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An Approach for Efficient Numerical
Integration of the Sommerfeld Type Integrals
Pertinent to the Microstrip Surface Green’s Function
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ABSTRACT

An approach is presented for efficient numerical integration of the Sommerfeld type integrals
pertinent to the microstrip surface Green’s function arising in the problem of an electric current
point source on an infinite planar grounded dielectric substrate. This approach, valid for both
lossless and lossy dielectric substrates, is based on the deformation of the integration contour via a
coordinate transformation and Cauchy’s residue theory, and identifies clearly the effects of surface
waves. Its useful application is in a rigorous moment method analysis of microstrip antenna arrays
and microstrip guided wave structures. The efficiency and the usefulness of the present approach
are emphasized through some numerical calculations of the impedance matrix elements with

associated CPU times.

I. introduction

For a rigorous moment method (MM) analysis
of microstrip antenna arrays and microstrip
guided wave structures, the key step is the com-
putation of the impedance matrix elements, This
involves repeated evaluation of the Sommerfeld
type integrals pertinent to the electric field on
air-dielectric interface which is excited by a
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transverse electric point current source located
on an infinite grounded dielectric slab. Evaluation
of these infinite integrals is rather time-consum-
ing due to the slow decay and oscillatory nature
of the integrands. Also, the pole singularities
which may exist along or very close to the path
of integration cause additional difficulties, Thus,
evaluation of the impedance matrix elements can
be numerically inefficient,

Several integration techniques are already
available in [1,2] for rapid and accurate evalu-
ation of these integrals. However, it is noticed
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that these techniques are valid only for the case
of lossless dielectric substrates. The present ap-
proach introduced in this paper is valid for both
lossless and lossy cases., This approach first em-
ploys the polar coordinate transformation kp =k,
sin £(k, is the free space wave number) to
transform the Sommerfeld type integrals in the
complex kp-plane into the complex ¢-plane. Then,
via application of Cauchy’s residue theory in the
complex ¢-plane, the original contour of inte-
gration 1s deformed into a contour which 1s
chosen in such a way that the resulting alterna-
tive expression of each Sommerfeld type integral
dose not include the numerical difficulties as
mentioned before and converges quickly. Thus,
by employing the alternative representations de-
veloped here for the Sommerfeld type integrals
one can perform the rigorous MM solution in a
highly efficient manner.

The electromagnetic fields due to a point sorce
in the problem geometry-is presented in terms of
the Sommerfeld type integrals in Section II. In
section III, a new approach which leads to ef-
ficient evaluation of these integrals is presented.
In Section IV, some numerical calculations of the
impedance matrix elements with associated CPU
times are presented to illustrate the efficiency of
the present approach. In the following, the time
convention exp ( fwt) is assumed and suppressed.

II. Field Expressions in Terms of
Sommerfeld Type Integrals

It has been shown!':23] that the solution for the
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Fig. 1. Xxdirected electric dipole on an infinite grounded
dielectric slab.
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fields excited by a X -directed electric point cur-
rent source on an infinite grounded dielectric slab
(see Figure 1) can be derived in terms of two
magnetic vector potential components A+ and .4,
and that the following representations for vector
potential components satisfy the Maxwell’s
equations and the required boundary conditions :
for z=0,

- _};ﬂe—;kl.zj(g) (k,p)

B dk, ;
A\ 27!' o DTE (4 ( 1)
k" e Jk“ZJ 1
4= - —1)cosg dk, :
f Dre DTM ?
(2)
where
p= Jxt+y? cosg=x/p

Dre =jku+kscot(k,d) D =jeck; —knptan(k,,d)

ka=VE — k2, Re(ka) >0, Ln(ka) <0
zz:\/e,k;—kf,, Rel(ks) > 0, Im(ky) <0 (3)

The electric fields in free space (z>0Q) are then
given by

The conditions for the transverse wave number k.
1 in (3) are required since Ax and A4: represent
outward-propogating or attenuated waves. How-
(3) is not manda-
tory since kzcot(kz2d) and kaotan(kzd) are even

ever, the choice of sign of k-2 in

functions of kp.
The Sommerfeld type integrals appearing in

the above are time-consuming to evaluate due to
the slow convergence of these integrals
expecially when the source and field points are on
the dielectric surface (z==() ;this case is of
special interest in the MM solution of the
microstrip problem. Several techniques for the
lossless dielectric case have been introduced in
[1,2] to reduce the computational time required
in the evaluation of the Sommerfeld type
integrals, In the following section, a quite differ-
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ent approach is presented for efficient evaluation
of the Sommerfeld type integrals an it is valid for
both lossless and lossy cases.

. An Approach for Efficient Evaluation of the
Sommerfeld Type Integrais

Since the same approach is valid for both Ax
and Az, for convenience, let us consider Ax only
to illustrate the present approach. This approach
lustrate the present approach. This approach
begins by deriving its alternative form in which
the integration over kp extends from — oo to -+0,
Upon introducing

Jalt) = (HY(O+HE(0)] (5)

where H!'? is the Hankel function of the first
(second) kind of order ¢ and argument £, one may
write the representation (1) as

AVZ-LI x kpe'janH(é)(kpp)
C 4n Yy jkatkacot(ked)

e ke *eHE (k, p)
4r 0 jkzl“i"kzzCOt(kzzd)

dk,

dk,- (6)

The exponential terms in the expression of A. will
be eliminated from this point on, since we are
specifically interested in the case where the field
point is also on the dielectric surface (z=0). Ap-
plying the change of variables :

k,=kpe " (7)

in the integrand of the first integrals in (6) and
then using the relations

H (teir) = —e ~wH2)(t) (8)

yields the following alternative form :

Ax=f_; F(k,) H® (kop)dk, (9)
where

_ kp (10)
Fko) =g oo, cot(hnd)

In the complex kp plane, the integrand in (9) is a
multiple-valued function of kp because of the
double-valued function k;; and the multiple-valued
function H'%(k.p). However, for our intention to
deform the original integration path, it is necess-
ary to have the integrand single-valued in the
whole complex kp plane. It is found to be suf-
ficient for this purpose to introduce two sheets of
complex kp plane which are connected by the
branch cuts shown in Figure 2.

Im(ky)

R.(k,)

Fig. 2. Contour of integration and branch cuts in the
complex kp plane,

The branch cuts with the branch points at kp =
+k (k) is assumed to be real) are introduced to
ensure the single-valuedness of the double-valued
function k, and are chosen as in this figure so
that Im(k.) is negative on the top sheet and posi-
tive on the bottom sheet. The branch cut along
the negative real axis is introduced to ensure the
single-valuedness of the Hankel function.

It seems convenient to remove the branch cut
singularities due to k,; by means of the following
polar transformations

kp =ky sin &
ky =k cos ¢ (11)
145

www.dbpia.co.kr



WERAE SR '93—1 Vol.18 No.1

where
E=u+jv (12)
Then, Ax transformed into the complex & plane is

Ax=_/;e [F(kp)] kp =k, sing-H®) (kipsin§)de
kz1=2z,cos ¢ {13)

where c: denotes the transformed original contour
of integration and is shown in Figure 3.
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Fig. 3. The complex ¢ plane. C; represents the orig-
inal contour transformed into the complex ¢
plane. The regions unshaded and shaded with
horizontal lines correspond to the top sheet
where Im(k,;) <0 and the bottom sheet where
Ink,) >0, respectively, in the complex kp
pane.

For analytical details involved in this trans-
formation, one may refer to[4,5]. Now, in Figure
3, considering a closed contour which consists of
the contour ce¢ and five additional contours ¢, cz,
c3, ¢4, and c« it is clear, via Cauchy’s residue the-
ory, that the integral along the contour ce is the
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same as the sum of that along the other contours
and the residues at the poles &i(i=1,---,n) en-
closed by the closed contours since the integrand
is regular in the region bounded by the closed
contour except for the finite number of poles. No-
tice that the poles are always inside the closed
contours, even though their locations are changed
depending upon the loss tangent of the dielectric
substrate, Combining the contributions of the

contours ci, ¢t and ¢y, cs to the integral separately
with .- few algebraic modifications (the contri-
bution of cx is zero) and then introducing new
variables ¢ and A via the transformations

{=sinh (14)
and
A==8In u (15)

yields an alternative expression for Ax as follows :

-k
S

sin?(ky d Ve, 412 A V1+22 Kolkipa)da

(&~ A2)cos?(k de, —a2) + {1 —A%)sin?(k d /g, —A2)

(16)

where Ri represents the residue of function F(k,)
H(i)(kﬂ) at the # pole (i =1,---,n) and Ky(pt) is a
zero-order modified Bessel function of the second
kind with argument p¢. For numerical evaluation
of the infinite integral in (16), one can reduce it
to the finite integration by ignoring the tail of the
integrand since the modified Bessel function de
cays very rapidly. Finally, the following alterna-
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tive expression is obtained for the efficient com-
putation of the Sommerfeld type integral (1) :

Ac=—2x3 Ri
=1

sin(k1d Ve +1t2 t V1412 Kolkipt)dt
(e +t2)cos?(kydv e +12) +(1+t2)sin?(k, d v g, +t2)

ik
5 L

sin®(k; d Ve +a2 A y/14H22 H? (kpa)da
(& —A%)cos?(kyde, —a2)+ (1 —A?)sin?(k;d Ve ~A2)

(17)
where

¢ =1
<7 kip

{ —ml,10+1Ink1p) for e<10™™. (18)

€ and t. in (18) denote a truncation error and a
corresponding truncation point, respectively (see
Appendix A).

Unlike the conventional Sommerfeld type inte-
gral (1) the integrands in (17) do not have pole
singularities. Also, the zerces of the integrands
located on each finite integration interval, 0<{<
t. and 0<A<k, are found easily from the zeroes
of the sinusoidal and Hankel functions in each de-
nominator. Each sub-integration between the ze-
roes can be evaluated precisely by a rule like a
Gaussian quadrature formula. This ensures the
accuracy of the involved numerical integration
for any diclectric constant and dielectric thick-
ness (electrical), and this is one of the main
reasons why the particular contours as shown in
Figure 3 were chosen among infinitely many poss-
ible contours.

IV. Numerical Examples

One of the useful applications of the present
method is in the calculation of impedance matrix
elements for the moment method analysis of

microstrip patch antenna arrays. Thus, in this
section, some numerical calculation of the im-
pedance matrix elements with associated CPU
times are presented to illustrate the accuracy and
the efficiency of the present approach. Tables 1-3°
show the self and mutual impedances between
two Xdirected entire domain expansion modes. L
and W denote the length and the width of the
two identical modes, respectively. In each table,
x and y represent the separation in meters be-
tween centers of each mode along the x-axis and
the y-axis, respectively.

The second and third columns represent the nu-

Table. |
f=4800 MHz, €,=245  D=0.000787m
L=0.02296m, W=0.01744m
x y Present Approach PWST
0 0. -323+74.82 -323+74.82
0 .0375 | —-.019—7.048 —.019—7.045
0 .075 .030+7.008 .030+7.006
0 .1125 | —.020+/.009 —.020+7.010
0 .15 .008—7.015 .008— 5.015
Table. Ii
f=4800 MHz, €,=2.45, D=0.003175m
L =0.02296m, W ==0.01744m
x v Present Approach PWST
0 0. 5-95+7521.1 5-95+521.0
0 .0375 | —.613-7.592 | —.613~/.533 |
0 .075 .646—7.143 .646—7.175
0  .1125 | —.276+5.430 —.276+7.435 ﬂ
0 .15 —.078—7.418 | —.078~7.402
Table. Wl
S =300 MHz, =12.8, D=0.06m
L=0,1074m, W =0.15m
x y Present Approach PWST
0 0. 9-21+452.79 9-21+73.933
0 5 | —425+/151 | —4.254/1.55 |
5 0 .486—71.77 .486—71.76
5 5 .283+5.75 .283+7.74
147
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merical results calculated by employing the pres-
ent approach for efficient evaluation of the
Sommerfeld type integrals (refer tol3! for detailed
impedance representations) and the plane-wave
spectral technique (PWST) widely used in litera-
ture for MM analysis of microstrip array
antennas,'¢) respectively, They agree with each
other, as expected. As is known,!67] the accuracy
of the plane-wave spectral representation
depends upon a careful choice of the point at
which the infinite integral is terminated, an accu-
rate determination of the pole location and again,
a careful choice of the Cauchy’s principal value.
The number of sampling points over integration
must also be carefully chosen since the number of
oscillation of the integrand increases with the
separation between expansion modes, 7

In comparison to the PWST technique, im-
pedance calculation via the present approach is
about 10~20 times faster and evaluation of the
impedances in Tables 1, 2, and 3 takes about 2
minutes, 2—2 /3 minutes and 5 minutes of CPU
time on a VAX 11/750, respectively. For the
self-impedances alone, it takes about 25 seconds,
53 seconds, and 2 minutes and 10 seconds, re-
spectively.

Notice that the alternative expressions of the
Sommerfeld type integrals are computed in
actual calculation by employing 12-point Gaussian
quadrature formula for integration of each sub-in-
terval whose end points are adjacent zeroes of
the integrand and that the number of sub-in-
tervals increase when the dielectric constant and
the thickness increase. Thus, longer CPU times
are requrired for higher dielectric constant and
thicker dielectric substrate.

V. Conclusion

In this paper, an approach has been presented
for the efficient evaluation of conventional
Sommerfeld type integrals pertinent to the elec-
tric field on the air-dielectric interface produced
by an arbitrary directed electric current point
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source located on an infinite grounded dielectric
slab. This approach involves the deformation of
the integration contour via Cauchy’s residue the-
ory and is valid for both lossless and lossy dielec-
tric substrate cases. CPU times taken on 2a VAX
11 /750 for some numerical calculations of the
self-and mutual-impedances between entire do-
main expansion modes are shown to be about 10
to 20 times faster than the conventional plane-
wave spectral method.

Even though the present approach is applied
here for the single-layered planar microstrip ge-
ometry, it is believed that the same approach can
be applied for the multi-layered geometry.
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Appendix A

Let the infinte integration interval in (2) be
truncated at £=¢.. Then the truncation error ¢ is

! is omitted)

(scale factor
==/,
sin?(k1d Ve +t2 t V1+t2 Kolkpt)

— - dt
(e, +t2)cos?(k dv g, +t2)+(1+t%)sin?(k dyg, +t2)
(A1)

Since Re(e)>>1I.(e) in practice, the trunction
error due to the imaginary part is in much lower
order than that due to the real part alone. Hence,
it 1s sufficient to estiamte the truncation error as-
suming &, real. For g real,

o< :fx sin?(k1d Ve +t2 t V1+t2 Kolkpt)
b 1+t2
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x t
= JR——
/. —— Kolhwt)at

Sj? Kolkpt)dt

e_kll’tc

for kypte = 0.7 (A.2)

<

This analysis suggests that t. zk—l’; (min(10)-In
1

(kyp)) for a truncation error of 107™
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