DEri=

zo
af

A Distributed Processes Communication Control
Mechanism Based on Monitor Concepts Implem-
ented Through Simulation Using Semaphore

Freg & #H £*

Dong Kyoo KIM* Regular Member

ABSTRACT A general purpose distributed processes communication control mechanism is a typical approach used
for synchronizing concurrent processes involved in communication. The mechanism can provide a framework on which
the layered communication architectures and protocols are efficiently implemented. The mechanism is realized under

restricted environment where monitor facility is not available by means of simulation using semaphore.

Wgel Fab zraAds Sl el Ge
E = K

1. Introduction

Implementation mechanism is a key factor
of system performance of layered architectures
and protocols of communications networks, The
structure of functional modules within a layer,
the way they interact, and interface mechan-

- Ealehy el gl g
o wAolet o] oiFhuigE AlFstxl % AlFre) u E

o gleh 2o E Adulgh s 4] ok Aeks]l Sadol) Aluba b ol Bolir AlHdlo) 4G L-ebol of byl
3t

AT PN e s T
Department of Computer Science, Ajou University
HorE&yE 0 91-36(EF1991. 3. 15)

382

- A dlel Abgs 4oely

Ho v Feabv] gleh veelg):

oAl

v 6.]

1o &
- Bl

1sms for different layers all together contribute
to the resulting performance of network sys-
temns,

Sequential and concurrent processes approches
can be used for implementing layered comm
unication architectures and protocols, Each has
merits and drawbacks. depending upon envi
ronments and application purposes, In this
paper, a general purpose mechanism which can
be used to implement arbitrary forms of com-
munications control ovver distributed processes

www.dbpia.co.kr

i %/ A Distributed Processes Communication Control Mechanism Based on MonitorConcepts Implemented Through Simulation Using Semaphore

In a network environment is suggested and
developed. The mechanism is built on the basis
of P. B. Hansen’s monitor concept®, employing
typical forms of concurrent process interactions,

Since monitor facility is not available in the
actual research environment, it was simulated
by means of semaphore in order to realize its
intended actions, showing that higher level IPC
(Interprocess Communication) primitives in
general can be realized through simulation
using lower level primitives.

The mechanism is general in the sense that
it can be easily tailored to meet specific req-
uirements of specific applications. It also dem-
onstrates network control programs can be
made simple and reliable by using an abstract
contruct based on any concurrent programming

languages,

2. Design considerations of IPC Control

In this section, preliminaries, requirements
(needed networks properties) and network
environments for distributed processes comm-
unication are summarized.

e Logical Token Ring

It is assumed that processes are distributed
among nodes in a logical token ring. However,
there is no specific assumptions which may
raise limitations over the physical configuration
of the network.

¢ Nodes and Processes

On a node in a network, multiple processes
can reside which may need to communicate
with each other,

» Message Types

In other to reflect the four user-level prim-
itives, a message is one of five types:

A-SEND; A-RECEIVE; A-FORCE-SEND:;
A-TOKEN: A-RECEIVE-ANY Description
of each message type i1s given in Section 3.

» Processes, Ports, and Virtual Channels

Muitiple application processes can reside in
a node, Each process is initialized with access
to one unique port number, This number can
be used as either a send port or a receive port,
depending upon whether it appears as the first
or second parameter in an [PC operation. Using
this scheme, two virtual channels that transmit
data in opposite direction, exist between any

pair of processes.

* Token As Access Right

The notion of a token is introduced into the
network. Incoming messages from an input
bus link which are not destined for the node
that is receiving them are to be buffered and
then output onto the node'’s output link rega-
rdless of whether the current node has poss
ession of a token. However, a message origi-
nation from a node can only be output by that
node when it is in possession of a token. Only
on message at a time originating from th node
that holds the token can be transmitted over
the output bus link. Also, that message should
follow all messages that are already buffered
for transmission (FIFO basis) and it should
be followed by a token, If the node receiving
the token has no messages for transmission,
then it simply buffers the token so that it will
be sent onto the output link,

¢ FIFO Scheduling Policy
As already mentioned, messages are served
with FIFO principle.

383

www.dbpia.co.kr

SEELE (I H e ik '91—4 Vol 16 No. 4

® Request for Transmission
No transmission takes place unless requested

by a receiving party.

® Rendezvous Concept

A request for transmission and a correspo
nding response must be matched before tran
smussion occurs, This means employment of

the rendezvous concept.

» Strict Synchronization

With the tightly coupled synchronization
policy provided in this mechanism, it is guar
anteed that there is no message discarding
due to buffer overflow and no deadlock.

e Promising Network Properties
The network guarantees message delivery
within a finite time and also makes sure

uniform transmission time,

e Network Sizing
It is envisaged that space and time requir
ment are proportional to the size or the netw

ork.

3. User-level IPC Operations for Dist-
ributed Processes

The following primitives are defined for
providing users with services necessary for
communication.

RECEIVE (rev-port, snd-port, VAR buffer)

A user process wishing to receive messages
from other processes must first issue its will-
igness to do so by sending this message to
the appropriate destination node,

SEND (rev-port, snd-port, item)

384

This message is sent by a process when it
has data items to deliver to a destination
process. Recelve request and corresponding send
response must make rendezvous at the node
issuing SEND primitive, However, the order
of occurrence of these two events need not
be specified. Whichever event may occur first
a rendezvous takes place as a prerequisite for
message transmission process.

RECEIVE-ANY (rev-port, VAR buffer, VAR
snd - port)

In order to bypass the request-response
rendezvous at the sending node and thus to
speed up the communication process when
necessary, this primitive and the next one,
FORCE-SEND are employed. The process at
the destination delays after sending RECEIV -
E ANY message to receive any maching
FORCE-SEND message,

Therefore, the concept of rendezvous still
is alive although this is the send-receive rendez-
vous which is different from the other one,
request -reponse rendezvous.

FORCE SEND (rev -port, snd-port, item)

Without wating for a request, any process
can send data via this primitive to a destina
tion process.

4. IPC structures and Mechanisms for
Distributed Processes

With respect to the four types of primitives
available at user-level processes, IPC structures
and mechanisms for communication control
over distributed processes are constructed based
on P. B. Hansen's monitor concepts,

www.dbpia.co.kr

X/ A Distributed Processes Communication Control Mechanism Based on MonitorConcepts Implemented Through Simulation Using Semaphore

4.1 Network Operation

The IPC is performed via two major sche-
mes: rendezvous of requests and response:
direct transimission via RECEIVE-ANY and
FORCE-SEND.

* Rendezvous of Requests and Responses

A process wishing to receive message from
other processes first announces its willingness
to do so by issuing RECEIVE message into
the network through accessing INPUTS
monitor. The RECEIVE message is destined
for a particular destination by identifying the
destination port as parameter in the message.

The receiving process, after sending receive
request, waits In a queue until a maching
response returns to it. At that time the rece-

iving process is awaken to pick up the data

RBCEIVE
REQUEST
RBSPONSB

SBND LBGEND
RENDEZVOUS
POINT

Fig. 1. Transmission Via Rendezvous of Requests and
Responses

RECEIVE_ANY

FORCE_SEND

Fig. 2. Direct Transmission Via Receive- Any and Force
Send

message.

On the other hand, a process wishing to send
message to another process does so by issuing
SEND message into the nc*work through
OUTPUTS monitor.

Rendezvous is required between two relevant
processes at the sending node before the sen-
ding node can transmit,

Ready lists and monitor synchronization
strategy are used for realization of the rendez-
vous, The order of which event occurs first
by sender or receiver, however, doesn’'t make
difference as far as the mechanism of rendez-
vous is concerned, Firgure | concerns about
this process.

» Direct Transmission via RECEIVE-ANY and
FORCE-SEND
Another strategy is provided which bypasses

385

www.dbpia.co.kr

AR Tk 914 Vol 16 No. 4

the rendezvous concept, speeding up the com
munication among processes, This 1s via intr
oducing RECEIVE-ANY and FORCE SEND.

Any process which wishes to receive FOR
CE-SEND message from other process unkn
own to 1t can do so by issuing RECEIVE
ANY message, waiting until arrival of FOR-
CE-SEND message and being waken up upon
occurrence of such event,

ivleanwhile, other processes wanting to send.
without delay, message to that receiving pro
cess can do so by issuing a FORCE SEND
message. The sending process can proceed
immediately in the OUTPUT monitor whenever
the monitor is possible to access. Once in the
monitor, there is no delay necessary for such

thing as rendezvous.

4.2 IPC Structures and Mechanisms

A network node consists of the following
system components: Application processes.
Reader process; Writer process: INP monitor
of type INPUTS: OUT monitor of type
OUTPUTS: BUF of type BUFFER.

Fs

el

W(i-1)|

For the purpose of simulation in a single
system, BUS monitor of type BUS LINK 1is
added. BUS monitor i1s not required for real
implementation. Figure 3 represents the conf

iguration of system components for a node.

o INP (i) monitor

A process walting to receive messages from
other processes call INP monitor to ask it for
Issulng a receive request message (In this case
the mssage type 1s A RECEIVE) and delayed
until a4 maching send message (the message
type 1s A SEND) arrives through the Reader
process, which notifies the arrival to the
waiting process by means of the signaling
mechanism of the monitor construct.

A process can select another mechanism to
bypass the above receive request -send response
rendevzous process. This 1s done by a process
simply accessing the recelve-any entry in the
INP monitor. In this case receiving process
checks to see 1if the ready list associated with
ts recelve parties set true or not, proceeding

immediately to pick up messages or delayed

Access Right Queua

BUS(i-1 L] y

) R(1) BUF({) w(1) BUS(1)
R(i¢1)—

ourtt) LBGRND
O HONITOR
s [:] PROCESS

——p ACCESS RIGHT
Fig. 3. Access Graph Among Systermn Components of a4 Node

386

www.dbpia.co.kr

%/ A Distnbuted Processes Communication Control Mechamsm Based on MonttorConcepts implemented Through Simulation Using Semaphore

until being awoke respectively.

INP monitor is also accessed by Reader
process when any response or FORCE-SEND
message destined to the node arrived,

INP monitor possesses access rigth to BUF
monitor in order to pass receive request mes-
sage to BUF monitor.

* OUT (i) monitor

Processes who want to send messages to
other processes have two means to do so: first
by accessing the send entry to QOUT monitor
and second by accessing the force send entry
to OUT monitor.

The former is using the receive request-send
response rendezvous mechanism and the latter
is using the alternative which is faster than
the former.

When accessing the send entry, processes
need prior checking of the ready list associated
with its end port. With the ready list set true,
the process can immediately proceed to send
message without being delayed. Oterwise the
process wait in the destinated queue until
signaled to awake by Reader process upon
reception of maching receive request. The
alternative is to access the force-send entry
to OUT monitor, With this scheme processes
can immediately output message to BUFFER
monitor, There is no rendezvous and thus no
delay in the OUT monitor.

OUT monitor is also accessed by Reader
process when the process receives request
destined for the node. With this event occuring
the reader process, in the request entry to
OUT monitor, sets a flag in the ready list
associated with send ports of processes residing
in this node.

In addition, OUT monitor has access right
to BUF monitor in order to pass send or for

ce -send messages heading for other nodes,

e BUF (i) monitor

Transmit messages are directly forwarded
onto this BUF (i) monitor by reader process
Messages stored in BUF(i) are fetched by
writer process whenever it wants to,

¢ BUS (i) monitor

The monitor simply provides a place for
communication between Writer process and
Reader process, It is only for simulation pur
pose, and not necessary in real implementation.

» Access Right Queue

The process who issued RECEIVE message,
SEND message, or FORCE-SEND message
to INP monitor or OUT monitor is delayed
to possess a token In access right queue acc-
ording to the FIFO policy,

When a token(access right) comes into
Reader process, the process delayed in the head
of access right queue is awaked and the
message is sent to BUFFER monitor, If access
right queue 1s nill then incoming token is
passed to BUFFER monitor immediatly.,

* R(i) Reader process
This prbcess reads in messages coming in
from the line and appropriately processes them
according to their types.
The process is in possession of access right
to three monitors: INP, OUT, and BUF,
Upon reception of response or force send
messages the process calls response and any -
reponse entries to the INP monitor, respect -
ively, to pass them to destination processes,
Corresponding to receive request message
coming into this node, the process accesses
the request entry to OUT monitor to set the
387

www.dbpia.co.kr

S S it 91— Vol 16 No. 4

flag of ready list true, causing rendezvous to
occur.

For a message not destined to this node the
process simply calls the BUF monitor to dir
ectly forward them onto the line.

e W(i) Writer monitor

This process picks up transmit messages
stored In BUF (i) monitor and hands them to
R(i4+1) process through BUS(i) monitor,

5. Implementation

With the availability of CPASCAIL the
system implementation is straightforward, When
monitor 15 not available, any form of simulation
using low level synchronization methods like
sernaphores is inevitable.

In general, 1t is possible to simulate one 1PC
primitive into another among different levels
of synchronization methods®.

In either real implementation or simulation,
programming a trace monitor as a development
tool would be of value for keeping track of
what 1s going on in the network.

The source program for each component of
the mechanism 1s presented in the appendix
with the monitor construct replaced with

appropriate simulation using semaphore,

6. Conclusion and Remark

It has been shown that it is possible to
construct a useful synchronization mechanism
for controlling distributed processes commun
lcation in the network environment using
monitor concept.

By virtue of the simple, clear and reliable

388

structure intrinsic to the monitor, for providing
mutual exclusion to shared resources among
mutiple concurrent process, a clear-cut synch-
ronization can be efficiently achieved.

The methodology is general in the sense that
it can be easily taillored in order to fit to a
variety of requirements under real situation,

The availability of the methodology for use
In communication control under OSI architec
ture seems straightforward.

It desen’t seem difficult to extend its stru
cture and add features necessary for specific

requirements for specific application,
BIBLIOGRAPHY

1. Dong Kvoo Kim, Computer communication network,
Sang o Publcations Compony, Inc., 1986,

20178 hansen, The architecture of concurrent programs,
Prentice Hall, 1973,

3. V.E, Wallentine, W], Hankly, SIMMON - A concurrent
PASCAL based simmulation system, Kansas State

Umiversity, 1978,

This paper 1s an outcome of the research performed under
the support of 1986 research fund granted from Korea Rese
arch Foundation, Its mau content was published 1n the Proc.
of “nd International Joint Workshop on computer Comimuni
cations held i Japan i 1987,

www.dbpia.co.kr

i %/ A Distributed Processes Communication Control Mechanism Based on MonitorConcepts Implemented Through Simulation Using Senaphore

APPENDIX
e System initialization
TYPE
channelset =SET OF INTEGER:
item =ARRAY[l.max] OF CHAR:
kinds =(a_response, a.request, a_forsed, token):
channel =RECORD
sendport : INTEGER:
receiveport : INTEGER:
END:
message =RECORD
kind : kinds:

link : channel;
content : item:
END:

* Monitor implementation

We need four monitors, INPUT monitor, QUTPUT monitor, BUFFER monitor and Access
Right Queue in one node. Each enrties of the monitors and algorithm using semaphore are
introduced

(1) INPUT monitor
INPUT monitor has four entries, RECEIVE, RESPONSE, RECEIVE_ANY, FORCED.

(% send a request through token access and deleay a calling
(% process untill a responses arrives
PROCEDURE receive {rcv_port, snd port : VAR buffer):
VAR this : message
BEGIN
WITH this DO
BEGIN (% set request message
kind: =a_request ;
link, receiveport :=rcv_port:
link, sendport :==snd_port:

END;

delay_on_token ; (% call delay. on_token

put_buffer (this): (% save this message onto buffer monitor
p (response delay): (% wait on response

p (inbuffermutex): (% store responsed message to its buffer

www.dbpia.co.kr 39

SEBLA T R A '91—4 Vol. 16 No, 4

buffer :=inputbuffer:
V (inbuffermutex)
V (escmutex): (% make reader to be escaped from
(¥ reponse entry
END: (¥ receive end)

(% delivers response content and wake up the process that is waiting
(% to receive it
PROCEDURE response (m:message).

BEGIN
WITH m DO
BEGIN
P (inbuffermutex): (¥ store responsed content on
inputbuffer : =content: (% inputbuffer which task process
V (inbuffermutex): (¥ share
V (response_delay). (¥ signal response
P (escmutex): (¥ prevent another process entering
(5% until receive process complete
END :

END ; (% response end %)

(% ready to receive the foreced message
PROCEDURE receive any (snd.port : VAR buffer) :

BEGIN
P (forced delay) : ¢% wait on forced message
P (inbuffermutex) (% store forced content to its buffer

buffer : =inputbuffer :
V (inbuffermutex) :
V (escmutex) ; (% make reader to be escaped from)
(% force entry
END : (¥ receive.any end %)

(% delivers forced content and wake up the process that is waiting
(¥ to receive it
PROCEDURE force (m : message) .

BEGIN
WITH m DO
BEGIN
P (inbuffermutex) : (% store forced content on
inputbuffer : =content . (% input buffer
390

www.dbpia.co.kr

i 3/ A Distnbuted Processes Communication Control Mechanism Based on MonitorConcepts Implemented Through Simulation Using Semaphore

V (inbuffermutex) :
V (forced.delay) : (% signal force
P {escmutex) : (% prevent another process entering
(% until receive process complete
END:
END ; (% forced end %)

(2) OUTPUT monitior
OUTPUT monitor has three entries, SEND, REQUEST, and FORCED_SEND,

(¥ delays a calling process until a given channel is ready for
(¥ transmission

PROCEDURE send (rcv.port, snd_port, item) ;

VAR this : message :

BEGIN

WITH this DO

BEGIN (% set response message
kind : =a_response .
link. receiveport ; =rcv_port :
link, sendport : =snd_port .
content : ==item ;

END ;

P (request_delay) : (% wait on request

delay_on.token : (% call delay. on token

put_buffer (this) ; (% save this message onto buffer monitor

END (% send end %)
(% makes a channel ready to send and continue process waiting to
(¥ send on that channel
PROCEDURE request (m : message) :
BEGIN
(request_delay) : (% signal request
END : (% request end %)

(% send directly message to process that ready to receive
(% in receive.any entry
PROCEDURE forced send (rcv_port, snd port, item) .
BEGIN

WITH this DO

BEGIN (% set request message

kind : =a_forced :

. 391
www.dbpia.co.kr

FEERE T AR el 91—-4 Vol 16 No. 1

link. receiveport:==rcv port:
link. sendport :=snd port:

content : =item ;
END:
delay .on token ; (% call delay on token
put buffer (this): (¥ save this message onto buffer monitor

END ; (¥ forced send end %)

(3) Access Right Queue
Access right queue has-two entries DELAY ON TOKEN and WAKE TOKEN.DELAY,

PROCEDURE delay_on.token ;
BEGIN

P (token delay) :
END :

PROCEDURE wake_token_delay :
BEGIN
[FF NOT tokendelay=empty THEN
V (tokendelay) :
END :

(4). BUFFER monitor
BUFFER monitor has two entries, GET BUFFER, and PUT.BUFFER,

(¥ delays a calling process as long as buffer is empty.

(% it then gets a message from the buffer and continue

(% the execution of another process waiting to send a message
PROCEDURE get buffer (VAR m : message)

BEGIN
P (buffermutex) :
IF buffer=empty THEN (¥ delays a calling process
P (bufferfull) : (% as long as buffer is empty

get a buffer from buffer pool ;
m : =a buffer :
V (bufferempty) ; (% wake up delaying process
(% in buffer full
V (buffermutex) :
END : (% get buffer entry end)
(% delays a calling process as long as buffer is full,

392 www.dbpia.co.kr

a8 /A Distributed Processes Communication Control Mechamsm Based on MonitorConcepts Implemented Through Simulation Using Semaphore

(% 1t then puts a message into the buffer and continue
(% the execution of another process waiting to receive message
PROCEDURE put_buffer {m : message)
BEGIN
p (buffermetex) ; (% delay a calling process
If buffer=full THEN (% as long as buffer 1s full
P (bufferempty) :
put a.buffer onto buffer pool :
V (bufferfull) : (% wake up delaying process
V (buffermutex) : (% 1n buffer empty
END ; (% put_buffer entry end %)

*

(5) BUS LINK buffer
Bus link buffer has two entry, INPUT FROM.BUS and OUTPUT.INTO.BUS.

(% delay a reader process as long as bus.link is empty.
(% it then gets a message from the bus link and continue
(% the execution of reader process
PROCEDURE input_from bus (VAR m : messge) ;
BEGIN

P (busfull) :

get a message from bus link buffer ;

m ! =a message .

V (busempty) ;
END : (% input from bus entry end %)

(% delay writer process as long as bus.link is full,
(% 1t then puts a message into bus.linke and continue
(% the execution of write process
PROCEDURE output_onto.bus (m : message) :
BEGIN

P (busempty)

put a.message into buslinkbuffer ;

V (busfull) ;

END : (% output.into bus entry end ¥)

* Process Implementation
We need Reader process, Writer process, and Application processes which exist in each

node.

www.dbpia.co.kr 393

&R E R 0l 914 Vol 16 No. 4

(1) Reader process

(5% input one message at a time from previous node

(% through a bus link,

(¥ 1f the channel is destination of a message, the reader performs
(¥ a response, request, or forced operation on it.

(% otherwise, send the message through a local buffer to next node
READER PROCESS

BEGIN
WHILE true DO
BEGIN
input a message from buslink
IF' channel# of this message in my channel set
THEN
CASE kind OF this message .
a_response : inputmonitor.response (mesg)
a_request :outputmonitor.request (mesg) :
a_forced :inputmonitor.forced (mesg) ;
token : wake up token delay process :
put buffer (token) :
END case
ELSE
put bufer (this message) :
END while

(2). Writer process
This process operate as discussed in above section,

(% receives one message at a time from a local buffer and
(% output it to the next node through a bus link.
WRITE PROCESS
BEGIN
WHILE true DO
BEGIN
get a message from buffer monitor ;
output a message into buslink :
END :
END (% end writer process)

34 www.dbpia.co.kr

3/ A Distributed Processes Communication Control Mecharusm Based on MonitorConcepts Implemented Through Simulation Using Semaphore

& ¥ F(Dong Kyoo KIM) F413|%4
19474 2H 7H%

19724 28 © Agohsha el F(F 3
AH)

19794 28 : Mgt bl 2ol ak]
Z-(o} g4 AL

19844 7H : v]% Kansas State Unive-
rsity H&Hd Z(PhD, A 0%
Al H%)

19724 ~ 19764 : b etr| gad+4 (KIST) A4

1976% ~1979% : - AFAldF4 (KIET) Adgdadzd

19814 ~ 19824 : 0]= Kansas State University A 4

&3} Inst ructor
19794 ~ &) : ob=cl et A 2} A| A} st} L
AFTA okt lolel F-41 / el MlE W2, F ¥ E4) Proto-
cal engineering, Security, CIM 44 2)

www.dbpia.co.kr

