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Derlvmg the Fourier Transforms of Pulse Signals Through
the Look-up Tables
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Abstract

This paper proposes a novel method for deriving the Fourier transform pairs of high order pulses
given in a generalized form. Primarily, modifying the PRS system model, we establish a new model
which simplifies the process of Fourier analysis of the n-th order pulse signal, resulting in a rep-
resentative relationship. In succession, we present the Frame Formula which plays a role of sub-
stituent for the parameters in table look-up procedures. Each look-up table contains all the
parameters needed to obtain the Fourier transform of the corresponding pulse of any order. Regard-
ing the amount of calculations and the complexity of procedures required to derive the transforms
of pulse signals, analytically or numerically, this method is more compact and timesaving than con-
ventional methods. When pulse has a much narrow width or equivalently higher the order of sev-
eral pulses, the method presented here acts to the best of its true merit.
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1. INTRODUCTION

Pulse signals are often used to describe the sys-

tem functions or the units of transmission in sev-
eral communication systems [1]. In recent years,
especially, there has been considerable interests
in the phenomena of ultrashort pulses [2]. On the
other hand, the method of Fourier transform
plays an important role in analysis and design of
these pulses. Due to the encouraging results of
our recent study concerning the cosine-pulses
{3], further investigations and generalizations are
made throughout this paper.

Firstly, we modify the generalized PRS(partial
response signaling) system model for our
purposes [4]. In other words, the original model
will be endowed with a recursive property by
changing the frequency response of the
bandlimiting filter following the orders of pulses
we want to analyze. After analyzing the modified
model and formulating a recursive relationship,
we present the Representative Formula which
can be used to derive the Fourier transform pairs
regardless of pulses of any order becomes issue.
However, the modified model does not always
provide an accurate solution. Most malformed
functions which have some discontinuities in the
region of interests fail to have their accurate
transforms [5). In addition, the fact is that per-
iodic functions which contain the corresponding
pulses as a part of themselves have to satisfy a

sufficient condition in order to obtain accurate
transforms from the model. We also present the
sufficient condition in a form of truncated convol-
ution integral. However, since most of the pulsés
used in ordinary transmission systems or in
details of short pulse are sufficiently well be-
haved and are directly applied to the modified
model, the condition will be little worth consider-
ing the view of this paper.

Although the recursive relationship and the
Representative Fomula are advantageous to build
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up numerical algorithms [1], there seems to be
inconveniences when they are employed in deriv-
ing analytical solutions. To solve this,we have re-
cently presented a frame formula with a look-up
table for deriving the Fourier transforms of the
n-th order cosine pulses by the procedure of sep-
aration of coefficients [3]. After deeper inves-
tigations on the basis of this concept, we develop
the Frame Formula in a generalized form which
can be applied to all forms of pulses, Several
look-up tables for pulses which are frequently
used in short pulse transmission are also submit-
ted for analytical and numerical convenience.

The remainder of this paper is organized as
follows. In Section M, we describe the problem
and the modified PRS system model which will
be the focus of our paper. Section [l is devoted
to the derivation of the Representative Formula
from the modified model, In section IV, we de-
velop the main theorem concerning the Frame
Formula and submit several look-up tables for
pulses of interest., Finally, we draw our conclud-
ing remarks in Section V,

II. PROBLEM DESCRIPTION AND THE MODEL

The central problem of this study is to present
an easy method for deriving the Fourier trans-
form pairs of pulse signals. The fact is that we
can solve this problem through the process of
consecutive differentiations or the mthod by con-
volution theorem, in accordance with the forms
of pulses individually [5]. These conventional
methods, however, would cause seriously com-
plex and painstaking calculations as the orders of
pulses are increased. Realizing this point early,
we commenced a study in order to explore an
easy method for the subject limited to a specific
pulse [3]. This time we plan to elaborate a
generalized formula for deriving the Fourier
transform of every pulse in a handy method.

First, we define the n-th order pulse as a prod-
uct of the n-th power of a periodic function and a
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single rectangular pulse centered at the origin.
Then we express the n-th order pulse in time-do-
main as follows :

Pu(t) = A V(O [1[ 5], forn=1,2,3,... (1)

where
1,
Nl 1= { 0

and the function v(t) is a periodic function with
fundamental period T,. It is clear that this defi-
nition can be used to represent all forms of pulses
by changing function v(t) without loss of gener-
ality. Deriving the frequency-domain function P,
(f)from the time-domain function p.(t) will be
the focus of this paper. At this point, we can also

if [t} <«
elsewhere

expect a problem given in the opposite direction,
In other words, we are sometimes faced with a
problem which requires an inverse transformation
from a frequency-domain function given in the
form of (1) to the corresponding time-domain
function, This exchiange in the direction of trans-
formation can make no trouble since the Fourier
transform pairs satisfy the duality [5). Thus
there may be no problem even if we only concen-
trate on the forward direction,

On the other hand, we present a new model in
order to obtain a recursive relation for deriving
the Fourier transform of the n-th order pulse as
shown in Fig.1. Roughly speaking, the model is
separated into two parts as in the case of the
original PRS system model {4] : The one denoted
as K(f) consists of a tapped delay line filter with
2N delay factors and 2N+1 coefficient multipliers
which come together in a adder, the other
denoted as G,(f) is an analog filter whose fre-
quency response is equivalent to the overall
transfer function of the model for the (n-1)st or-
der. These two filters are connected in cascade
with each other and are named as the transversal
filter and the bandlimiting filter, respectively.

In order to obtain a recursive formula, we will
systematically alter the frequency response of the
bandlimiting filter along the order of pulse n,
while the structure of the transversal filter will
be fixed for all n after decision of its frequency
response by the form of given pulse. In addition,
the impulse function on the input port of the
model has been chosen so that the center of the

response always falls on the origin of corres-
sponding domain,

H.(D

G.(0

Fig. 1. Modified PRS system Model for the n-th Order Pulses
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[I. DERIVING THE REPRESENTATIVE FORMULA

In this section we wish to derive a generalized
formula for the Fourier transforms of pulses after
investigating the system functions of the model
introduced in section Il and comparing them
with the problem functions. Because the model
shown in Fig.1 corresponds to the n-th order
pulse and has a recursive property, we have to
set an initial function as the strarting point of the
recursion. Thus we assume that the frequency re-
sponse of the bandilimiting filter of the Ist order
model is the same as that of the minimum-
bandwidth PRS system with the exception that
the width is not 1 /T, but more generally 1/T,.
In other words, we set

Gi(f) =Hy(f) = A TT(T.f) (2)
which shapes a Fourier transform pair with

£(t) =hy(t) ==& sinc [7-] (3)
where the function ‘sinc(-)’ is defined as follows :

sin ©Xx
X

sinc(x) = (4)

From the structure of the model given in Fig.1,
we have a Fourier transform pair for the trans-
versal filter

k()= G 8t=1T) @ K()=Y. C expl~j2efrT)
(5)

In this relationship, the symbol ‘&’ denotes that
the two functions on either side of it form a
Fourier transform pair. Hence the system
functions of the model in both domains are easily
obtained by induction starting with the initial
functions (2} and (3). They are given in another
Fourier transform pair as follows :
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Ha(f) =K{f) Ha-1(f)
=[r§iNCr exp(—j2nfrTy] Ha-1(f)
& half) =k(t) *ha-1(t)
— ¥ Coha(t=rT)), for n=123,... (6)

3

stands for the convolution
integral of the two functions on either side of it.

where the symbol ‘s«

It must be noted that the functions in (6) are
recursively related to the previous versions of
themselves with the initial functions defined in
(2) and (3), respectively. Considering the recur-
sive property of the equations in (6) and making
vigorous examination of the relationship,we have
the following proposition.

<PROPOSITION I>
P(n) :Ho(f) =A{ T C, exp(;2nfrTy) }" [T(Taf)

& hn(t)——-—%—[ iN @‘:I"sinc [%-—-%—Zl rs]
for all n==1,2,3,...

The proof of PROPOSITION I is deiscussed in
APPENDIX A. In this proposition we have used
a new notation which means the depth of
summations defined as follows :

[Z a ]n f(t,")Erz: Cran Cra-1 "7 TZ Cn1 f(t. I, er-nyrn)

(7)
Appling the dual property of the Fourier trans-
form pair to the relationship shown in PROP-
OSITION 1 we have another pair which can be
written as

H(t) = ALY C, exp(—j2ntrT)} [T(Tot)
@ b A L e sine [ - F K n]

for n=1,2,3,... (8)

If we set the parameters as T,=1/T, and T, =
1/27 in (8), a useful formula appears. We call
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this the Representative Formula, which can be
expressed as follows :

P.(t) = Al }:N C, exp{ —jrmot)!" H[“th], woz“rzrl
@ Pu(f) =247 3 o ]"sinc [2ef+ 5 £ 1]
for n=1,2,3,... (9)

Although this formula does not contain the case
of n=0, defining the notations as

N 0
[Z\cs; ]"El and ¥ r.=0
== N 5-=]

we see that the formula proves to be right for
n=(), and we obtain the well known pair in this
case,

po(t)=AH[—2t7] & Py(f) = 2A7 sinc (2+f) (10)

Comparing p,(t) in (9) with the problem func-
tion (1), we discover that the periodic function
v{t) should be expressed as a truncated Fourier
series in order to be applied to the model shown
in Fig.1. On the other hand, it is well known that
every periodic function can be accurately
represented by the Fourier series. For compari-
son, we write the Fourier series of the function
v(t) and its truncated version as follows :

v(t)= ¥ C, exp(—jropt) and

w(t) = % C. exp(—jrant), ay=-"2 (1)

The two functions v(t) and vn{(t) described
above have the same form with the exception of
the range of r. The truncated Fourier series vn(t)
converges to the function v(t) when the par-
ameter N approachs to infinity, provided that v
(t) is sufficiently well behaved [6]. But the fact
that N approachs to infinity means infinite num-
ber of taps in the model shown in Fig.1, and it 1s

hard to deal with the Fourier analyses of such
pulses using this model. We have to be given fi-
nite tabs or equivalently finite N so that the
model can be recursively used to derive the
Fourier transform of the pulse following its order.
For finite N, a sufficient condition for v(t)=vy

{t) can be given as follows [6] :

To/2

Ty v(t) = [ v(z) Sn(z-t) dz (12)
J -T2
where
. 1
sid | N+-=+ | (z<t)}
Snizt) = t wf] . (13)
sin {‘-2* (z-t)}

In a strict sense, every periodic function contain-
ing the pulse of interest as a part of itself must
be tested whether or not satisfies the condition
given in (12) prior to be applied to the methed
presented here. However, since it is obvious that
the periodic functions obtained from the model by
changing the tab coefficients and /or the number
of tabs of the transversal filter satisfy the con-
dition (12), we need not to carry out the test for
such funcitions. Moreover, most of the pulses
that frequently appear in the area of communi-
cation systems can be easily constructed from the
model containing a few tabs. According to our
experiences, many useful pulses could be
obtained from the model composed of less than
5 tabs, that is N=1 or 2.

To summarize our interpretations discussed
above, we can explain as follows : The Represen-
tative Formula given in (9) can be directly ap-
plied to all the pulses obtained by truncation of
the periodic funcitions having finite N, and en-
dow us with exact solutions. On the other hand,
we can only approximate the solutions for pulses
obtained from other periodic functions having in-
finite N. In the next section, we will only concen-
trate on the functions which can be expressed by
finite Fourier coefficients, and find a more useful
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formula for deriving the Fourier transforms of
them.

IV. FRAME FORMULA AND LOOK-UP TABLES

The largest trouble encountered when we ap-
ply the Representative Formula (9) to derive the
Fourier transforms of pulses may be the com-
plexity in expansion and calculation of multiple
sunmations given by the definition (7). Even
though the value of N is relatively small, a pains-
taking calculation must be carried out as the or-
der of the pulse n increases., For the sake of
overcoming this difficulty, we wish to present a
more useful formula which contains only one sum-
mation in itself and all other parameters given by
look-up tables.

When N is finite or the periodic funcition v{(t)
satisfies the condition (12), we can reorganize the
Representative Formula (9) to submit new one,
namely Generalized Frame formula, as the follow-
ing proposition :

< PROPOSTION 2 : Generalized Frame Formula>

Q(n) : The function P.(f) given in (9) can be
reorganized resulting in the following form for all
n=1,23...

ta

P.(f) = 2Ar };Obn_, sinc (2+f +da;) (14)
where tn=2nN
2N
b= ;, Cn-x bo-1, i—2N-x)

with assumptions
{ boo=1
bpq=0, when g<0 or ¢>2pN

doi =45 (1-nN), for i=0,1,2.....ta -

We can obtain this formula as a result of a careful
expansion of the multiple summations involved in
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the Representative Formula (9) using the defi-
nition (7). Detailed derivation of the Generalized
Frame Formula (14) will be discussed in APPEN-
DIX B,

It becomes clear that the Fourier transforms of
pulse signals can be expressed by a single sum-
mation of shifted sine(-) funcitions, About the
other factors needed in the formula, we can make
the following statements: The range of the sum-
mation t, is easily decided by the order of pulse n
and the limit of Fourier coefficients N. The coef-
ficient of the sine(-) funcition b,; can be
recursively obtained by the previous order nature
of it starting from the initial poirt bgo==1. In ad-
dition, the delay factor of the sinc(-) function dn;
can be also given by the iterative equation in the
formula. Moreover, once the form of a pulse or
equivalently the periodic function v(t) is given,
all these factors can be easily tabulated to form a
look-up table by simple arithmetics related to the
order of the pulse n.

Ultimately, we can draw an interesting con-
clusion. Tedious calculations or painstaking
procedures are no longer needed to obtain the
Fourier transforms of pulses like (1). As an
alternative and handy method, we must propose a
table look-up procedure with the Frame Formula
given systematically by the characteristics of the
periodic function corresponding to the pulse.

To clarify the procedure described above, two
typical examples will be given in the next stage.
Because the pulses involved here are frequently
used in the area of communication systems, we
sure that they are good references. We also hope
the general tendency of this method can be
understood by the readers in the process of
carrying out the examples. Furthermore, one has
to point out that the method can be applied to
any other pulse which satisfies the condition
disscussed at the end of Section III.

As the primary example, we will investigate
the Cosine Pulse which has been already dis-
cussed in our recent paper [3]. This yields the
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corresponding periodic funcition v(t) as
v(t) =cos It (15)
27

which has the fundamental period Ty=4r and can
be written in an exponential form

v(t) = lexpl (joot) +exp( —jt)} (16)

where the fundamental frequency is given by wp
=2n /T,. Comparing (16) with (11), we see that
the necessary factors appear as follows: N=1,
C-1=C;==1/2, and other Fourier coefficients are
all zero. Therefore, the parameters needed in the
Frame Formula (14) are given by

t1'1:21"1
bn,i = (1 /2) (bn‘l,1~2+bn—-l.l)

with assumptions

bpo=1
bp.q=0, when q<0or q>2p

dn,i=(1/2) (i—=n), for 1=0,1,2,...,2n.

As stated above, these parameters can be shown as
a look-up table. We submit TABLE I for this case,
It must be noted that the medium range of TABLE
I is the same as what we have constructed in |3 in
spite of their different structures.

As another useful example, we deal with the
Fourier transform of the n-th order Raised-Cosine
Pulse, which has not been reported in any litera-
ture so far upto the best of the authors’ knowl-
edge. In this case, we are given the correspond-
ing periodic function v(t) as follows :

v(t) =1+ cos-Zt =1+12{exp(—jwot) +exp( —jogt)}

3
(1n
Thus we have Ty=21, N=1, Co=1, C-,=C;=

1/2, and other Fourier coefficients are all zero,
Using again the relationships given in (14), the

parameters are written in the forms

th=2n
bn,i=(1/2) ba-1i-2+ (1/2) ba-y;
with assumptions

boo=1
bpq=0, when q<0 or q>2p
dni=i—-n, for i=0,1,2,...,2n.

As a result of almost the same process performed
in the preceding example, we have TABLEI.

Both examples discussed above are considered
as the extreme cases in a sense that the limit of
subscripts N is commonly equal to 1. As another
point of view, we can also present look-up tables
according to change of N. We shall investigate
the case of N=3 in order to confirm this fact and
to expect the cases of higher N. First of all, the
periodic function v(t) should have an accurate
Fourier series truncated at the value N=3 so that
the function may satisfy the condition (12). Thus
we have

3

vit) = Z,{ C.exp(—jragt) (18)

which directly shows us the necessary factors for
the Frame Formula (14) in the following manner,

th==6n
bai == Cs ba-1,i-§+C2 ba~1,i-5+C; ba-1,i-4
+C0 bn‘1.1-3+c—1 bn—l.|—2+c'2 bn—l,i—-1+c—3 bn—l,i

with assumptions

{bo.oEl
bp.q=0, when g<0 or q>6p

dn,i=% (i-3n), fori=0,1,2,...,6n
0

Based on these equations, we can build up the
look-up table for N=3 as shown in TABLEI,
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All the tables presented so far can be easily ex-
tended to any order by the simple arithmetics
given in the lower part of each table. We have
also offered the Fourier transform pair based on
the Frame Formula in the first part of each table
so that the look-up table can be self-contained
and referenced quickly. The sketches sit on the
upper right sides of TABLE I and Il show the
variation of pulse shape according to their order
n, in time-domain. In both cases, we see that the
pulse-width will be narrower and narrower as the
order n increases.

Now, it must be noted that we can fabricate
the look-up table for any other pulse in a similar
manner expressed in this section, only if the cor-
responding periodic function is expressed, exactly
or approximately, in a truncated Fourier series
shown in (9). In that case, all the parameters
needed to obtain the Fourier transform of the
problem function (1) of any order can be located
on the corresponding row of the table, Substitut-
ing the parameters at the appropriate positions in
the Frame Formula, adequate result must be eas-
iy derived.

For example, given the 4-th order nature of the
Raised-Cosine Pulse, all the necessary parameters
can be located on the 4-th row of the medium
range in TABLE I, resulting in

Py(f) =24 {sinc (2rf—4) +8 sinc (2rf—3)
+ 28 sinc (27f—2)
~+56 sinc (27f—1)+70 sinc (2rf)
+56 sinc (27f+1)
428 sinc (2+f+2)+8 sinc (27f + 3)

+sinc (27f+4)} (19)
V. CONCLUDING REMARKS

In this paper we generalized the method which
had been presented in our recent paper [3]. We
wanted to describe an easy and compact method
for deriving the Fourier transforms of pulse
signals throughout the papers. Consequently, the
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Fourier transforms of all pulses that satisfies the
condition (12) could be easily obtained through
the substituting processes using the correspond-
ing look-up tables and the Frame Formulas, no
matter what orders of them would be given.
Although the look-up tables for many other use-
ful pulses were not offered here, we had already
prepared them for references. The Cosine-Pulse
and the Raised-Cosine Pulse shown in the last
section are the typical cases of them. As stated
above, it must be noted that the width of pulse
measured at the FWHM(full width half maxi-
mum) has an apparent tendency to be narrower
as the order of the pulse increases. We expect
this tendency will play an importent role in analy-
sis of the characteristics of ultra short pulse
transmission. This is a subject of our future
work.

On the other hand, some numerical methods for
deriving the Fourier transforms of higher order
pulses can be presented using conventional
algorithms such as Cooley-Tukey[7]. Moreover,
our look-up tables will be used to calculate the
function values for each sampling instants just by
referencing the memory which contains the con-
tents of the look-up tables. It is expected that
this method can reduce the transformation time
for useful higher order pulse signals. This is
another object of our future works,
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TABLE I Look-up Table for the Fourier Transforms of the n-th Ordeor Cosine Pulses

pa(t) =A[cos “g‘ ]n Il [_zt;]
¢ Pa(t)=2Ar}, My+Bo, sinc [2rf+ % Du]
where bni=Mu-Baiand dni= (1/2)Dni
n | Mg B D
011 1 0
111/2 101 -1 01
2 11/2 10201 -2-101 2
311/28 1030301 -3-2-1 0123
4 |1/2 104060401 -4-3-2-1 01224
51(1/2° 1050100100501 -5-4-3-2-1012 345
611/26/ 1 0601502001506 01 -6-5-4-3-2-1 0123456
Q [o] lo] e}
o] [e] o] O
Q jed [e] [e]
Equations Boo =1 Dyo=0
for Bpg =0, if q<00r g>2p Dpi=i—n
extension Bni =Bp-1i-2+Bn-1. forn=1,23,...
of the forn=1,2,3,... 1=0,1.2,....2n
TABLE 1=0,1,2,...,2n

TABLE I Look-up Table for the Fourier Transforms of the n-th Order Raised-Cosine Pulses

— t In t i
pnlt) -A[H—cos . ] I [ % ] .
& Palt)=2A1Y" My-Bu, sinc [21f+dm] "2
=0 P
where bn; = M Bn; — ) T
n | Mp Bn.i Dn,i
0] 1 1 0
1(1/2 1 2 1 -1 01
2 |1/22 1 4 6 4 1 2-101 2
3 1/2 1 615 2015 6 1 -3-2-10123
4 |1/24 1 82856 70 56 28 8 1 4-3-2-101 234
511/25/1 10 45 w210 2210 u 4510 1| -5-4-3-2-1 012345
! [ f
| 120 252 120
!
e} [¢] (o] [e)
[o) [+) Q [s)
o o o] (o]

335

www.dbpia.co.kr



HEE S S AH 35 '93-3 Vol.18 No.3

Equations Boo =1 doo=1

for Bpg =0, ifg<0o0r g>2p dni=i—n

extension Bni =Bn-1,i-2+2Bn-1,i-1+Bn-1.i forn=1,2,3....

of the forn=1,2,3,... i=0,1,2,..., 2n
TABLE Il 1=0,1,2,.... 2n i

[

TABLE 1 Look-up Table for the Fourier Transforms of Pulses with N==3

(1) = A{L Crexplirant) [ TT [ ] Putt) =2f, by, sine [2cf +20.]

ni bu,i dn.i
0 b =1 don=10
1 big by1 bz big byg bis bis dyo dir dyz diz dig dys dis
2 bao - -+ - bgs bog ber - - - - bape doo dzo dpp dg -+ - - - dan d2i2
3| byprc-o-e bas bgg bz 1o - - - b3.18 ‘ dypdydapdsg-roero e ds17 dsus
o o o
o o o
o o o
E | boo =1 T
Q | bpqg =0, when q<0or p>6p I dye=0
A bni=Csbn-1i-6+Cobn-1i-5
T +Cibn-1i-4+Copbn-1i-3 dni=2t(i—3n) /Ty
1 +C-1ba-1i-2+C-2ba-1i-1 for n=1,2,3,...
O +C-3ba-1i 1=0,1.2,....6n
N for n=1,2,3,...
SA 1==0,1,2,...,6n
N
APPENDIX A hl(t)tk(thhu(t):vf_\ C, holt—rTy)

PROOF OF PROPOSITION 1

First, we see that the proof involved in the
function H,(f) for n=1, 2, 3,...1s trivial by induc-
tion using the relations (2) and (6). Hence we
only concerned with the proof on hy(t) for all n.
This can be also proved by the principle of math-
ematical induction in the following manner,

Basis step : When n=1, we obtain the following
relationship using (6) with the initial
funcition (3) :
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T

- A ¢ r ot
=& ¥ Cosinc[ o (AD

; r]
which indicates that statement /(1) is true.
Induction step : Suppose that statement P(m) is
true for some integer m=1, then
we have

5 f_lrs] (A2)

After one additional step applying (3),we obtain
the following expression for the (m+1)-st order :
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Bt (t) =K (D) *ha(t) = Y- C, halt=1T))

;;_%r(m-ﬂ){ [Z @] smc[T TF Tmtl ~ T2 é‘irs]}

‘{'T“[w ™ sinc [ - -k Zr]} (A3)

In this expression, the definition (7) has been
used again in a recursive manner. The result
proves that statement P(m++1) is also true.
Therfore, the statement P(n) is true for all n=1,
2,3,...by the principle of mathematical induc-
tion.

APPENDIX B
PROOF OF PROPOSITION 2
Basis step: When n=1, we have following

equations from the Represetative Formula given
in (9) and the definition (7)

N
P, (f) =2AT,,;N C,, sinc [zrf—f-%— r1] (B1)

After making the change of variable r;=i—N
and substituting, we can write

t
Pl(f) =2At Z Nbl'i sinc (2’l’f+d1,i) (BZ)
r=-

where t;=2N
by =Ci- N“‘Z Cn-x boi-taN-x)

with the same assumptions in PROPOSITION 2

dii=4& (i-N), fori=0,1,2,...,2N

which indicates that satement Q(1) is true,

Induction step : 1f we assume that statement @
(k) is true for some integer k>1, then we obtain
the following relationships :

Pu) =2Adl 3 €) sinc [z +5E ¥ r]

tk
=2Ar Z=0 by sinc (27f 4+ dk.i) (B3)

where

tk =2kN
N
bkx=;0 Cn-x bk-1i-eN-x)

with the same assumptions in PROPOSITION 2
dey =45 (i—kN), for i=0,1,2,...,2kN

The Representative Formula (9) for the (k=+1)-st
order can be written as

. _&_ k+1
sinc [2tf -+ Sle Is]
(B4)

Pri(D) =2At[ zN_:N @]kﬂ

After applying the recursive property of the defi-
nition (7) and substituting the shifted version of
(B3), equation (B4) can be expressed in the form

Py (f) =2A1 Z Crk+1|: Z ©- ]

Tk+i=

sinc {21[f+ rk+1]+ SE:: rs

N r
=L, G BT
=2A1 z Crkﬂ{z bk.i sinc [21f+ ’ZI‘ rk+1+dk1]}
(B5)

where ti,bri, and di; have the same values are
that given in (B3). Exchanging the order of the
summations in (B5) and substituting the values
of tx and dx;, we have

Py+1(f)
%N N ) ZT .
=2At} by, [M‘é C, sinc {21:f T (i ~kN-+rin )}]
(B6)
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In the next stage, we have to expand the
summations in the above expression about the
somewhat complex and large number of terms,
we can combine them according to their delay
factors of sine(-) funcitions, and the resulting
equation becomes

delay factors of sine(-) funcitions, and the
resulting equation becomes

tk+1

P41 (D) =2Ar;) bty sinc (2¢f -+ dy+1;) (B7)

where

tet1 =2(k+1)N
2N
bk+1_1 == Z'” CN—X bk.i*(Zvi)
with the same assumptions in PROPOSITION 2

dicr1s =Fi~ (k+ DN}, for i=0,1,2,...,2(k+DN

These notify that statement Q(k+1) is also true.
Hence, the statement Q(n) is true for alln=1, 2,
3,... by the principle of mathematical induction.

B 2 #(Yong-Sun Oh) IE®E
19571 99 2248
1983 29 - AM st Fobefst
A 2y st (F A
198541 2¢ : A&t ikl A
2p 3} I F-3HA AL
1992'3 29 : AM st tigd A
zpg ek ( g ghubal)
1984 39 ~ 1986\ 7¢ : AAdWrE A B4l(F) A
19881 3¢~ & 2doigtal ol Fohs AREFEHH =
iy
T QU ROl AFA| LY, M2 T
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