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ABSTRACT

In this paper, statistical properties of the spatiotemporal center weighted median(CWM) filter for
image sequences are investigated. It is statistically shown that the CWM filter preserves image
structures under motion at the expense of noise suppression. To improve the CWM filter, a filter
which can be effectively used in image sequence processing, the adaptive dirvectional center weighted
median fiiter(ADCWM), is proposed. This filter utilizes a multistage filtering structure based on
adaptive symmetric order statistic(ASOS) operators which produce a pair of order statistics sym-
metric about the median, The ASOS’s are selected by using adaptive parameters adjusted by local
image statistics. It is shown experimentally that the proposed filter can preserve image structures
while attenuating noise without the use of motion estimation,
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1. INTRODUCTION

The processing of image sequences involving
motion has become increasingly important in a
variety of areas including video signal coding,
medical imaging, and robot vision[1]-[3]. Re-
cently high definition television(HDTV) systems
which make use of image sequence processing
have received a great deal of attention, In many
image sequence processing applications, the im-
age sequences are often corrupted by noise. For
example, noise may arise in the initial video sig-
nal generation, subsequent handling operations,
or in the storage or transmission of the video
signals, This noise degrades both the image qual-
ity and the performance of subsequent image
coding operations. Thus, noise removal in image
sequences in one of most important tasks in im-
age sequence processing applications. Although
many successful image restoration and enhance-
ment techniques have been developed for two-
dimensional(2-D) still images, a relative few techni-
ques with limited success have been proposed for
3-D time-varying image sequences.

Some noise reduction techniques for image se-
quences use 3-D linear filters based on the as-
sumption of spatiotemporal stationarity(4], [5].
Such linear filters, although reducing noise,
smear edges and distort moving objects where
the assumption of the stationarity is not justified.
Since human visual perception is heavily based
on edge information, the performance of these
filters is unacceptable.

Various motion-compensated temporal filtering
techniques have been proposed to overcome this
problem([6]-(11]. Some of these techniques utilize
a combined segmentation and motion detection al-
gorithm to segment the images into moving and
non-moving areas, applying a temporal filter only
in the non-moving regions. These methods can
preserve image structures under motion, but can-
not reduce noise in moving regions. Although
noise in moving areas is perceptually masked to

some extent by the motion, it will be visible in
slowly moving areas, Other techniques estimate
the motion path of a pixel and the temporal
filtering is performed over this trajectory so that
the moving objects are not distorted. However,
the amount of noise suppression which can be
attained with the 1-D temporal flter is quite lim-
ited. It is possible to incredse noise suppression
by utilizing larger temporal windows. However,
this leads to a computationally expensive motion
estimation algorithm since a large number of
possible motion trajectories need to be processed.

Spatial nonlinear filters such as median-type,
order statistic, and morphological filters[12]-[20]
have been recognized as useful alternatives to lin-
ear filtering for attenuating noise as well as
preserving image details of still images. When ap-
plied to video processing, however, these spatial
filters ignore the temporal correlations which
inherently exist in image sequences, and thus do
not perform as well as spatiotemporal fiiters
which can utilize both spatial and temporal infor-
mation,

The center weighted median(CWM) filter is an
extension of the median filter which gives weight
to the center sample in the window[21]-[22].
This fileter allows a degree of control of smoo-
thing behavior of the filter via the central wei-
ght, and thus is a promising image enhancement
technique. Recently, a spatiotemporal version of
the CWM filter has been shown to be useful for
the restoration of image sequences[21]. In this
paper, statistical properties of the spatiotemporal
CWM filter are investigated for image sequence
processing. It is shown that the spatiotemporal
CWM filter can preserve image structures under
motion at the expense of noise suppression. To
improve the performance of the CWM filter, an
adaptive directional CWM(ADCWM) filter ha-
ving spatiotemporally varying central weights is
proposed for image sequence processing. This fil-
ter utilizes a multistage filtering structure having
directional subwindows based on adaptive sym-
metric order statistic(ASOS) operators which
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produce a patr of order statistics symmetric about
the median. The ASOS’s are selected from each
spatiotemporal window by using adaptive parame-
ters adjusted by local image statistics. We will
show that the ADCWM filter can preserve image
structures while attenuating noise without the
use of motion estimation.

The organization of this paper is as follows, In
Section II, the CWM filter is reviewed and some
of its statistical properties are analyzed. In Sec-
tion 111, the ADCWM filter is defined. Finally, in
Section 1V, CWM and ADCWM filters are ap-
plied to enhance noisy image sequences.

II. STATISTICAL PROPERTIES OF SPATIO
TEMPORAL CWM FILTERS

In this section, we first review the CWM filter
and analyze its statistical properties.

Let {X(.,.,.)} and {¥Y(,.,.)} be the input and
output, respectively, of a filter. Let W={X
(n1—ky, np—ko, n3—k3) | =N <k, ky, ks < N} de-
note the set of samples inside a (2N +1) x (2N +
1) x (2N +1) cubic window centered at (#,, #,,
n3), with(m, n2) and (u3), respectively, repre-
senting the spatidl coodinates and the time
coodinate for a spatiotemporal signal. For sim-
plicity, we will use the vector notation(n) = (#,,
ng, n3). A CWM filter[21], [22] with window size
2L+1=(2N+1)3 and central weight 2K+1 is
denoted by CWM (2L +1,2K+1), and is defined
as follows :

Definition 1 : The output Y(n) of the
CWM(2L.+1,2K +1) filter is given by

Y(n) =median{X (L+1-K: W), XL +1+K: W), X(n)} (1)

where X(r.W) is the r* largest sample(order
statistic) among 2L +1 samples in the window
W, and X(n) is the central value of W.

Fig. 1 illustrates the two-stage structure of the
CWM filter. In the first stage, a pair of SOS’s,
X(L+1—-K:;W) and X(L+1+K; W), which are
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Fig 1. Structure of the CWM filter.

symmetric about the median X(L+1;W), are
selected. The output of the two-stage CWM filter
is equal to the three-point median of the SOS’s
(symmetric order statistics) and the central sa-
mple of the window. The process of generating
the SOS’s may be referred to as the SOS oper-
ator. If the central sample of the window is be-
tween the outputs of the SOS operator, the cen-
tral sample becomes the output. If the central
sample is outside this region, the output is equal
to the boundary which is closer to the central
sample in value. By varying the central weight of
this filter, various filter responses can be obta-
ined. For example, when K=0, the CWM filter
becomes the median filter, and when K=1, it
becomes an identity filter (no filtering).

The motion preservation properties can be stat-
istically examined by considering moving step
edges which are corrupted by additive white
noise.

The input sequence representing a noisy step
edge which moves d pixels in #; direction at nz=j
+1 is expressed by

V(n), nysr
X(n) =X (n, ny, n3) = 2
h+V(n), np2r+1
where

0, n3<j

y=

|

, nz2j+1

where 4 is a constant repesenting edge height, V-
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Fig 2. 1-D profile of the shifted step edge model.

(n) is i.i.d. noise with distribution Fi(x). Let the
distribution function of A4V (n) be Fz(x). Then,
obviously, Fz(x)=F(x—h). Fig. 2 illustrates the
1-D profile of the shifted step edge in (2).

The filter behavior near the noisy edge at nz=j
can be examined by using the expected value of
the output, E[Y(n)], and the root mean squared
error rmse(n), which is defined by rmse(n)=
v E[Y(n)—S(n)]? with S(n) as the noisefree in-
put which is equal to 0 if #, < 0, and is equal to &
if #p = 1. In order to compute these quantities, we
derive the distribution function Fym(y) of the
CWM filtered output Y(n) which is taken from
mn samples with distribution Fi(x) and 2L+
1—m, samples with distribution F2(x) among 2L
+1 samples within the window centered at n,
Note that the number of samples having Fi(x) in
the window, mn,, depends on the location of the
window,

Property 1, [22]:For the moving noisy step
edge input in (2), the output distribution function
Fya(y) of the CWM(2L+1, 2K +1) filter is gi-
ven by

2L min(k, m) 21—
Fualy) =2 (7) G=”

k=k—1 {=max(0, k— (2L—m))
Fi(y) (1=Fi(y))™!

F§ () (1—Fy(y)) 2%+ Fn(y) (3)

2L min(k, m) _
+. (7) G=”
k =k, {=max(0, k—(2L—m))

FE ' (y) (1—Foly) )2 m~* (1= Fuly)),

where ky=L+1-K, ky=L+ 11K,

Fily), n2<0
Fn(y):
Fly), m=21,
and
Mn "’1, nZSO
m =

mn, nz21

Using (3), along with the assumption that F,
(x) is N(0, 1), we computed E[Y(n)] and rmse
(n) at n3=j(the ;% image frame) through numeri-
cal integration. Fig. 3 shows plots of E[Y(n)] and
rmse(n), respectively, for CWM filters with the
3x3x3 cubic window, when the step edge (k=4)
degraded by a Gaussian N(0, 1) noise is shifted
horizontally by d=1 and 2 at n3=j;+1. As
expected, the edge preservation characteristics
of CWM filters improve as the central weight
increases, It is seen that the CWM filter 2K+ 1
> 15 effects a greater degree of edge preservati-
on under motion than median(2K+1=1) filte-
ring. Similar results can be obtained for vertically
and diagonally shifted edges.

In Fig. 3(b), the results associated with rmse
(n) for mp< —1, where 3x3x3 window of the
CWM filter contains only i.i.d Gaussian . inputs
with N(0, 1), illustrates the noise suppression
characteristics of the CWM filter in non-moving
regions. It is seen that the CWM filter provides a
wide range of smoothing performance depending
on the selection of the central weight. The noise
suppression of the CWM filter decreases with in-
creasing the central weight.

In summary, statistical analysis of the CWM
filter indicates that it can preserve edges under
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Fig 3. Results of median and CWM filters, with the
3x3x3 cubic window, when the noisy edge is
shifted in np direction by d=1 and 2: (a) The
output expected values,

motion at the expense of noise suppression, and
thus exhibits a clear tradeoff between noise sup-
pression and motion preservation.

. ADCWM FILTERS

The principal advantage of nonadptive filters is
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Fig 3. (Cont) (b) The root mean square errors.

that they require neither a priori global statistical
information such as noise variance nor the com-
putation of local statistics such as sample vari-
ance. Therefore, the nonadaptive filters have
lower computational complexity and should be
easier to implement than adaptive filters, How-
ever, since these filters have fixed parameters,
they may have varying levels of performance
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over different portions and frames of the image
sequence. For example, if an object corrupted by
noise moves abruptly, then it is expected that the
CWM filter with a large central weight performs
well around the moving object, but is ineffective
in suppressing noise in slowly varying or no-
nmoving regions. This property leads to the de-
sign of adaptive filters which can take into ac-
count the spatiotemporal characteristics of the
image sequence. It will be shown that the pro-
posed adaptive filter can offer a desirable combi-
nation of motion preservation and noise sup-
pression properties by using a spatiotemporally
varying central weight adjusted by the local sig-
nal characteristics in the spatiotemporal neighbo-
rhood of each pixel.

An adaptive version of the CWM filter, the
adaptive CWM (ACWM) filter, has been pro-
posed in{22]. The output Y(n) of an ACWM fil-
ter with a spatiotemporally varying central wei-
ght 2K, +1 can be expressed by

Y(n) = median{X(L+1-Ko: W), X(L+1+ K. W), X(n)} (4)
where

2
ML=T)(1——af— ), if 62 > g2
] ”n
Ko= w " (5)

0, 0.w,,

where T is an integer, 0<T< /L, and [x]
represents rounding of x to the nearest integer,
6%, denotes the sample variance of data inside
the window, and ¢% represents the variance of
the additive white noise which is assumed to be
known,

The parameter T is used to preclude any value
that would cause the ACWM filter to become an
identity filter. Notice that the ACWM filter
varies between the median filter and the CWM
filter with 2K+1=2(L—7) + 1 depending on the
estimated sample variance, Therefore, the ACWM
filter performs like the CWM filter with a large
central weight in regions with high variance, and

thus may be somewhat ineffective in removing
noise in both regions around edges and areas
under motion,

The noise suppression characteristic of the
ACWM filter in such regions can be improved by
incorporating spatiotemporal directional subwi-
ndows covering points spatially shifted from
frame to frame by the motion. The proposed fil-
ter, the adaptive directional center weighted me-
dian(ADCWM) filter, utilizes adaptive symmetric
order statistic(ASOS) operators which produce a
pair of order statistics symmetric about the me-
dian from each subwindow, The ASOS’s are
selected by using adaptive parameters adjusted
by local image statistics. The ADCWM filter is
defined as follows : Let W, 1< M, denote the di-
rectional subwindows of W, and 6%, represent
the sample variance of W, where M represents
the number of directional windows. Let the win-
dow size of the directional subwindow be repre-
sented by 2L;+ 1. Define the two outputs of the
ASQOS operator for subwindow W, as

Yl-,(n) = X(Ll + 1 _Kni :Wi)’
Y (n)=X(L+1-K,;: W), (6)

where

2
[L(l=—=) |, if 62 > o2
Ky= ow " (7)

0, o.W.,

At the first stage of the ADCWM filter, a pair of
ASOS’s Y;,(n) and Y,,(n), are selected from each
subwindow W,, 1 <i< M, by using the adaptive
parameter Kn . The output of the ADCWM filter
is then given by

Y{(n) = median{¥; (n), Y, (n), X{n) [ 1<i< M} (8)

Fig. 4 shows the structure of the ADCWM filter.
Using the ADCWM filter, a structure oriented in
one direction can be preserved by a filter using a
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subwindow associated with that specific direc-

Yy ()
X(-)ew,] tion, By emplcving a sufficient number of subwi-
—> ASOS

Yo, () ndows, motion preservation can be achieved.
(8]

This filter can utilize 1-D temporal subwindows

Yy (0) representing the trajectory in time of a single

[X(-) e W,) point to preserve structures under motion. How-
e

ASOS

Y, () ever, this may result in a reduction of noise sup-

5 pression due to the small number of samples that
Y(n) the ASOS operators act upon, It is possible to in-

MEDIAN

crease the noise suppression by using directional

Yyu (0} spatiotemporal subwindows without the loss of

dewd ASOS feature preservation properties. As an example,
Yuu (0) Fig. 5 shows the spatiotemporal directional
subwindows(with M=9 and 2L;+1=9) of a
X(n) 3x3x3 cubic window. It is seen that the direc-

tional windows consist of the samples lying on lin-

) ear planes including the central sample. In this
Fig 4. Structure of the ADCWM filter. . . . .
paper, we will utilize these subwindows for imple-

menting the ADCWM filters.
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Fig 5. Subwindows of 3x3x3 Cubic Window.
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V. EXPERIMENTAL RESULTS

We evaluate the performance of the proposed
filter using both real and synthetic image seque-
nces, and compare the results both visually and
quantitatively with those of the CWM and me-
dian filters as well as the motion-compensated
temporal median(MCTM) filter[7].

Each frame of both the synthetic and real im-
age sequences consists of 128x128 pixels with
eight bits of quantization. In order to quantitat-
ively compare the filter performance, the norma-
lized mean square errors(NMSE’s) between the
original filtered images are evaluated. The NMSE
is given by

L) TN [, na, n3) =Sl my, m3) ]2

NMSE = (9)
MSE = e L (X (i m5) =S, 7, 1))

where S{ni, sz, n3), X(m, ny, n3), and Y(ny, us,
n3) are the orignal, noise corruptéd, and filtered
images, respectively, and M =128,

To quantify the error in human visual error cri-
teria, the filter performance is evaluated visually
through the use of the difference images. The
pixel values of the difference images represent
the absolute value of the difference between the
original (noise-free) image frame and the pro-
cessed image frame, The difference image provi-
des information about both the motion/structure
preservation and noise suppression characteristics
of a filter.

A. Experiments With Synthetic Image Sequences

The aforementioned filters were applied to the
synthetic images in order to examine their mo-
tion/structure preservation and noise suppression
characteristics, Each frame of these images cons-
ists of a square foreground image with four major
directional patterns which is placed on top of a
fixed spatial frequency sinusoidal background im-
age. The background sinusoidal image is expre-

ssed in polar coordinates as

2 48] (10)
P

6(r) = (A/2)[1 4 cos(
where r is the radius from the center and 4, p,
and ¢ represent the amplitude, spatial period, and
phase of the sinusoid, respectively.

By varying the spatial shift of the square test
pattern and the parameters of the sinusoid, sev-
eral different types of motion can be simulated.

Fig 6. (a) An original frame of the synthetic image se-
quence, (b) the difference from the subsequent
frame, and (c) noisy synthetic image(Gaussian
noise o2 =64).
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(b)

(c)

Fig 7. Filtered images and their differences from the
original frame : (a) Median(CWM (27, 1)), (b)
MCTM, {(c) CWM(27, 7)

In order to simulate complex motions in our
experiments, we generated subsequent image fra-
mes by uniformly varying the spatial shift of the
square pattern by two pixels per frame and the
phase of the sinusoid by 30 degrees per frame
while fixing the period (p=1) and the amplitude
(A=255). Fig. 6 (a) and (b) show a frame of the
synthetic image sequece and its difference from
the next subsequent frame, Three sets of noisy
synthetic images were generated by adding zero
mean i.i.d. Gaussian noise of variance 64, 100, and
400 and then were processed by the filters with a
3x3x3 cubic window. Fig. 6 (c) shows the noisy
image with the noise variance 64. Table 1 shows
the NMSE’s of the CWM, median (2K+1=1),

930

(d)

(e)

Fig 7. {d) CWM(27, 13), and (e) ADCWM.

MCTM, and ADCWM fiters. It is seen that the
ADCWM filter outperforms the median, CWM,
and MCTM filters. Fig. 7 shows some examples
of the filtered images and the difference images
from the original frame associated with variance
64. 1t is seen that the feature/motion preser-
vation of the CWM -filter improves with increas-
ing the central weight. Note particularly that the
ADCWM filter tracks the rapidly moving portions
of the image while still suppressing noise.

~

Table 1. NMSE's of the CWM, median, MCTM, and

ADCWM filters,
NMSE
Filter Type =64 6> =100 6% =225
Median 106.55 68.14 30.27
MCTM 111.70 7142 32.09 |
CWM(27, 7) 52.11 33.50 15.02
CWM(27, 13) 11.30 7.52 375 |
CWM(27, 19) 1.94 1.53 112
CWM(27, 21) 1.01 111 0.95
ADCWM 0.77 076 | 071
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NMSE
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Fig 8. a) Original image frame (#3=26), b) noisy im-
age {(Gaussian noise ¢° = 100) and the difference
between the original and noisy image.

49
A CWM (2K+1 = 1)

- X CWM (2K+1 = 7)
v CWM (2K+1 = 13)
© MCTM

N + ADCWM

1 4 7 10 13 16 19 22 25 28 3
FRAME NUMBER

Fig 9. NMSE’s for each of 34 frames.

www.dbpia.co.kr

931



EEE S8 L 937 Vol.18 No.7

(b)

Fig 10. Filtered images and difference from the original
frame : (a) Median (CWM(27, 1}, (b} MCTM,
(c) CWMI(27, 7).

B. Experiments With Actual Video Sequences

These filters were also apphed to actual video
sequences, The test sequence consists of a 34
frame segment of a televised video sequence,
These frames were degraded by adding zero mean
Li.d. Gaussian noise of variance 100, and then
were applied to the aforementioned filters. Fig. 8
shows the original image frame (u;=#6), noisy
image, and the difference between the original
frame and the noisy image. Fig. 9 shows the
NMSE’s of the various filters for each of 34

frames in the image sequence. The mimmal

932

Fig 10. (Cont!, (d) CWM(27, 13), and (e} ADCWM,

NMSE of the CWM filters 1s smaller than the
NMSE of the median filter (2K+1==1). The
ADCWM filter yields the smallest NMSE, while
the motion-compensated temporal median filter
gives the largest NMSE,

Fig. 10 shows some examples of the filtered
images and the difference between the original
mnage and the filtered images. As expected, the
median filter blurred the image, but performed
well 11 suppressing noise in non-moving regions.
It is seen that the CWM filter with a proper cen-
tral weight (2K +1-=7) preserved image struc
ture uader motion at the expense of noise sup-
presston, The MCTM filter introduced artifacts
i the area of eyes and noise where motion could
not be tracked, The motion preserving chara-
cteristics of the ADCWM filter can be clearly
seen.

The results in this section indicate that the
ADCWM filter is an effective motion preserving

filter that can suppress noise in lmage sequences,
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CONCLUSION

In this paper, statistical properties of spati-
otemporal CWM filters for image sequences were
analyzed. In order to improve the CWM filter,
the ADCWM filter, which can be effectively used
in image sequence processing, was proposed. It
was shown that the proposed filter can preserve
image structures while attenuating noise without
the use of motion estimation,

B =22 Heac NPT 0] s ATEUS
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