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ABSTRACT

In this paper, new binary cyclic codes(hereafter, refered to as GMW codes) which are generated
by using GMW sequence, g(¢) =t/{[##}(a’)]"}, and its cyclic shifts are introduced. Code length of
GMW codes is 2¢—1, where K is composite integer, e-J. Dimension of the GMW codes is K- (K/J)*”},
where w is a Hamming weight of ». Several properties of GMW codes such as designed distance,
minimum distance, and weights of codewords are obtained in terms of parameters of GMW
sequences. And expansion of GMW sequences in terms of m-sequence and its decimation sequences
are introduced and characteristic polynomials of GMW sequences are also derived,
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I. INTRODUCTION

Recently, it is known that cyclic codes can be

“EE AR BT T4 generated by using pseudorandom sequences, s-
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quences,
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We present new binary cyclic codes, GMW co-
des, which are generated by using GMW seque-
nCe[s]’

g(t) =1tr] {[trj"(a')]’}. (1)
and its cyclic shifts
git+7), =t {[trj"(a""’)}’}, 1<r<2K~2, (2)

where K is composite integer, ¢-J. Code length of
GMW codes is 25—1 and dimension of the GMW
codes is K-(K//)*"!, where w is the Hamming
weight of » in the binary expression, Several pro-
perties of GMW codes such as designed distance,
minimum distance, and Hamming weights of co-
dewords are obtained in terms of parameters of
GMW sequences,

Expansion of GMW sequences in terms of m-se-
quence and its decimation sequences are intro-
duced and characteristic polynomials of GMW
sequences are also introduced in Section II. The
definitions of GMW codes and nonnull spectrum
of GMW codes are given in Section III, The di-
mension of GMW codes is also defined here. In
Section IV, the designed distance, minimum dis-
tance, and Hamming weight of GMW codes are
derived.

I. EXPANSIONS OF GMW SEQUENCES

Let K be a composite integer, let J divide K and
set ¢= K/J. Under these circumstances, the se-
quence

gty =tr{{[tr¥(a) ], 0<t < 282, (3)
is a binary GMW sequence of period N=2FK—1,

where for any pair of integers m, »n, m/n, tr%(-)
is the trace function[3] defined by

tra(x) =Y 2" (4)

Let « be a primitive element of GF(25). Let 7,
1<r<¥Y—1, be relatively prime to 2 —1 and let
the binary representation of » have Hamming we-
ight w. Without loss of generality, » may be expre-
ssed in the form

r=2h+2h+ 224 42k, (5)

where 0=1[y{{;<{l2{ - {lw-1{J. The linear span L
of the GMW sequence g(¢) in (3) is then given
by[5]:

K
l ._.K_ (__ )w—l.

Using(5), the GMW sequences can be represe-
nted by summation of m-sequence and its deci-
mation sequences as follows :

THEOREM 1:The GMW sequence g(¢) de-
fined in (3) has the expansion

e-1 e~1

5 @O =F T - T thar), (D

i=0 §=0 1=

where « is a primitive element of GF(2¥) and
A= Alh, iy du) S1HAT 4 M 24 P ()

PROOF : Using the binary representation of »
in (5), the GMW sequence can be rewritten as

g(t) =tr{ {{trF(a) ]}

=tr) {[tr;\'(at)](2’0+2’1+212+ o +2he-1)
w—1 .
=tr} { I [tri(at) 1P }
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g.ed.

The powers of « appearing on the righthand
side of (7) can be shown to be all distinct thus
leading to :

COROLLARY 1:The characteristic polynomial
Q(2) of the sequence g(#) in (3) has the expre-
ssion

0 =I1 T - I1 M.-+(2), (9)

=0 i=0 i..=0

where « is a primitive element of GF(2X) and
M,-+(z) is the minimal polynomial of a~ " over GF

(2).
II. DEFINITION OF GMW CODES

Using the definition of GMW sequences in (3)
and properties of GMW sequences, GMW codes
can be defined as follows :

DEFINITION 1 : We define the GMW code G to-
be the linear cyclic code generated by the GMW
sequence ¢(t) and its cyclic shifts, i.e.,

G=<gt), gt+ 1), glt+2),---,g(t+25-2) >, (10)

where addition of arguments is carried out mod
2K—1 and the notation { ) means the all possible
linear combinations of all elements in { ).
]
That is, any codeword ¢(#) in the GMW code
defined in (10) can be expressed as

1130

2K

c(t)=% cglt+7) (1)
=0

where ¢, is in {0, 1},

The null spectrum of a cyclic code is a useful

tool in estimating the minimum distance of the
code and may be defined as follows :

Let C be any cyclic code of length N and a(¢)
be any codeword in C. Then one may define the
Fourier transform {a(1) | 0 <A< N—1} of a(t) as
follows :

N-1
aQ)y =Y a(t)-p*", (12)
t=0
where f be an element of order N in some exten-
sion field of GF(2).

The null spectrum Q of the code C is then de-
fined in terms of the Fourier transform coeffici-
ent &), a(-) € C as follows :

Q=1lar)=0Vat)eCl (13)

The nonnull spectrum Q¢ of the code C is then
simply the complement of (, i.e.,

Q=A]0<A<N-1,1& Q. (14)

For any odd integer N, the integers mod N may
be divided into equivalence classes simply by de-
fining two elements to be equivalent if their ratio
is a power of 2, i.e.,

x=yiff x=2 -y(mod N). (15)

These equivalence classes are called cyclotomic
cosets and we use C; to denote the cyclotomic
coset that contains the integer {. The cyclotomic
coset, C 4 in GF(2%) is given by :

C s={la;| ai=—A4-2 mod(28—1), Vil (16)

It is wellknown that V7, «%* has the same minimal
polynomial over GF(2), where « is the primitive
element of GF(2K),
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In terms of this notation, the null spectrum of
the GMW code G described above may after so-
me work be shown to be union of certain cyclomic
cosets :

THEOREM 2 : The nonnull spectrum ¢ of the
GMW code G generated by the GMW sequence g
(¢) in (3) is given by

Q= | C-4,0<i;<e—~1forl<j<w—1,(17)

Wind i,

where A= A(7y, i, - - ,iw-1)

=1+ 0¥ A bt L 4 e g5 before,

The dimension of a linear cyclic code is simply
the number of elements contained in the nonnull
spectrum of code. Therefore, the dimension of
GMW code in (3) can be easily given without
proof :

THEOREM 3:The dimension of the GMW
code generated by the GMW sequence g(¢) in (3)
equals K- (K/])*"L,

This is a simple consequence of the fact that
the linear span of the GMW sequence equals K-
(K/]yw1,

IV. PROPERTIES OF GMW CODES

By treating the GMW codes as a cyclic code,
one may talk about the designed distance[3] of the
code, viz, the largest number of consecutive ele-
ments in its null spectrum and this is the content
of THEOREM 4:

THEOREM 4 : The designed distance § of the
cyclic GMW code G defined in (10) is given by

8=2%~14 foin— Jfruw (18)

where [, and f,,. are the minimum and maxi-
mum elements in the nonnull spectrum ¢ of the
code, G.

PROQOF : The binary representation of any el-
ement of }¢ can be expressed as e X J matrix fo-

rm. Thus, we can assume that f,,. can be given
in the binary representation as

Joux= A (K QR VIR0 24 2K (19)

20 2| 22 23 21-2 i-]
ofo]o] 0 oo
2 0
0
Ze o | 0 0
4 S S—
2K-J 2K--v-l 2K-v 2K-l

Fig 1. Binary Representation of fm. in the Matrix
Form,

where v is the largest runlength of “1” in f,,,, and
clearly, it is located in the last most significant
location in the binary representation and all “1” of
r are located in the last row, which is described
in Fig.1.

Then,

K-]-1

1=

2044, (20)

where 4 means 1’s complement of 4. Clearly,

OIN=frpae 2 2K771, 4 (21)

Assume that

30 =f,~1-fsuchthat §)dand f, f,€ Q. (22)
We have to disprove the above statement as

given below ;
(1) Assume that some “1” bit of f, is &, J<i<
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K—v—1, We can choose f, by the columnwise
shift of 2 from £, in the matrix form. Then

L=f—2427) fe Qs L< ] (23)
and

F=f-1-f<f—1-f=2-277-1(2K"1  (24)

B2 B; 0 By
0
0
0
0 o] |o] 1] B
2K-J 2K-v 21-1 21 2K-l

Fig 2. Binary Representation of f, in the Matrix Form,
Form,

This means &' {8, which contradicts to & >é. In
order to satisfy &' »8, any bits in the binary rep-
resentation of £, in [2/, 2K7271] should be “0”.

(ii) Assume that some “1” bits of f, in the bi-
nary representation are in [2K7¢ 28717 je,

f,=B;+ B3+ By+ (2'+ Bi) (25)
as in Fig.2.

We can choose f, by using f,,, such that f € Q¢
and f, < f, as follows .

All “1” bits of f,,,, at the same locations as By, is mo-
ved to the first row at the same columms, which makes
the By - 2777V,

And the bit 2/ of f,,, is moved to 2/~/. There-

fore,

1132

[EBA @2 2R+ 4+ 2T B2 TN, (26)

The f, was deriven by the columnwise shifts of

some “1” bits of f,,,. Therefore, f,€ Q°, f,<f

and

=Ll fisf—1~f
=2 — (2714224 2K Y)
—A—21=B-27/ V4 B+ B3+ B,—1
=2k~ 4~ (2 /=B~ By) — (B -2/ V= B,) —1. (27)

In order to find the contradiction to assumption,
we have to compare d with §°.

=8 >IN~ fo) —f,~1—1)
K-j-1  _ )
=Y 244 28"+ 4+ (2""/~B;—Bs3)
i=0
+(By-27/7 V=B +1
— K=J-1 . .
=(A4+4 +3Y 2)-28"7v+(27/~B,—Bs)
i=0
+ (B2 V=B +1
=K v—1 K"t (2! /—B,—Bj)
+ (B2 V=B +1
=(2'V—By—B3) + (B1-27/“ V=B, )0 (28)
This means é>¢& and it contradicts to &' ).
From(i) and (ii), in order to satisfy &' >4, any
“17 bits in the binary repersentation of f, should
be in the first row, ie,[2°% 2/7!], which means
that we cannot find f,, f such that

fu=Si2d, (29)

because
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L= 12 (30)

and

52K vm152], (31)
g.ed

This leads easily to the following lower bound
on the minimum distance of the code :

COROLLARY 2: The minimum distance du, of
GMW code G defined in (10) satisfies

omin = 28 =1+ fris™ Fonax = 9. (32)

Interestingly, it turns out that the Hamming
weights of the codewords in G satisfies the con-
straint stated below :

THEOREM 5 : Every codeword in G defined in
(10) has Hamming weight %, which is a multiple
of 271 ie.,

dm‘n

el B

{ (T—5y)- 2 1|0 S < (Y

where T is (2—1)/{2—1) and dm» is given in
(32).

PROOF : Any codeword ¢(¢) in polynomial no-
tation of G can be represented by the linear co-
mbination of time shifted GMW sequences as
follows ;

(=1 glt+n), (34)

and /—th order full period autocorrelation P; of
GMW sequences g(t), can be given by

N-1

P= ZO ( —1)2‘1“ glt+ry)
t=

N

1

— (_1)2j=| trh iltr f (oY
t=0
N-1 .
— (....l)lrll“‘::xl l!r;‘(u”")]’;
(=0 ’ (35)

Let
t=T-i+7,0<i<21-2, 0 7<T—1.
Then

2-2 T-1 o . o it
! ZO ZO( 1) 1 {Zs= l[trj {a 51
iS0 j=

=Tf ?{jz(—l)"{ TR e, (37)
j=0 =0

Where of is a primitive element in GF(2), be-
cause the smallest value of m is a 2/ —1 such that
(a7)™=1, and (o)’ is also a primitive element in
GF(27) because ged(r, ¥ —1) =1.

Let

flad) = s‘él[trj"(af“s) T, (38)
Then, V7,

Flad) € GF(2), (39)

and f(a/) is independent of i, Therefore,

-1 22 .
P =Tzl Y (=17 6T i, (40)

=0 %o
-1, if f(2/) 0

2=2¢ _1ytrl i TN flad))= )
where 1.7 H(~1)" ¥-1, if f(a/) =0,

Let
So=# of f{a/) =0, for 0<j<T—1, (41)
Ry=# of f(o/) =0, for 0 j<N—1, (42)

If f(«/) =0, then f(o&/*7) =o"T- f(a/) =0, Thus,

R
0= -0, 43
Hence,
Pr=(2'-1)-Sg+ (T -Se){—-1)
22]'SQ~T
1133
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=2].—~R0 _ 2f-1
-1 2 —-1
2-Ry— (2K-1)
=—-2°7_—(1—— (44)

Using relationship between autocorrelation and
Hamming weight, wit(c(t)), of codeword c(¢) €
G,
wt(c(t)) = =P
2
T-(¥-1)—2-5+T
2

= (T—Sy)-¥L (45)

Clearly, wt(c(t)) = dmin = d and thus,

dmm
2/

Se<|T— 1. (46)

g.ed
V. AN EXAMPLE

As an example, consider the case K=6, » =3
when N=463, /=3, and T=9. Then the GMW se-
quence is given as
g(t) =tr{{[#4(af) 13, (47)
And the GMW sequence can be expanded as
g(t) =tr8(a3) +t8(al7), (48)
where the linear span is easily calculated as

6 .\,

L:G-(E 2 =12, (49)
Therefore, the dimension of GMW code gene-
rated by the GMW sequence defined in{47) is 12,
As 7 is 3and eis 2, A(7;) can be expressed as

Alf) =1+2-2" 0<i; < 1. (50)

Thus, A(0)=3 and A(1) ==17. The nonnull spec-
trum of GMW codes is derived as

1134

Qe=C-3UC-yy (51)

=1{15, 23, 29, 30, 39, 43, 46, 51, 53, 57, 58, 60}, (52)

where fui» =15 and f.. = 60. Therefore,

0=63+15—60=18 (53)
and
Ain = 6 =18, (54)

That is, the GMW codes generated by GMW se-
quence in (47) is (63, 12) cyclic code whose
minmum distance is greater than or equal to 18.
The possible Hamming weight of the codes is in-
teger multiple of 2°°! =4, Therefore, the mini-
mum distance of GMW code is greater than or
equal to 20. The true minimum distance of the
(63, 12) GMW code needs to be found. But the
maximum value of minimum distance of(63, 12)
binary cyclic code is known as 24.

V1. CONCLUSION

New binary cyclic codes which are generated
by using the GMW sequence and its cyclic shilfts
are introduced. Code length of the GMW code is
2K—1 and its dimension is K- (K/J)*"!, where w is
a Hamming weight of ». Several properties of
GMW codes such as designed distance, mimimum
distance, and weights of codewords are derived in
terms of parameters of GMW sequences. The
cyclic codes are the most frequently used error
correcting codes in digital communication system,
because the encoding and decoding algorithm of
the cyclic codes are easy to implement. It has
been shown that GMW code is binary cyclic code
and its minimum distance is large. Therefore, it
can be used as a channel code in the digital com-
munication systems. In order to be used in pra-
tical applications, it is needed to find the decod-
ing algorithms of GMW codes by using its proper-
ties. The decoding algorithms of GMW codes are

www.dbpia.co.kr
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left for further study.
References

1. S. W. Golomb, Shift Register Sequences. San
Francisco, CA:Holden—Day, 1967 ; revised edi-
tion, Laguna Hills, CA: Aegean Park Press,
1982.

2. E. R, Berlekamp, Aigebraic Coding Theory. New
York : McGraw-Hill, 1968.

3. F. J. MacWilliams and N. J. A. Sloane, The
Theory of Error-Correcting Codes. Amsterdam, the
Netherlands : North-Holland, 1977.

& 3 %(Jong-Seon No) #H3Y

1981 29 : M&didtnl Fag s
A2zt 3} gA}

1984'd 29 : Mg st sl A
2387 A AL

1988'd 59 : (vl=) @rigdigta
b i )

1988'd 29 ~1990d 74 : (1] )]
dad= XA Hughes
Network Systems
TSR HdATH

1990d 949 19 : =i &tn FHoh e A 2a Sy

4. D. V. Sarwarte and M. B. Pursley, “Crossco-
rrelation properties of pseudorandom and re-
lated sequences,” Proc. IEEE, vol. 68, pp.593-
620, May 1980.

5. R. A. Scholtz and L. R. Welch, “GMW seque-
nces,” IEEE Trans. Inform. Theory, vol. IT-30,
pp.548-553, May 1984,

6. J. S. No and P.V.Kumar, “A new family of bi-
nary pseudorandom sequences having optimal
periodic correlation properties and large linear
span,” IEEE Inform. Theroy, vol. 1T-35, no.2,
pp.371-379, Mar.1989.

135

www.dbpia.co.kr



