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Statistical Convergence Properties of an Adaptive
Normalized LMS Algorithm with Gaussian Signals
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ABSTRACT This paper presents a statistical convergence analysis of the normalized least mean square (NLLMS)
algorithm that employs a single-pole lowpass filter. In this algorithm, the lowpass filter 1s used to adjust its output
towards the estimated value of the input signal power recursively. The estimated input signal power so obtamed at
each time is then used to normalize the convergence parameter. Under the assumption that the primary and reference
nputs to the adaptive filter are zero-mean, wide-sense stationary, and Gaussian random processes, and further making
use of the independence assumption, we derive expressions that characterize the mean and mean-squared behavior of
the filter coefficients as well as the mean-squared estimation error. Conditions for the mean and mean- squared conv
ergence are explored, Comparisons are also made between the performance of the NLMS algorithm and that of the
popular least mean square (LMS) algorithm . Finally, experimental results that show very good agreement between

the analytical and empirical results are presented.

1. Introduction

The adaptive LMS algorithm®®has received
a great deal of attention during the last twc
decades and now becomes very popular in
variety of applications due to its simplicity.
It 1s, however, well known that the statistical
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behavior and the convergence properties of
the LMS algorithm depend strongly on the
convergence parameter and the eigenvalue
spread of the input autocorrelation matrix®
@ In particular, we need to know the eigen-
values of the matrix to choose an appropriate
convergence parameter so that the mean
convergence of the algorithm is ensured. Since
these eigenvalues are gencerally unknown in
practice and very difficult to estimate, we

www.dbpia.co.kr



#% /Statistical convergence properties of an adaptive normalized LMS algorithm with Gaussian signals

often compute the trace of the correlation matix
instead (based on Gershgorin’s theorem®), and
use it to form a more practical, but more
restrictive upper bound for the convergence
parameter. Sometimes, this new bound 1s
unnecessarily too tight, and thus makes us
sacrifice the speed of adaptation. Furthermore,
if the statistics of an environment changes
with time, we may have to select the conve-
rgence parameter that is time-varying so as
to permit the tracking capability.

One of the ways to overcome these problems
18 to use the NLMS algorithm. In general,
there exist two kinds of NLMS algorithms :
one of which is to normalize the convergence
parameter by the sum of the squared tdp
inputs (ie., L,-norm of the tap input vector)
@ ® and the other by the estimated input
signal power using a single-pole lowpass filter
@ a0 Eyven though convergnece properties of
the former NLMS algorithm have been exte
nsively studied, those for the latter have not
yet been deeply investigated to the best of
our knowledge.

The NLMS algorithm with a single-pole
lowpass filter is particularly more useful than
that by the L,-norm of the tap input vector
in applications where a fixed point arithmetic
digital signal processor (DSP) chip, such as
Motorola’s DSP56001 or Texas Instruments’
TMS320C25, is to be used whth large number
of tap weights, since we do not have to worry
about any arithmetic overflow for computing
the normalization factor, In this paper, we
investigate some important statistical properties
of the NLMS algorithm when the single-pole
lowpass filter is employed.

Consider the problem of adaptively estimating
the primary input signal d(»n) using the refe-
rence input x(xz), Let H{(n) denote the adap-

tive filter coefficient vector of size N, and
e(n) denote the estimation error signal. Define

the tap input vector X(u) as

X(n) = [2(n), 2(n = 1), -+, z(n = N + )7,
(1)

where [ - |’ stands for the transpose of | - ].
The NLMS algorithm of interest updates the
coefficient vector H(n) using

H(n+1) = H(n)+ ;‘(i’;-) X(n)e(n),

(2)
and
Gy =Bei(n— 1)+ (1= p)z*(n), (3)

where # denotes the convergence parameter
that controls the speed and stability of adap-
tation, A denotes the smoothing factor of the
lowpass filter that is usually a positive number
less than but close to one, and

e(n) = d(n) — H' (n) X(n). (4)

Note that @? (), the estimated input signal
power at time #, is obtained by processing
x*(n) through the single-pole lowpass filter,
where the location of the pole is at 4 on the
real-axis inside the unit circle in the Z-plane.
The lowpass filter adjusts its output towards
the estimated value of the input signal power
recursively, We often, but not necessarily
always, choose the value for 8 as

p=1-un (5)

in the sense that having the same time con-
stant for the evolutions of both the adaptive
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process and the lowpass filter may yield better
results"?,

In the next section, under the assumption
that the signals involved are zero-mean, wide
sense stationary, and Gaussian, and fu.rther

employing the independence assumption'"

. we
derive a set of nonlinear recursive difference
equations that characterizes the mean and
mean-squared behavior of the filter coefficients
and the mean-squared estimation error. Con
ditions for the mean and mean squared con
vergence are explored. Comparisons are also
made between the performance of the NILMS
algorithm and that of the popular LMS algo
rithm 1n this section. In Section 3, included
are the experimental results that demonstrate
the validity of the theoretical derivations.
Finally, the concluding remarks are made in

Section 4.

2. Convergence Analysis

In this section, we derive a set of nonlinear
difference equations that characterizes the
mean and mean squared behavior of the filter
coefficients and the mean squared estimation
error of the NLMS algorithm.

The following notations will be used in the
analysis. Let H., denote the optimum coeffi

cient vector given by

Hopt = Ry Rax, (6)
where
Rxx = E{X(n) XT(n)} (7)
and

1276

Rax = E{d(n) X(n)} (8)

denote the autocorrelation matrix of X'(») and
the crosscorrelation vector of d(x) and \(n),
respectively, and £} -} indicates the statistical
expectation of | - 1

Also, define the coefficient misalignment

vector '(n) as

V(n) = H(n) — Hop, (9)
and 1ts autocorrelation matrix A(x) as

K(n) = E{v(n)VT(n)}. (10)

Using (9) in (2). we get the update equation

for the coefficient misalignment vector as

Vin+1)=V(n)+ ;{(‘—“-)e(n)X(n). (11)

The optimal estimation error ew.(n) 18 given
by
emin(n) = d(n) = HL X (n). (12)

Combining (4), (4), and (12) leads to

e(n) = emin(n) — VI(n) X(n). (13)

Note that by the orthogonality principle,

E{emin(n) X(n)} = 0. (14)
Finally, let

Emin = B {e2in(n)} (15)

denote the minimum mean-squared estimation
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error, and let

e
p(n) = E{32(n)} (16)
and
s(n) = E{64(m)} (17)

denote the first and the second moment of
o? (n), respectively.

We now employ the following assumptions
to make the analysis mathematically more
tractable :

Assumption 1 : d{»n) and X(») are zero-mean,
wide-sense stationary, and jointly Gaussian
random processes,

Assumption 2 : The input pair {d(n), X{(n)}
at time » is independent of {d(k), X (&)} at
time 4 if n¥k.

A consequence of Assumption 1 is that the
estimation error e(n) given in (4) is also a
zero mean and Gaussian when conditioned on
the coefficient vector H(n). Assumption 2 is
the commonly employed “independence assu-
mption” and hardly true in practice. It is,
however, shown " that Assumption 2 1is
valid if x is chosen to be sufficiently small.
Also, the analysis using this assumption has
produced results that accurately predict the
behavior of the adaptive filters even in circu-
mtances where the assumption 1s grossly vio-
lated"®. One of the consequence of Assumption
2 is that H(n) is independent of the input
pair {d(n), X(n)}, since H(n) depends only
on inputs at time #n-1 and before. It is very
important to note in Assumption 2 that we
do not restrict the nature of the matrix R,

Now, taking the statistical expectation on
both sides of (2) gives.

E{H(n+1)} = E{#(n))

sl { e X ()}

ai(n) (18)
In (18), o%{n) may be considered to be unc-
orrelated with X(»n) and ¢(») if B is chosen
to be very close to one. We thus can rewrite

(18) as

E{H(n+ 1)} == E(H(n)}

+pE{ }E{e(")\(")} (19)

3(n)

To evaluate the second expectation on the
right-hand side (RHS) of (19), we first exp-
and 1/¢ #(n) in a Tayler series about Lfo .2
(n)} to the first two terms and a remainder
term. We then take the expectation, after
discarding the remainder term, to get

1 1 1
o) = T = 7 (20)

where by substituting (3) in

o*=Lx*n)l,

(16) and denoting

p(n) = Bp(n-1)+(1-p)o?
" p(0) + (1 - B") o2 (21)

Note that e(x#) converges to ¢* in the limit
as we wish.,

The last expectation of (19) can be evalu-
ated using(4) as well as Assumption 2, ie.,

E{e(n) X(n)} = Rax — Rxx E{H(n)}. (22)

Therefore, substituting (20) and (22) in (19),
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we obtain the mean behavior of the NLMS
algorithm as

E{H(n+ 1))~ |1y = =I5 Rxx]

n
E{H(n)}+;'(';1'5Rde (23)

where 1. denotes the \X.\ identity matrix.
The above expression can be rewritten using
the coefficient misalignment vector defined
mn (9) as

E{V(n+1)}~ IN—ﬁRXX E{V(n)}.

(24)

From (24), we can see that the mean
behavior of the coefficient misalignment vector
approaches the zero vector if the convergence

parameter g 1s selected to be

O<p<2;i\(n), Vi and Vn, (

1

e
93}
—

where A denotes the /-th eigenvalue of the
matrix K., It 18 not difficult to show that a
more restrictive and sufficient, but simpler and
more practical condition for the convergence

can be obtained as

0<p< Al (26)
under the condition that the initial value for
the single-pole lowpass filter is chosen to be
greater than the input power to be estimated,
ie., 2(0) > o2 Note here that knowledge of
the input signal statistics Is not now necessary

in determining values for the convergence
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parameter. 1t must be pointed out that the
two approximated expressions gien in (23) and
(24) do not mean that the NLMS algorithm
15 biased in the mean sense. In fact, the
NLMS algorithm does converge to the optimum
coefficient vector in the limit in the mean
sense as long as the condition 1n (26) 15 sat
isfied.

FEven though the weight vector converges
to the optimum value in the mean sense, we
still have to guarantee its convergence in the
mean squared sense as well. An expression
for the mean squared estimation error ¢ “.. 1s
derived next. Squaring both sides of (13) and

tak ing the expectation yield

ae(n)

i

E {62(n)}
Emin + E{VT(m) X(n) XT(m) V()
—-929E {VT(n) X(n) em;n(n)} ,
(27)

i

where &... is obtained by using (12) in (15)

as

Emin = E{d*(n)} - HE, Rax. (28)

Note that last expectation of (27) becomes z
ero by Assumption 2 and orthogonality princ-

iple. Tt thus follows that

02(n) = &min + tr{K(n) Rxx}, (29)

where K(n) 1s defined in (10), and ¢r{ - |

denotes the trace of |- ..
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To evaluate a2(n), an expression for K(n)
is also needed, Substituting (11) in (10) and
employing the same approximations as those
in (19) and (20) once again lead to

K(n+1) = K(n)
+ }frﬁ E{e(n) V() XT(n)}
"u—" en ‘(n T n
+ o5 E{em X () VT ()}

+ 3%5 E {ez(n) X(n) XT(")} Y (30)

where p(n) and ¢ (n) are defined in (16) and
(17), respectively. Here, using (13) and emp-
loying Assumption 2 as well as orthogonality
principle once again, we have

E {e(n) V(n) X (n)}

= E{[emin(n) = VT (n) X(n)] V(n) XT(m)}
= ~E{v(m VT (1) X(n) XT(n)}
= -K(n)Rtxx. (31)

Similarly,
£ {e(n) X(n) VT(n)} = —Ryx K(n). (32)

We now invoke the Gaussian signal assumption
(Assumption 1) to evaluate the last expectation
on the RHS of (30) since the fourth-order
expectation of Gaussian random variables can
be decomposed into their second-order expec-
tations. That 1is, for zero-mean, Gaussian ran-
dom variables X, X,, .X;, and X,,

E{X] Xz X3 )&’4} = E{X] X'z} E{/\’3 )(4}
+ E{X1 X3} E{X2 X4}
+ E{X1 X4} E{X2 X3} (33)

Using (13) once again, 1t is straightforward
to show that

E{e*(n) X(n) X (n)}
= fmin flxx +tr{K(n)Rxx} Rxx
+2Rxx K(n) Rxx
[€min +tr{K(n) Rxx}] Rxx
+ 2 Rxx K(n) Rxx
[02(n) In + 2 Rxx K(m)| Rxx. (34

We also need an expression for ¢ (n) for
complete evaluation of (30). Squaring (3) anc
using (17), it follows that

¢(n) = E{[ﬁ&:(“—1)+(1—,3):r7(n)]7}
= fon—1)+28(1-P)olp(n-1)
+3a-pte (35)

In (35), we have made use of the fact that
Elx*(n) =30,

Substituting (31), (32), and (34) in (30),
we therefore achieve the mean-squared beh-

avior of the coefficients as

K(n+1) = K(n)-—-p—(lin—)-[l\"(n)R,\',\'

1
d(n)

+ Rxyx K(n)] + [az(n) In

+2Rxx I((")] Rxx, (36)
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for which p(n), ¢ (x), and &*(n) are given
in (21), (35), and (29), respectively.
Let ¢ be an orthogonal matrix that diago

nalizes the matrix R\ with the property that

QQT =1Iny or Q7' =Q7. (37)

By pre and postmultiplying both sides of (36)
by ¢’ and 0. respectively, a transformed

coordinate version of K(#) becomes

K'(n+1) = IK'(n)- ;T(%T) [K'(n)A
pl
+AK'(n)] + ey [c2(n) In
+2AK'(n)]A, (38)
where
K'(n)=QT K(n)Q, (39)
and

A= QT Rxx Q = diag[ 1, A2, --- AN]. (40

Note that A's are all nonnegative real values
since R« is always a nonnegative definate
matrix.

The (/)-th element 4”.(x) of the matrix
K (n) can be identified using (38) as

ki(n+1) = 1_M
snt D [ p(n)

p?higd(n)
¢(n)

242 A S(i
#(n) (1—13),

(11)

} k:j(”)+

1280

where

6(1._].):{ 1 ifi=j

0 otherwise (42)

In particular, the diagonal terms of A7 (u)

hecome

Qud 2uPAr)
- ~ | k;i(n
p(n) )

¢(ll) it
2 diof(n)
TTe(n) (43)

kii(n+1) = [1

Note here that from (29)

o3(n) = Emin +tr{i'(n) A},

A’
Emin + 9 Aiki(n). (44)

1=1

i

Since, by Schwartz inequality,
k2(n) < kiy(n)kj;(n), Vi,jandVn, (45

the convergence of the main diagonal elements
of the matrix A7 (n) ensures that of the off
diagonal elements. Note that all the off -diag
onal elements of K”(») becomes zero once the
convergence of A7(n) takes place since, acc
ording to (41), they contain only homogeneous
exponential parts in their difference equations.
Note also that the convergence of K (i)
guarantees the convergence of a*(n).

Recall that conditions for the mean squared
convergence of the coefficient misalignment
vector of the LMS algorithm were derived
in an elegant way in “. Here, we modify the
results in ' to obtain the following conditions

for the mean squared convergence of the
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NLMS algorithm :

1

0<;L<X‘,-. (46)

and for all »

)+ A
#(n) Z 1 — pd;p(n)/o(n) <l (47)

0< g” E”
i=1
We are now ready to compute the steady-
state behavior of the mean squared estimation
g (c0), K'(o0), and o “(co0)
denote the hrrutmg values of p(n), @),

error. Let p(o0),

K'(n), and . *(n), respectively. To evaluate
o.2(), K'(2) needs to be computed first.
Taking the limit as » goes to infinity on both

sides of (38) yields

K'(00) = K'(oc0) - [K'(00) A

1t
(oo
+AK (oo)]+¢( [e%(c0

+2A K'(00)] A, (48)

where, using(21) and (35) respectively, we

obtain

p(o) = o, (19)
3—-7

$(o) = Hﬁvi- (50)

Notice that if A is chosen to be less than one

but very close to one, it follows that

¢(00) = (2 - B) ot =~ o} (51)

Now, define a constant « as

p(0)
" 4(c0)

Then

N .Y ARV
T (3-Bl (2-P)o2 ot

Since K7(o0) is a diagonal matrix,

plifies to

K (OO)‘—I—Q-QU( ) [In ~ peaA]™?

and thus the diagonal terms of K (oo

" o 0 (00)

ki(o0) = &t
2 1= pald’

(45) sim

(561)

) becomes

Taking the limit on both sides of (44) and

using (55), we get

N
) X T

=1

UZ(OO) = &min + %a

1—;1&)

(56)

Solving (56) for a2(s) vields the steady-state

mean squared estimation error s

¢
oHoo) = fon
o R
2 ?::1 l—pal
o o m
s Emm Z “5"
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Note that it is possible to expand (56) as in
(57) only when the convergence parameter
s satisfies the condition given in {47).

Now, for small values of pu, ¢*(co) In (57
) can be approximated by considering only
the first two terms of the power series such
that

N
Ha ~ A,’
UZ(OO)zemin'*' 9 Eminz_l 1—[10/\{. (58)

1= 1

Employing the “small values of x” approxim
ation once again and using (53), the above

expression can be further simplified as

N

u
92(00) % bmin + 53 bmin 2 N (59)
1=] '

Under the same set of conditions and assu
mptions, it 1s not difficult to show that the
limiting mean -squared error of the LMS alg

orithm can be written as
It al
2 ~ R [ . .
o, (OO) -~ &mm + 9 Emm Z} )\.. (60)
.

Comparing(59) and (60), we can make the
following two remarks about performances of
the LMS and NLLMS algorithms : First, att
aining the value of s for each algorithm
such a way that the steady state mean squ
ared error for both algorithms becomes the
same, and using it in the coefficient update
equation of each algorithm, we can see that
the speed of mean convergence for the NILLMS
algorithm is more or less the same as that for
the LMS algorithm, Second, if the same value
of ¢ 1s employed for both algorithms, the
NLMS algorithm 1s preferred i environments
1282

where the input signal power is greater than
one, since in this case the steady -state mea-
n squared error of the NLMS algorithm. is less
than that ot the [LMS algorithm. Remember
though that these comparisons are meaningful
only when s 1s fairly small and £ is less than

but very close to one,

3. Experimentai Results

We now present some of the experimental
results to demonstrate the validity of our
analysis. For this. a third-order adaptive pre-
dictor 15 used. The primary input signal ¢(x)
1s modeled as the output of the third-order

autoregressive filter in such a way that

d(n) =n{n)+09d(n—-1)-0.1d(n - 2)

- 0.2d(n - 3). (61)

The input #(») to the autoregressive filter is
a zero mean, white Gaussia pseudorandom
sequence with variance such that the variance
ol d{n) is one. The eigenvalue spread ratio
of the signal () is approximately 16.3. The
results presented are comparisons of the the-
oretical curves with those obtained from the
simulation. The ensemble averages are obtained
by averaging over 400 independent runs with
10,000 samples each. The constants # and 4
are chosen to be 0.005 and 0.995, respectively.

Iigure 1 shows plots of the theoretical and
empirical mean behavior of the filter coeffic
ients, where I/l (n)1, /=123, represents the i th
clement of the vector FtH(n)!. In each plot of
the figure, curve 1 1s for the simulation result and
curve 2 s for the theoretical result predicted by

(23). (21} 1s required also.) Tt can be seen that
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E{h,}
1.0 3
1
-0.1 —
E{h,;)}
0.2 —
1
2
-0.15 0 time n 10000
E{hs)
0.05
2
1
1
-0.3 -
0 time n 10000

Fig.] Mean behavior of the coefficients : |=simulation
result, ¢=theoretical result.

the theoretical results for the mean behavior agree
with the simulation results fairly well.

Next, the diagenal elements of the matrix A&
(#) predicted by (36) are compared with their
simulation counterparts and depictedl in Figure 2,
in which K.{(n) denotes the i th diagonal
element of K(x). Recall that (21). (29), and
(33) are necessary to eva]uate‘lx'(u)_ Once
again, the theoretical curves show very good

Ki{n)

0.9

D) ]
-~ 0.1
0 time n 10000
Kas(n)
0.07
2
(1
~0.01
0 time n 10000
Ka3(n)
0.05

L
P2
— 0.005
0 fime n 10000

Fig.2. Mean-squared behavior of the coefficients : |=simu-
lation resuilt, 2=theoretical result.

agreement with empirical results, Note that
all the curves in Figure 2 are nonnegative,
Negative values for the verticval axis are only
for ease of dispalying the results,

4. Conciusion

In this paper, we have presented a conver-
gence analysis of the NLMS algorithm using
a single-pole lowpass filter. Under the assum
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ption that the primary and reference inputs
to the adaptive filter are zero-mean, wide-sense
stationary, and Gaussian randem processes, and
further making use of the independence ass
umption, we derive a sét of difference equa
tions that characterizes the mean and mean
squared behavior of the filter coefficients as
well as the mean -squared estimation error,
Conditiors for the mean and mean-squared
convergence are also explored. We then derive
an expression for the steady stute mean squ
ared estimation error, and compare the perfo
rmance of the NLMS algorithm with that of
LMS algorithm, Finally, expenimental results
that show very good agreement between the
analytical and empirical results are presented.

It is hoped that the results obtained here
furnish additional design criteria for impleme

ntation of adaptive filters in practice.
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