DEri=

O

slll
s

A Remote Data Access Interface Model
Using the Monitor IPC Mechanism

F&R & ¥ F*

Dong Kyoo KIM* Regular Member

ABSTRACT In this paper, we construct a remote data access interface model using the IPC mechanism based
on the monitor concept. A general purpose IPC mechanism which can be used to implement arbitrary forms of com-
munications control over distributed processes in a network environment is developed as a basis to build the framework
for the model, The interface mode!l and synchronization mechanisms are presented for providing application processes

with remote data access capability using the above IPC mechanism,

B E efelde mdd el g4g IPC viag sy
steleh, W=sia dold aele #4 L2 dAge oate
IPC wizhv) o] wele) =ajalea #371% sigh 7Ibo 2 sjarsiolc

el IPC w58 Abgstel 88 2aMaSold U dlolet s 7)5g

71 e Sl vle s e

I. Introduction

The current data processing approach enjo-
ying the spotlight of user attention is distrib-
uted systems and perhaps the most important
and widely studied technical problem in dist-
ributed systems is the problem of synchroniz
ation on distributed resources,

In this paper, we construct a simple and
reliable remote data access interface model for

AR BV EER
Department of Computer Science, Ajou University)

A CESE L 91-35(8F1991. 3. 15)

AHEEHE 1A dlelel oAl olesjo] &

FA4 e B4 Aels FHels) Aw dwy Qe

¢ Fol% 4 2lv s olesola naln

synchronizing distributed concurrent processes
on shared data. The model is built on the basis
of P.B. Hansen’s monitor concept®,

As a basis, a reliable and general purpose
IPC(Interprocess Communication) mechanism
for communications control over distributed
processes are suggested, It is a result of the
research concerning distributed processes com-
munication control mechanism®, simulated by
means of semaphore.

Because, even with a reliable network ser-
vice, there is a need for synchronization to
control remote data, access requests from
distributed concurrent processes on shared data,
we implement the model over the above IPC

358 www.dbpia.co.kr

A %/ A Remote Data Access Interface Model Using The Monitor IPC Mechanism

control, In designing the model, we considered
two parts, one is for interfacing interaction
between application processes and the IPC
control, the other is for controlling operations
of a data processing system from remote data
access requests through the IPC control,

Finally, we give an overview of the structure
and describe synchronization mechanisms over
that structure,

II. IPC structure and mechanism for
distributed processes

In this section, a general purpose structure
and a mechanism which can be used to imp-
lement arbitrary forms of communications
control over distributed processes in a network

environment are suggested and developed.

2.1. Design considerations

The network has the following properties
and environments :
¢ Logical Token Ring

It is assumed that the network consists of
a fixed number of processor nodes connected
cyclically by unidirectional bus links. That is,
processes and data are distributed among the
nodes in a logical token ring.
e Virtual Channels

The processes distributed among the nodes
are connected by virtual channels. Each cha-
nnel can transmit one data item at a time
from a single sender process to a single rece-
Iver process.
e Token As Access Right

A message originating from a node can only
be proceeded by that node when it is in
possession of a token circulating the network.

¢ FIFO Scheduling Policy

Only one message at a time originating from
a node that holds the token can be transmi-
tted. Also, that message should follow all the
messages that are already buffered for trans-
mission (FIFQ basis),
* Rendezvous Concept

A request for transmission and the corresp-
onding response must be matched before tra-
nsmission occurs.
e Tightly Coupled Synchronization Policy

It is guaranteed that there is no message
discarding due to buffer overflow and no
deadlock.
e Message Types

In order to reflect the user-level primitive
operations, a message Is one of four types :

A-REQUEST ; A-RESPONSE ; A-FORCED
: TOKEN ;

2.2. User-level IPC Primitive Operations for
Distributed Processes

The following four types of primitive oper-
ations are defined for p.roviding users with
communication Sservices,

SEND(channel, item) : RECEIVE(channel
VAR item) :

When two processes communicate on a
virtual channel, the recetving node transmits
a request message by calling RECEIVE prim-
itive to the sending node which then responds
by transmitting a response message by calling
SEND primitive on the network,

RECEIVE request and SEND response must
make a rendezvous at the node issuing SEND
primitive. Fig. 1 concerns about the request-
response rendezvous.

FORCED-SEND(channel, item) ; RECEIV -
E-ANY (VAR channel, VAR item) :

www.dbpia.co.kr 359

@ ELE{E SR 0 914 Vol. 16 No. 4

RECEIVE RECEIVE_ANY
- REQUEST ’
RESPONSE ot .
SEND FORCED_SEND
LEGEND
rendezvous
point
Fig. 1. Transmission via rendezvous of request and response Fig. 2. Direct transnussion via RECEIVE-ANY and FOR

In order to bypass the request response
rendezvous and speed up the communication,
any processes can send data via FORCED
SEND primitive operation to a destination
orocess without waiting tor a request.

The process at the destination delays after
sending RECEIVE-ANY message to receive
any matching FORCED SEND message. There
fore, the concept of rendezvous still is alive
although this is different from the request
response rendezvous. Fig. 2 concerns about this
process.

2.3. IPC structure

CED SEND

A network node consists of the following
system components : READER process :
WRITER process : TOKEN-ACCESS monitor
; INP monitor of type INPUTS : OUT monitor
of type OUTPUTS : BUF monitor of type
BUFFER : BUS monitor of type BUS-LINK

. Application processes.

« INP(i) monitor

An INPUTS monitor implements four ope
rations :

RECEIVE sends a request and delays a

calling process until a response arrives on 4

360 www.dbpia.co.kr

i X/ A Remote Data Access Interface Model Using The Monitor IPC Mechanism

given channel ; RESPONSE delivers a data
item on a channel and continues the process
that is waiting for receiving it ; A process can
select another mechanism to bypass the above
request - response rendezvous process. RECEL-
VE-ANY checks to see if the ready list ass-
ociated with its receiving parties 1s set true
or not, proceeds immediately to pick up mes
sages or delays until being awoke respectively
: FORCE delivers a data item on a channel
and continues a process that has issued REC-
EIVE-ANY,

¢ OUT(1) monitor

An OUTPUTS monitor implements three
operations :

SEND delays a calling process until a given
channel is ready for transmission. It then sends
a data item through a local buffer : REQUEST
makes a channel ready to send and continues
a process waiting for sending on that channel
. To bypass the above process, FORCED-

PS

INP({)

voomd "a_n

TOKEN ACCESS

BUS (I-1) R(1)

SEND sends a data item immediately without
waiting for request on a channel.
 BUF (1) monitor

Transmitted messages are directly forwarded
onto this BUFFER monitor as long as the
buffer is not full. Messages stored in the
BUFFER monitor are fetched by the WRITER
process as long as the buffer is not empty
whenever it wants to,
¢ BUS(i) monitor

The monitor simply provides a place for a
communication hetween the WRITER process
and the READER process, It is only for sim
ulation purpose, and not necessary in real
implementation.
* TOKEN -ACCESS monitor

The process that issued RECEIVE, SEND
or FORCED SEND to the INPUTS monitor
or OUTPUTS monitor is delayed in TOKEN-
-ACCESS queue to possess a token according
to the FIFO policy. When a token comes intc

oUT(1)

-

| e

BUF(1) w(4)

LEGEND

RGO }—-

() wonrTOR
[PprocEss

— ACCESS RIGHT

Fig. 3. IPC structure in a node,

www.dbpia.co.kr 361

GBI {4 A 91— Vol. 16 No, 4

the READER process, the process delayed in
the head of TOKEN-ACCESS queue is aworke
and the message is sent to the BUFFER
monitor,
* R(1) process

A READER process receives one message
at a time from the previous node through a
bus link. The READER uses two constants
defining the set of input channels and the set
of output channels used by its node. If the
node is the destination of a message, the
READER process performs a RESPONSE,
REQUEST, or FORCE operation on it. If the
type of the message 1s token, it wakes a
process waiting in TOKEN ACCESS queue
and then passes the message immediately to
the BUFFER monitor. Otherwise, it sends the
message through a local buffer to the next
node. These operations are implemented by
INPUTS, OUTPUTS, BUFFER, and TOKE
N-ACCESS monitors.
e W(1) process

A WRITER process receives one message
at a time from a local buffer and passes it

to the next node through a bus link,

2.4. IPC mechanism

The TPC mechanism is performed via two
major schemes :

Transmission via rendezvous of request and
response . Direct transmission via RECEIVE
ANY and FORCED-SEND,

e Rendezvous of request and response

An application process calls a local INPUTS
monitor when it wishes to receive data on a
channel. A request is now sent through the
network to the opposite side of the channel
and the process is delayed until the correspo-
nding response comes back.

An application process calls a local OUTP

UTS monitor when it wishes to send data on
a channel. The process is delayed until a
request for data arrives on that channel. A
response 1s then sent through the network to
the opposite side of the channel,

So, a transmussion on the network only takes
place after rendezvous and causes a message
to pass through all the nodes once.

e Direct transmission via RECEIVE-ANY and

FORCED SEND

An application process calls RECEIVE ANY
in a local INPUTS monitor when it wishes
to receive data and bypass the request response
rendezvous.

An application process calls FORCED SEND
in a local OUTPUTS monitor when it wishes
to send data without waiting for request,

So, RECEIVE ANY FORCED-SEND process
provides application processes with direct tra

nsmission without rendezvous.

[II. Remote Data Access Interface Model

In this section, a generalized remote data
access interface structure and mechanisms
using the above IPC mechanism is constructed.

To achive intended operations using the [PC
user level primitive operations, an interface
between application processes and the [PC
primitive operations is specified,

To control the interaction between remote
data access requests from the IPC control and
a local data processing system, another inter -
face is described. Finally, we give an overview
of the structure and synchronization mechan

18IS,

3.1. Properties and Preliminaries
Before we consider the remote data access

362 www.dbpia.co.kr

% %/ A Remote Data Access Interface Model Using The Monitor [PC Mechanism

interface model, we summarize some properties
and preliminaries of the model.
e Data Exchange by a Key

Suppose that all the data are accessed by
a key. Thus, a process which wishes to access
remote data has to call remote data access
operations with a key.
e Data Transmission in a Record Unit

It i1s assumed that all the data are transm-
itted in the form of a record. To support this
assumption, the following abstract operations
are provided and the names of the operations
imply what they have to do, but these are
not implemented in detail.
CONVERT-BIT-STREAM-TO-RECORD
(bit-stream, record) ;
CONVERT-RECORD-TO-BIT-STREAM(
record, bit-stream) :
e Uniform Data Transmission Time

All the data travel the same distance thr-
ough all the nodes, The only exception is a
data access in the same node, In this case,
the data access request and the corresponding
retrieved data pass through all the nodes once.

e Encapsulation and Decapsulation

According to the layered architecture and
protocols, remote data access requests are
encapsulated when these pass from a process
to the IPC control and decapsulated when
these proceed from the IPC control to a local
data processing system. To support these
procedures, the following two primitive opera
tions are provided but these are not implem-
ented in detail,
CONVERT-BIT-STREAM-TO-QUERY (
bit -stream, query) :
CONVERT -QUERY-TO-BIT-STREAM (
query, bit-stream)
» Connection - oriented communication

The communication between application

processes and a remote local data processing
system begins with a connection establishment
request and ends with a connection termination
request.

3.2. Interface between Application Processes

and the IPC Control

An ACCESS-CALL monitor implements
the following primitive operations for providing
application processes with an interface neces-
sary for remote data access using the 1PC
mechanism,

* GEN-REQ(channel) .

A process wishing to access remote data
must first send the request of type GEN-
CALL by calling GEN-REQ operation in the
ACCESS-CALL monitor, It 1s delivered, wit-
hout waiting, by FORCED-SEND in the
OQUTPUTS monitor of the IPC control. It
makes a channel ready for data access and
notifies the data processing system on the
opposite side of the channel to carry out
appropriate data initialization tasks.
¢ CLOSE-REQ (channel) :

When a process accessing remote data wants
to terminate its data access on a channel, it
sends a request of type CLOSE-CALL by
calling CLOSE-REQ operation in the ACCE-
SS-CALL monitor, In this case, the channel
is released and the data processing system on
the opposite side of the channel carries out
appropriate data closing operations.

e RETRIEVE(channel, key, VAR buffer) ;

After issuing GEN-REQ, the process can
retrieve data by sending a data retrieve request
of type RETRIEVE-CALL, It is performed
by calling RETRIEVE operation in the ACC
ESS-CALL monitor,

The operation is implemented by two IPC
primitives, SEND and RECEIVE. That s, the

www.dbpia.co.kr 363

S AR Lk 91 —4 Vol 16 No. 4

data retrieve request is delivered by SEND
in the QUTPUTS monitor of the IPC control,
and the corresponding retrieved data 1s returned
via RECEIVE i the INPUTS monitor of the
IPC control.

The data retrieve operation'begins with a
GEN ‘REQ and ends with a CLOSE-REQ.

The request of type GEN -CALL 1s delivered
without waiting, On the other hand, the req
uest of type CLOSE-CALIL and RETRIEV
E-CALL 1s delivered under the RECEIVE
request - SEND response rendezvous of the 1PC
control, It will provide distributed concurrent
processes with remote data access in a sync

hronized manner.

3.3. Interface between the IPC Control and
a Local Data Processing System

Primary aims of the interface are as follows
e To control interaction between the [PC

control and a local data processing system,

for example DBMS,
e To hide low level details concerning a local
data processing system

In order to meet the above aims, the mte
rface is implemented in two levels, In other
words, the interface consists of the ACCESS
-CONTROL monitor and the DATA SYSTEM
process,

The ACCESS-CONTROL monitor defines
the followmng primitive operations to control
interaction between remote data access requests
from the IPC control and operations of a local
data processing system,

e ACCEPT INIT REQUEST(VAR channel,

VAR query) .

This primitive is defined for accepting any
one of the requests of type GEN CALL from
channels connected through the 1PC control

to a node. Because the request of type GEN

364

CALL from a channel is sent by issuing
FORCED SEND in the OUTPUTS monitor
of the IPC control, the operation is impleme
nted by issuing RECEIVE ANY in the INP
UTS monitor of the 1PC control.

As a result of accepting that type of request,
connection establishment and data initialization
tasks will occur.
¢ ACCEPT -ACCESS REQ(channel, VAR

query)}

After establishing a connection by GEN
CALL from a process, the process may send
the request of type RETRIEVE CALL. In
order to accept the request, we define another
operation, ACCEPT-ACCESS-REQ. It is
mplemented by RECEIVE in the INPUTS
monitor of the [PC control. Thus, it will make
a request response rendezvous at the node
issuing RETRIEVE or CLOSE-REQ operation.
Even if it is possible to accept CLOSE-CALL
as well as RETRIEVE CALL by issuing the
operation, there is a difference in the sense
that RETRIEVE CALL must be returned with
a retrieved data but CLOSE CALL doesn't
need to do so.

The course of the data exchange ends as
a result of accepting CLLOSE CALL.

o RETURN (channel, record)

The data record which 1s the result of
RETRIEVE CALL must be returned. To carry
out this operation, we detine another operation,
RETURN, The process which has issued
RETRIEVE operation is delayed to accept the
retrieved data and it 1s implemented by RECE
IVE i the INPUTS monitor of the IPC con
trol, So, the retrieved data 1s delivered by
SEND in the OUTPUTS monitor of the IPC
control when we implement RETURN opera
tion. That is, another rendezvous will take

j.ace 1 the node in which the local data

www.dbpia.co.kr

a2 A Remote Data Access Interface Model Usmg The Monitor 1PC Mechanism

processing system 1s located.

The DATA SYSTEM process is a contin-
uously operating process which 1s provided to
hide details of the operations of a local data
processing system and to solve a concurrency
problem from the distributed concurrent pro
Cesses,

To conduct the above two tasks, the process
references both the ACCESS CONTROL
monitor anc the operations of a local data
processing system.

Because we are only interested in the remote
data access interface, we describe operations
of « local data processing system only i the
abstract level.

To do sc, the DB SYSTEM monitor is
defined for specifying the operations in a
natural language forms. There are three types
of abstract operations in the DB SYSTEM
monitor, INIT DB, ACCESS DB, and CLOS
E DB. According to the type of the requests
from processes, one of them 1s called to per
form appropriate operation in a local data
processing system,

The DATA SYSTEM process listens to the
channels which are connected to this node wvia
ACCEPT - INIT REQ operation in the ACCE
SS-CONTROL monitor until a request of type
GEN-CALL arrives, On arrival, the process
calls a local data processing system via INIT
-DB in the DB-SYSTEM monitor to perform
initialization tasks. After conducting initializ
ation, the process accepts data retrieve opera
tions on that channel previously established
until CLOSE CALL 1s accepted.

Since the process only listens to the channel
delivered GEN CALL, the concept of mutual
exclusion is guaranteed among distributed

concurrent porcesses.

www.dbpia.co.kr

3.4. Remote Data Access Structure and
Mechanisms

As already mentioned, we implement two
interfaces for providing distributed concurrent
processes with remote data access. These
interfaces are combined with the IPC structure
to construct a system which can be used to
perform rernote data access in a network
environment, The overall structure of the
system is shown in the Fig. 4 and the appe
ndix contains the complete text of the program
written in concurrent pascal.

The remote data access mechanisms over
the structure shown in the Fig., 4 can be
thought of with the following three phases :
connection establishment, data exchange, and
connection termination,

e Connection Establishment and Termination

Even with a reliable network service, there
15 a need for connection establishment and
termination procedures to support connection
oriented service. Connection establishment
serves two main purposes ;
eIt allows the DATA SYSTEM process to

assure that an apphcation process is conne

cted through a channel

eIt allows the DATA SYSTEM process to
perform initialization tasks before a process
asks for data access.

Connection establishment can be accomplished
by a simple set of commands, To begin with,
an application process wishing remote data
access from a local data processing system
sends GEN CALL by calling GEN REQ
operation in the ACCESS-CALL monitor,
Then, it 1s delivered through a channel by
F(‘)RCEDSEND in the 1PC control. In all the
nodes in which a local data processing system
15 located, the DATA SYSTEM process 1s
listening to channels connected to its node by

365

SHELH e ik '91—4 Vol 16 No. 4

Application Process

(ACCESS_CALL)

. GEN_REQ(a)
/_.

- (a,key,buffer) N
. by Key

use-dsata

. | CLOSE_REQ(a)

(IPC command)

FSEND(c#, item) .
| Connected
RECEIVE(c#,item)]

.| FORCED SEND(c#,item)

r(H)| -~ (Burcs)

Local Data Processing System

(ACCESS_CONTROL)

|y RETRIEVE N Data Exchange (
Lo 4

L ACCEPT_INIT_REQ(a,iq)

A

-| ACCEPT_ACCESS_REQ(s,q) .

.| RETURN(a,buffer) 4
: AN

(IPC command)

| SEND(c#,iten) <4

MNRECEIVE_ANY(c#,item)

—— RECEIVE(c#,item) 4t
by Channel u [

o)

R(RK) ~~7 {BUF(k) IW(k)

Fig. 4. Remote data access intertace model over the [PC control

calling ACCEPT-INIT REQ in the ACCESS
-CONTROL monitor. ACCEPT INIT REQ
is implemented by RECEIVE ANY in the IPC
control to accept GEN-CALL delivered by
FORCED-SEND, On accepting GEN CALL,
the process performs an initialization of a local
data processing system by issuing DB-INIT
in the DB SYSTEM monitor.

The process accessing the data may initiate
a close request when it wishes to terminate
its data access on that channel. The request
i1s implemeted by calling CLLOSE- REQ opera
tion in the ACCESS-CALL monitor and being
delivered via SEND in the IPC control. After
establishing a connection, the DATA SYSTEM
process on the opposite side may accept a data
retrieve request or a close request through the
IPC control. Accepting a close request of type

366

CLOSE CALIL from a process connected, The
DATA SYSTEM process performs the follo
wing two tasks .

e Close 1ts own data

e Release the connection so that another pro
cess wishing remote data access on that
channel can be nitiated.

e Data Exchange
Fig. 5 shows a typical sequence of events

in a data exchange phase. As already ment

ioned, the data exchange phase 1s entered afte)
connection establishment.
The sequence of events 1s as follows :

1. The DATA SYSTEM process accepts
GEN CAILIL from a channel by issuing
ACCEPT INIT
ACCESS CONTROL monitor.

2 Atfter immtialization tasks, The DATA SYS

REQ operation in the

www.dbpia.co.kr

s %/ A Remote Data Access Interface Model Using The Monitor IPC Mechanism

TEM process issues ACCEPT-ACCESS
REQ operation in the ACCESS-CONTROL
monitor to accept data access requests from
the channel, It is implemented by RECEIVE
in the INPUTS monitor,

3. The RECEIVE request causes a rendezvous

in the node in which the process sending
GEN-CALL is waiting for permission of
data access. As a result of the rendezvous,
the process can transmit the request of type
RETRIEVE CALL to the DATA SYSTEM
process, It is delivered via SEND in the
OUTPUTS monitor of the IPC control. Then
the process is delayed by issuing RECEIVE
in the INPUTS monitor of the IPC control
until the retrieved data comes back.

_ On arriving of the request of type RETR
IEVE-CALL, the DATA SYSTEM process
accepts the request and processes it accor

ding to its type.

6.

=1

. After processing the request, the DATA-
SYSTEM process calls RETURN operation
in the ACCESS-CONTROL monitor to send
the retrieved data to the process currently
connected. To carry out this, there will be
another rendezvous in this node.

The process waiting for the retrieved data
is aworke when the data returns.

The sequence from 1 through 6 will be
continued until the process currently conn
ected issues CLOSE-REQ in the ACCES-
S-CALL monitor,

After connection termination, the DATA-
SYSTEM process gives the access right of
its data to a process waiting for access(if
there are any).

IV. Conclusion and Discussion

Local Data Processing
System

ACCEPT_INIT_REQ

ACCEPT_ACCESS_REQ

RETURN

ACCEPT_ACCESS_REQ

RETURN

ACCEPT_ACCESS_REQ

Application IPC Control
Process
GEN_REQ » ® o
FORCED_SEND RECEIVE_ANY
RETRIEVE > —
SEND RECEIVE
. L
RECEIVE X VSEND
RETRIEVE , X <
'SEND TRECEIVE
b X 4
RECEIVE v TSEND
CLOSE_REQ N ‘
- SEND — X TRECEIVE
LEGEND

@ RECEIVE_ANY

- FORCED_SEND rendezvous

X SEND response - RECEIVE request rendezvous

Fig. 5. Sequence of events in a data exchange phase

367

www.dbpia.co.kr

P R il 91 -1 Vol 16 No, 4

This far, we have shown how to realize an
interface model simply and reliably with an
abstract language for synchronizing data access
requests among processes distributed In a
network environment.,

Since this model was constructed in accor
dance with layered architecture, it can be
easily extended to be used for specific apph
cation, That 1s, in order to tansport data or
querles in string format rather than in record
units, a preprocessor may be needed : an
additional component may be required in order
to provide more efficiency for traveling the
network distinguishing whether the requested
data are located in the same node as the
requesting process or in different nodes.

Another issue 1s delivery of data access
requests via request response rendezvous and
subsequent delivery of retrieved data, The
rendezvous solution guarantees the mutually
exclusive access of shared data among distr

ibuted processes, but is entails delay problem,

Acknowledgement : This paper is an outcome of a
rescarch project supported by a grant from the 1988
research fund of Korea Research Foundation, Its main
content was published in the Proc. of th, International
Workshop on Computer Communications held in Japan

in 1989,

368

w

BIBLIOGRAPHY

. C.AR. Hoare, “Monttors : An operating system stru-

cturing concept™, Comm. ACM, Vol 17, pp. 549~5
57, Oct. 1974,

. Dong Kyoo Kim, Computer communication networks,

Sang o Publications Company, Inc., 1986.

. Dong kyoo Kim, “A distnibuted processes communi -

cation control mechanism based on monitor concepts
implemented through simulation using semaphore™,
und International it Workshop on Computer Com

munications, Tsukuba, Japan, June 18~20, 1937,

. Gorge A, Champine, Distributed computer systems

mpact on management, design, and analysis, North

Holland, 1980.

5. Morris Sloman, Jeff Kramer, Distributed systems and

computer networks, Prentice-hall, 1987,

5. B, Hansen, The architecture of concurrent programs,

Prentice Hall, 1973,

Peter Wegner, Scott A, Smolka, “Processes, tasks,
and monitors © A comparative study of concurrent
programming primitives”, IEEE Trans. Software Eng,,

vol. SE P, No. 4, july 1953,

C VoK Walletine, W], Hankly, SIMMON A concurrent

pascal based Simulation System, Kansas State Ui

versity, 1978,

www.dbpia.co.kr

i L/ A Remote Data Access Interface Model Using The Monitor IPC Mechanism

APPENDIX

(¥ System Variables Initialization
CONST
nmax =)
cmax =
TYPE
item I
node =].nmax.
channel ==].cmax.
channelset =SET of channel;

kinds =(a-request, a-response, a-forced, token):
message =RECORD

kind : kinds:

link : channel:

contents : item

END;
TYPE
primarykey==---;
recordtype=:--;
querytype =--.
query =RECORD

type : querytype:
key : primarykey
END:

(R HH K ¥ HHHH KN TPC control implementation K- X X K% ¥ K K % ¥ H % ¥ %)

(¥ The IPC control structure has following components,

(% An INPUTS monitor implements four operations : RECEIVE,
(¥ RESPONSE, RECEIVE-ANY, and FORCE.

TYPE INPUTS=
MONITOR (buf : buffer ; token : token-access) .
VAR
this, msg : message .
receiver : ARRAY|[channel] OF QUEUE ;
sender, receiver-any : QUEUE ;
(¥ RECEIVE sends a request through a token access and del ays a
(% calling process until a response arrives on a given channel.

PROCEDURE ENTRY receive(c : channel ; VAR v : item):

www.dbpia.co.kr

*)

%)
%)

*)
*)

369

BB E ik 914 Vol 16 No. 4

BEGIN
WITH this DO
BEGIN
kind : ==a-request :
link : =¢
END:
token, wait .
buf.send(this) ;
delay (receiver|c]):
v @ =this.contents
END:

(¥ RESPONSE delivers a data on a channel and continues the *)
(% process that is waiting to receive It. *)

PROCEDURE ENTRY response(m : message) .
BEGIN

this : =m;

continue(receiver [m.link])
END :

(% RECEIVE-ANY receives or waits any FORCED SEND message without *)
(% request-response rendezvous at sending node, *)

PROCEDURE ENTRY receive.any (VAR ¢ :channel ; VAR v [item);
BEGIN
IF msg.empty THEN delay(receiver any):
WITH msg DO
BEGIN
v . =contents:
¢ : =link:
continue(sender)
END
END:

(¥ FORCE delivers a forced data on a channel and continues the)
(% process that is waiting to receive any FORCED SEND messgae.)

PROCEDURE ENTRY force(m : message) :
BEGIN

370 .
www.dbpia.co.kr

3/ A Remote Data Access Interface Model Using The Monitor IPC Mechanism

IF msg.full THEN delay(sender);
msg : =m
continue(receiver-any)
END:
BENGIN msgreset END : (¥ INPUT monitor %)

(¥ An OUTPUTS monitor implements implements three operations ; SEND, REQUEST, %)
(¥ and FORCED-SEND. *)
TYPE OUTPUTS=
MONITOR (buf : buffer : token : token-access):
VAR
c : channel;
this : message:
list : ARRAY[channel] OF RECORD
ready : BOOLEAN;
sender : QUEUE

END:
(¥ SEND delays a calling process until a given channel is ready *)
(% for transmission. It then sends a data item through a local *)
(% buffer. %)

PROCEDURE ENTRY send(c : channele ; v : item);
BEGIN
WITH list[c] DO
IF NOT ready THEN delay(sender):
WITH this DO
BEGIN
kind : = a.response:
link : =c¢;

contents : =v

END:

token.wait .

buf.send(this):

list[c].ready : ==false
END;
(¥ REQUEST makes a channel ready to send and continues a process %)
{% (if there are any) waiting to send on that channel. At first, *)
(¥ no channels are ready.)

3n
www.dbpia.co.kr

TS Erdm Lt 914 Vol 16 No. 4

PROCEDURE ENTRY request(m : message) .
BEGIN
WITH list [m.link] DO
BEGIN
ready : =true
continue(sender)
END
END:

(¥ FORCED-SEND sends directly message to the process that ready
(% to receive any message in RECEIVE -ANY entry.

PROCEDURE ENTRY forced-send(c : channel : v : item);
BEGIN
WITH this DO
BEGIN
kind : = a.forced :
link : =c;
contents ; =v
END:
token .wait:
buf .send(this)
END:
BEGIN
FOR ¢ : =1 To cmax DO list{c]ready :=FALSE
END : (¥ OUTPUT monitor %)

(¥ BUFFER monitor implements two operations : SEND and RECEIVE.

TYPE BUFFER=

MONITOR

CONST bmax==---“cmax / nmax—+1~;

VAR
buf : SEQUENCE[bmax| OF message :
sender, receiver : QUEUE :

(¥ SEND delays a calling processes as long as the buffer is full.
(¥ It then puts a message into the buffer and continues the

(% execution of another processes(if there are any) waiting for
(% receiving the message.

e www.dbpia.co.kr

*)
*)

*)
*)
*)
*)

%/ A Remote Data Access Interface Model Using The Monitor IPC Mechanism

PROCEDURE ENTRY send(m : message) ;
BEGIN
IF buf .full THEN delay(sender) ;
buf put (m):
continue(receiver)
END:

(¥ RECEIVE delays a calling processes as long as the buffer is

(% empty. It then gets a message from the buffer and continues the
(% execution of another processes(if there are any) waiting for

(¥ sending a message.

PRCEDURE ENTRY receive(VAR m : message);
BEGIN
IF buf empty THEN delay(receiver) ;
buf get(m);
continue(sender)
END;
BEGIN buf reste END : (¥ BUFFER monitor %)

(¥ BUS.LINK implements two operations : INPUT-FROM-BUS and
(¥ OUTPUT-ONTO-BUS.

TYPE BUS_LINK=
MONITOR
VAR link : message
sender, recetver : QUEUE ;

(¥ INPUT-FROM-BUS delays a READER process as long as bus link
(% is empty. It then gets a message from bus link and continues
(% the execution of the READER process.

PROCEDURE ENTRY input from bus(VAR m : message).
BEGIN

IF link .empty THEN delay(sender);

link .get(m):

continue(sender)
END:;

(¥ OUTPUT.ONTO.BUS delays a WRITER process as long as bus link is

www.dbpia.co.kr

*)
*)
*)
¥)

*)
*)

*)
*)
*)

*)

373

4 B 15 8 50k "91—4 Vol. 16 No. 4

(% full It then puts a message onto bus link and continues
(% the execution of the WRITER process.

PROCEDURE. ENTRY output -onto-bus(m : message) :
BEGIN
IF link full THEN delay{sender):
link .put (m):
continue(receiver }
END:;
BEGIN link reset END : (¥ BUS-LINK monitor %)

(¥ TOKEN-ACCESS monitor implement two operations : WAIT and WAKE
TYPE TOKEN._ACCESS=

MONITOR

VAR tokendelay : QUEUE :

(¥ WAIT delays a calling process until a token arrives.

PROCEDURE ENTRY wait :
BEGIN

delay (tokendelay)
END:

(¥ WAKE wakes up a process(if there are any) waiting for a token.

PROCEDURE ENTRY wake:
BENGIN

continue(tokedelay)
END:

BEGIN END : (% TOKEN.ACCESS monitor %)

(% WRITER process receives one message at a time from a local
(% buffer and passes it to the next node through bus link,

TYPE WRITERPROCESS=
PROCESS(buf : buffer : linkbuf : bus-link):
VAR m : message :
BEGIN

CYCLE

374 www.dbpia.co.kr

*)
X*)

*)

*)

*)

L/ A Remote Data Access Interface Model Using The Monitor IPC Mechanism

buf receive(m);
bus link.output_outo_bus(m)
END
END ; (% WRITER process %)

(¥ A READER process fetches one message at a time from the %)
(¥ previous node through bus link, If the channel is the X*)
(% destination of a message, the READER performs a RESPONSE, *)
(¥ REQUEST, TOKEN, or FORCE operation on it. Otherwise, it sends *)
(% the message through a local buffer to the next node. *)

TYPE READERPROCESS=
PROCESS (inpset, outset : channelset ; inp : inputs:
out : outputs : buf : buffer : linkbuf : bus_link;
token : token_access):
VAR m : message ;
BEGIN
CYCLE
input-from_bus(m) ;
WITH m DO
IF(kind=a.response) and (likn in inpset) THEN
inp .response{m)
ELSE IF(kind=a request and (link in outset) THEN
out .request(m)
ELSE IF(kind=a.forced) and (link in inpset) THEN
inp .force(m)
ELSE IF(kind=token) THEN
BEGIN
token .wake;
buf .send(m)
END
ELSE buf .send(m)
END
END : (¥ READER process %)

(H R Ko K K Y e X% %% Remote Data Access Model Implementation % X 9% X3 % % %

HHHH)
(% The model has following components, *)
(¥ An ACCESS.CALL monitor implements three operations for *)
(% providing application processes with an interface necessary)

www.dbpia.co.kr 315

WELB TR CE '91—4 Vol. 16 No. 4

(% for remote data access using the IPC mechanisms : GEN REQ,
(¥ RETRIEVE, and CLOSE.REQ.

TYPE ACCESS CALL=
MONITOR (inp : inputs ; out : outputs);
VAR a.query : query .

¥ GEN-REQ sends a request for remote access through a channel to
(% the appropriate destination node where a local data processing
(% system is located.

PROCEDURE ENTRY gen req (a : channel);
VAR v :item:
BEGIN
WITH a_query DO
type : = 'GEN.CALL’:
convert.query_to_bit stream(a_query, v);
out .forced send(a, v}
END:

(¥ RETRIEVE sends a request for remote data retrieve and waits for

(% receiving returned data.

PROCEDURE ENTRY retrieve(a : channel : pk : primarykey:
VAR buffer : recordtype) :
VAR v, str:item:

BEGIN
WITH a.query DO
BEGIN
type : ='RETRIEVE CALL":
key : =pk
END:

covert_query_to_bit_stream(a query, v).

out send (a, v);

inp. receive(a, str):

convert_bit_stream_to_record (str, buffer)
END:

(¥ CLOSE-REQ informas the DATA-SYSTEM connected that the process

(% accessing remote data wishes to terminate the data access.

376 www.dbpia.co.kr

*)
*)
*)

x)
*)

i 2/ A Remote Data Access Interface Model Using The Monitor IPC Mechanism

PROCEDURE ENTRY close req(a : channel);
VAR v :item;
BEGIN
WITH a-request DO
type : ='CLOSE-CALL";
convert_query_to_bit_stream(a.query, v):
out.send(a, v)
END;:

BEGIN END : (¥ ACCESS.CALL monitor %)

(¥ ACCESS-CONTROL monitor implements three operations for
(% controlling the remote data access from the IPC

(% control : ACCEFT INIT.REQ, ACCEPT ACCESS REQ, and RETURN,

TYPE ACCESS.CONTROL=
MONITOR (inp : inputs ; out : outputs);

(¥ ACCEPT.INIT REQ, accepts a remote data access request from
(% channels connected to this node.

PROCEDURE ENTRY accept.init.-req (VAR a : channel ; VAR ¢ : query);
VAR v :item ;
BEGIN

Inp receive.any(a, v);

convert_bit_stream_to_query(v q)
END;

(¥ ACCEPT_ACCESS_REQ accepts a remote data retrieve request from
(% the process through the channel selected previously.

PROCEDURE ENTRY accept-access-req (a : channel ; VAR q : query);
VAR v :item ;
BEGIN
Inp .receive(a, v).
convert_bit-stream_to_query {v, q;
END ;

(% RETURN delivers a retrieved data to the process through the
(% channel selected previously.

www.dbpia.co.kr

*)
*)
*)

*)
%*)

*)
*)

*)
*)

n

SRR e 2l 91—1 Vol 16 No, 4

PROCEDURE ENTRY return(a : channel ; r : recordtype) :
VAR
str : item ;
BEGIN
convert recored._to.bit_stream(r, str);
out.send(s, str)
END :
BEGIN END : (¥ ACCESS CONTROL monitor %)
(¥ A DB-SYSTEM monitor is defined for specifying the operations in
(% a local data processing system in the abstract. It is called
{% according to the type of data access request from a channel.

TYPE DB.SYSTEM=
MONITOR

PROCEDURE ENTRY init db;
BEGIN

“Open and Initialize Data”
END .

PROCEDURE ENTRY access db(q : query : VAR buffer : recordtype);
BEGIN

“Access data according to query and key

and put the result onto buffer”
END :

PROCEDURE ENTRY close dp:
BEGIN

“Close and Terminate using Data”
END :

BEGIN END ; (¥ DB.SYSTEM monitor %)

(¥ An DATA SYSTEM accepts remote data access requests, data

(%
(¥
(¥
(%
(¥

378

retrieve requests, and close requests from channels through

the ACCESS.CONTROL monitor and then according to the type of
request, performs appropriate operations through the DB-SYSTEM

monitor, It can synchronize the operations between remote
application process and a local data processing system

www.dbpia.co.kr

*)
%)
%)
*)
*)
*)

X/ A Remote Data Access Interface Model Using The Monitor IPC Mechanism

TYPE DATA-SYSTME=
PROCESS(.control_data : access_control ; a_dbms : db_system);
VAR
close : BOOLEAN :
a : channel :
q, 1Iq : query :
BEGIN
CYCLE
control_data.accept.init_req(a, iq):
IF (iq type ="GEN.CALL’ THEN

BEGIN
a.dbms.init.db;
close : =false ;
repeat

control data.accept.access req(a, q);
IF (q type ='CLOSE CALL’) THEN close : =true
ELSE
BEGIN
a-dbms access -db(q, buffer) :
control.data.return(a, buffer)
END
until close ;
a.dbms.close.db
END
END
END ; (¥ DATA-SYSTEM process %)

(% An application process can access data on a channel. These
(% operations are implemented in the ACCESS-CALL mnionitor described

(% Dbefore,

TYPE approcess=
PROCESS(inp : inputs ; out : outputs ; call data : access.call):
VAR
a : channel :
key : primarykey ;
buffer : recordtype :
BEGIN
call data.gen_req(a):
call data retrieve(a. key, buffer) ;

www.dbpia.co.kr

¥*)
¥*)
*)

379

B2 Cat '91—4 Vol. 16 No, 4

USE DATA
call_ data.close req(a)
END ; (¥ Application process %)

(% This Initial process initializes all other processes and
(% monitors and defines their access right to one another.

VAR
inp :inputs :
out coutputs .
buf : buffer ;
linkbuf : bus_link:
token : token access;
reader : readerprocess :
writer ! writerporcess :
call data : access call;
control_data . access control;
dataps . data_system;
a dbms : db_system:
process : approcess ;
inpset, outset : channelset :
BEGIN

inpset : =[---] : outset : =[-+-]:

INIT

inp{buf, token), out(buf, token), buf,
linkbuf, token,

reader(inpset, outset, inp, out, buf, inkbuf, token),
writer (buf, linkbuf),

call data (inp, out),

control_data (inp, out), a dbms,

dataps(control_data, a dbms),

process(inp, out, call.data),

END.(¥ MAIN x%)

30 www.dbpia.co.kr

X/ A Remote Data Access Interface Model Using The Monitor IPC Mechanism

. & ¥ #(Dong Kyoo KIM) FAl3]4
™ 19474 21 7HE
- 19724 2R - A goista oo Z(3 3

AF)

19794 2H @ M-gohistm adzhato)shgd
F(o]gtA Al

19844 7F : »]= Kansas State Unive-
rsity &) Z(PhD, 42 %
Al A%)

19724 ~ 19764 @ &Zalahv) godF2 (KIST) o749

19768 ~1979% : eh A2 F-A e +4 (KIET) Aldel+9]

19814 ~ 19824 : vl=+ Kansas State University # a}#A) 4t

gk#} Instructor
19795 ~ A : ol ety s abate} as
A FBAEok s eo)eh B4 / AWy Wl 912, M54 Proto-
cal engineering, Security, TIM 4k i}

www.dbpia.co.kr %!

