT N

can generate all biective functions satisfying
the maximum order SAC by simply checking
Equation(8). Method K can be illustrated as
Fig.(l).

110

When the number of nput is 3. we give
the practical generation results by employing
Method K. The total number of balanced
Boolean functions satisfving the 1 s order SAC
B U0y,

We can consider the combinatorial search
of Method K. We scarched (,) x5 combin
atorial cases and obtained 32 3 bit bijective
functions satistying the 1-s¢ order SAC, Table
5 shows examples of generated 3 bit bijective
function by this method.

Also we tested all 8'=0512 cases exhaustively
and obtained 192 3-bit bijective functions
satistving the 1 st order SAC. The total num
ber of 5 bit byective functions satisfying the
| st order SAC 15 verified to be identical to
that of filtermg from all permutation 8'. By
the same way, we can generate all 5 bit bij
ective functions satisfying the 3 »d order SAC
by combinatorial or exhaustive search from
5 bit mput balanced Boolean function satistying
the 3 rd order SAC. The following functions
are generated examples of 5 bit bijective

functions satistying the 3 rd order SAC.
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[3,4,11,19,7,31,16,23,25,1, 14,
9,2,5,10,18,13, 21, 26, 29, 22,
17,30,6,8,15,0,24,12,20,27, 28,

[7,9,2,19,0,17, 26, 20, 16, 1, 10,
4,8,6,13,28,3,18,25,23,27

21,30,15,11,5, 14,31, 12,29, 22, 24],
[15,1,2,19,6,23,20,26,0,17,18,
28,22,24,27,10,21,4,7,9,3,

13,14,31,5,11,8, 25,12, 29, 30, 14).

Also by using this method, we found that
the total number of 5 bit bijective functions
satisfying the maximum order SAC is 10,32
1,920.

VI. Concluding Remarks

We propose two simple methods to enlarge
the given Boolean function(s) satisfying the
SAC into any input size. One method is to
enlarge a 2-bit input function into a 2/-bit
(/>2) input function satisfying the SAC by
using the Kronecker product. The other one
is to enlarge two distince u-bit input Boolean
functions satisfying the SAC into an unique
{n+1)-bit input Boolean satisfying the SAC
as many as possible. The proposed construction
method can be useful to count the lower bound
or upper bound of the number of functions
satisfying the SAC.

Among the total 2"' Boolean functions
satisfying the maximum order SAC, when »n
1s even,all Boolean functions satisfying the
maximum order SAC are unbalanced and bent.

However, when » is odd, the number of bal-

anced Boolean functions satisfying the maxi-
mum order SAC is 2", The other half one sare
unbalanced. Therefore, in the class of functions
which are bijective and satis fying the max mum
order SAC, there exist only bijective functions
whose number of input bits is odd.

Also we proposed a new construction method
of all bijective functions satisfying the maxi
mum order SAC and suggested the practical
generated examples of bijective S boxes by
employing our proposed method.

We think that the following topics require
further research.

1. To generate all Boolean functions satisfying
the SAC.
2. How to combine functions satisfying the

SAC /i : Zi—> 2, into g Za > La WO,

3. Measuring nonlinearity or any other criteria
of a function satisfying the SAC.

This paper will help to design cryptographic
functions for symmetric cryptosystems, pseu-
dorandom number generators, nonlinear com -

biner for stream ciphers, hash functions, ctc.

Appendix : Proof of Theorem 1

We can prove this theorem by mathematical
induction,
(Basis) /=2. (= ® (). Because [(x)
satisfies the SAC, it holds that 3. 2 flx)&f
(A®cP= 2 or . flO)f(x®cP=0 for j=
1, 2. Let <f>:[:.\'o, Yo ts 1) and o€ {1, —
1! for /=0, 1, 2, 3. Then, we can obtain that

ToZT) + 2273 = 0 and
Toro+ 2123 = 0.
Also,
<>
= <f>®<f>

(RN
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= [.’L‘o<f>,.’£1<f>,IQ<f>,I3<f>]
2
= [IgylolxyxolzyIolsyzoffx,rl,IlI'z,IlIa,
2 2
IOIZ»III?.sanIQISVIOIJv131137332-73&173]

We must prove the 20,0 ()5 (vebes h=()

for any kell, 2, 3, 4.
(Case 1) When A=1,

S )@ xect) _

x€ez}

zg - ToZy + ToZo r ToZ3 + TopI; - zf + T1T9 - T123
+ToZTy - T1Z2 + 'E% S ToZ3 + TpTz T1X3 + ToX3 - Ig
= ZoT] + ToT3+ ToI) + ToT3
+ZoTy) + T2T3 + ToTy + X223

= 0.

(Case 2) When k=2, 3, 4}, by the same way

we can get

¥ @Exgxec) = o
x€Z3

A

¥ s a 4 bit input Boolean fun

Therefore, &
ction satisfying the SAC,
(Induction Hypothesis) When /=u, we

assume that

<P">=<fr>e<f>® . --®<f>

n—1 flimes

satisfies the SAC, /e,

Y rxtxecd™)y =0

xez"

for all j=!1. 2+, Z2ai. Let @"S=l1, 1.

Van (). then there hold the following equations.

ToTy + ToTy + o+ Tyn oThny = 0 (O)

12

r, 0 P ’ ’
oIy + T T3+ + Tgn_3Tgn_y = 0

Lo + T\Tognyy F 0+ Tha Ty = 0
(Induction) When /=»+1, we show that

3 f}"“(x)g}““(x@cf“”) = 0.

pram—y
xgzit?

On the other hand,
<it'>s = <f>@e<i" >
= [to<§" >3 <§ >, 1< " > 13 <§" >].

When f=1], we can get that

S ) x @ )

xezin+?
= 23 (O)+ 21 (O)+ 23 (O)+23- ()

= 0.

By the same way when r={2, 3+, 2u+2}

we can obtain

E gn+l(x)§n+l(x@cf"+2)) = 0.

xgznt?

Thus, we complete the proof.
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