DEri=

" X

ZUTE FA B doldtr HAL ol &3
A BE Aerle] A4

E&H & fF —*

Reconfiguration Problems in VLSI and WSI
Cellular Arrays

Jae 11 Han* Regular Member

2 %

A A AXEHTL X 23 AN AL A7) Yl HE FHE pxo] g B2 A7vh s
o] gty olgl e AHEEL ¥4 435 d4 M E9A(Interconnection Network) 2 J4 ¥ & 9] 3
7152 FAE 1% $28 & $F7F 2R IH (Very Large Scale Integration) £+ ¢ o}
5 2 & (Wafer Scale Integration)-& o] &3 d&e] Wd 3 7|2 shhe] Holut glo)slol T o] 2
ozul dAE B Fo gg T2E X E Aelvi2 pAHT ol MEe] WE HelviEd vEAl
wrg] = 227} A8 (Reconfiguration) &2 713 4384 Held 4 At £ =FAME o A7
ArE B, = 73 34)7+ (Fault-Tolerant Reconfiguration), 7153 -7 & (Functional Reco-
nfiguration), ~12) 1 3§) 3-8 (Integrated Reconfiguration)oll thale] =8t # =& A% 2
© @ 72 (Fault Detection and Fault Location) #)o} #%, 54 (Configuration) Aoy, -8 e]
3 oA 5 A% &g AFER 7y ATEA dad o] ny Aeg ¥4 Aeleka, A7
A 34 A 7153 ATEY A FA S EG ATH £ olsfol] AMH A & AT
3 715 A AFE Atole] BAE wHon, B¢ ATHA K A Ak R A& Aol w3 A
A o] Broll i3t =3ttt

Abstract

A significant amount of research has focused on the development of highly parallel architectures
to obtain far more computational power than conventional computer systems. These architectures
usually comprise of a large number of processors communicating through an interconnection net-
work. The VLSI(Very Large Scale Integration) and WSI (Wafer Scale Integration) cellular arrays
form one important class of those parallel architectures, and consist of a large number of simple
processing cells, all on a single chip or wafer, each interconnected only to its neighbors. This paper
studies three fundamental issues in these arrays:fault-tolerant reconfiguration. functional

‘T EEWARN
Electronics And Telecommunications Research Institute

& oUE® 93157
1553

www.dbpia.co.kr

TR {5 43R 33t '93— 10 Vol. 18 No. 10

reconfiguration, and their integration. The paper examines conventional techniques, and gives an

in-depth discussion about fault-tolerant reconfiguration and functional reconfiguration, presenting

testing control strategy, configuration control strategy, steps required fé»r each reconfigura-

tion, and other relevant topics. The issue of integrating fault-tolerant reconfiguration and func-

tional reconfiguration has been addressed only recently. To tackle that problem, the paper ident-

ifies the relation between fault-tolerant reconfiguration and functional reconfiguration, and

discusses appropriate testing and configuration control strategy for integrated reconfiguration on

VLSI and WSI cellular arrays.

I. Introduction

The rapid progress in integrated circuit tech-
nology, and the increasing need for the design of
high-performance computer, have led to the de-
sign of highly parallel architectures. Those archi-
tectures usually comprise of a large number of
processors communicating through an interconne-
ction network. It is anticipated that more ad-
vanced integration circuit technologies will intro-
duce lower-cost, higher-density, and faster devi-
ces, encouraging further development of such
architectures [1,2]. One important class of devi-
ces includes the VLSI (Very Large Scale Inte-
gration) and WSI (Wafer Scale Integration) ce-
llular arrays consisting of a large number of si-
mple processing cells, all on a single chip or wa-
fer, each interconnected only to its neighbors. It
will be very difficult, however, to make large
structures of this kind without many defects. For
brevity and ease of presentation, the abbreviation
LSCA (Large Scale Cellular Array) shall be used
to denote VLSI and WSI cellular arrays.

There are a variety of LSCAs proposed, such
as systolic arrays [3], the wave front array (4],
configurable highly parallel computer [5], and
the defective processor array [6]. Two fundamen-
tal issues in these arrays are fault-tolerant reconfi-
guration and functional reconfiguration. Fault-toler-
ant (FT) reconfiguration is concerned with the
process of realizing a desired target topology
(such as a mesh) from the operational part of a
defective physical array :functional reconfigura-

1554

tion deals with polymorphism[5], that is, how to
reconfigure the topology of a parallel system to
implement a different function or to run a differ-
ent application. The issue of integrating FT and
functional reconfigurations, here called integrated
reconfiguration, has been addressed only recently
[7], and to the best of the author’s knowledge,
no significant results have appeared yet. Success-
ful integrated reconfiguration on defective LS-
CAs can give benefits to be gained from both FT
reconfiguration and functional reconfiguration,

Although many reconfigurable LSCAs have been
proposed in the past, most of them are concerned
with FT reconfiguration [6,8—25], and very few
proposals deal with functional reconfiguration
(5,26,27]. Moreover, in combination of FT reco-
nfigurability with functional reconfigurability in
highly defective LSCAs, the conventional approa-
ches break down, and a different approach is
needed. The study of conventional reconfigura-
tion techniques shows that the design of a reco-
nfigurable LSCA requires co-development of a
reconfiguration strategy, a proper architecture,
and a configuration algorithm.

This paper anatomizes fault-tolerant and functi-
onal reconfigurations, and deals with the feasi-
bilty of their integration in an LSCA. Conven-
tional fault-tolerant and functional reconfigura-
tion techniques are discussed in section 2 and 3.
In section 4, the relation between FT and func-
tional reconfigurations is identified. In section 5,
the paper talks about basic requirements for the
integration of FT and functional reconfigurations,

www.dbpia.co.kr

WX /2UNFE Y EE JolHFRE FHE 18 A5 3Y N7 A7E

shows that their difference vanishes in integrated
reconfiguration, and discusses an appropriate con-
trol strategy for integrated reconfiguration. Many
terms from graph theory are used extensively in
this paper. For discussion of the terms, and their
definition, the reader is referred to the standard
literature, such as [28,29,30].

II. Fault-tolerant reconfiguration

Two types of faults exist within LSCA chips:
production defects that occur during manufacturing,
and operational faults that occur during the life-
time of the working chip. Therefore, fault-toler-
ance in an LSCA stems form two fundamental
key factors : vield enhancement and reliability (7,18,
31-34]. It is desirable to increase yield when ma-
nufacturing so as to offset production defects and
to increase reliability during the life of the array
by offsetting operational faults,

Fault-tolerant techniques can be broadly classi-
fied into three approaches [18]:defect avoid-
ance, module replacement and dynamic fault re-
covery. The defect avoidance approach tries to
reduce the sensitivity of a device to processing
defects by adapting the circuit layout in such a
way that it is susceptible to failure in the pres-
ence of known defect mechanisms, In the module
replacement approach, the device architecture is

A defective 4x4 physical array

M : defective cell
] : fault-free cell
@ : dummy cell

divided into a number of module types, each of
which is replicated two, three, or more times,
Non defective modules are harvested and co-
nfigured into a working device after fabrication,
As with the module replacement approach, the
aim of the dynamic fault recovery approach is to
enable correct device functionality in spite of the
presence of faults within the device. In the dy-
namic fault recovery approach, all signal 1/O is
checked and corrected (if necessary) at the mod-
ule and/or device interfaces instead of attempting
to identify and isolate the faulty elements within
the device. The most common approach by far,
and the one that is considered herein, is the mod-
ule replacement scheme.

Let us introduce our nomenclature. A physical
array, interchangeably represented as a graph,
defines a physical graph, which represents the to-
pological structure and status of the physical ar-
ray (Fig. 1). An edge of the physical graph is de-
fined as an exfernal edge if it represents a wire
communicating with the external world and is de-
fined as an inlernal edge otherwise. In the physical
graph, each external edge is incident to two ends,
One corresponds to a physically real cell and the
other represents a dummy cell. The additional verti-
ces of a physical graph representing dummy cells
are necessary not only conform to the definition
of a graph, but also to identify external communi-

A physical graph corresponding to the physical
array on the left side; external links are associated
with dummy cells.

Fig 1. A Physical Graph Representing the Physical Array

1555

www.dbpia.co.kr

R (5 43R SLAE '93 10 Vol.18 No.10

cation paths during reconfiguration. These verti-
ces, however, will generally not be shown in our
figures.

2.1 Four measures of FT reconfiguration
techniques

Production defects and operational faults are
usually handled by introducing additional hard-
ware (architectural requirement) and restructuring
the array by means of that extra hardware (algo-
rithmic requirement) [33,34]. The hardware added
can be redundant cells or processing elements,
external switching elements, communication li-
nks, an internal switching element in the cell, or
any combination of these. Using this extra hard-
ware, a physical array which has defective ele-
ments is reconfigured into a desired target array
of fixed interconnection pattern and size, which
we call a wirtual arrav, by isolating them and co-
nnecting good elements (Fig.2). Here, a virtual
array is formally defined as a graph whose verti-
ces represent programmable or dummy cells and

88

A desired virtual array

| embedded

whose edges represent bidirectional interconne-
ctions between adjacent cells. External and inte-
rnal edges of the virtual array are defined identi-
cally to those of the physical graph. Virtual arrays
required for the majority of computation-inten-
sive applications tend to be regular graphs such
as a linear array, a mesh, a hexagonal array, or a
binary tree [1].

And FT reconfiguration technique is impleme-
nted by avoiding defective elements and conne-
cting functional elements, thus it usually increase
the communication delav between two cells partici-
pating in computation. Whereas communication
delay 1s a critical factor in the performance of a
synchronous cellular array due to clock skew
[14,15,19,24,34,35], the delay is less crucial in an
asynchronous cellular array because of the data-
driven character of the computation. It is clear,
however, that long communication delays have a
negative effect on the throughput [1].

Utilization and swrvivability are other important
factors that affect the design of FT reconfi-

: defective cell
[8]: switching cell

Y

A defective physical array

restructured

Y

A defective physical array
reconfigured into a desired
virtual array

Fig 2. Fault-Tolerant Reconfiguration

1556

www.dbpia.co.kr

B /ZUTFE FH Ee doldiy M S ol & dEY HE M7 AR

gurable arrays [7,22,33]. The term utilization re-
fers to the ratio of fault-free cells used to con-
struct the virtual array to the total fault-free
cells in the defective physical array. The prob-
ability of survival S{x), called survivability, is the
conditional probability of success in reconfiguring
a target virtual array, given that it has x working
cells. Survivability and utilization have a close re-
lationship. A reconfiguration scheme that achie-
ves good utilization by wasting none, or very few
cells, will provide high survivability.

Finally, a configuration algorithm in FT reco-
nfiguration should be simple and efficient so that
its time complexity is polynomially bound as a
function of the number of cells in an LSCA [7].
The above factors-time complexity of a configur-
ation algorithm, utilization/survivability, area ove-
rhead, and communication delay-should be con-
sidered in the design and evaluation of an FT
reconfiguration technique [7,33,34].

The FT reconfiguration requires three phases :
a testing phase to detect and locate faults, an FT
configuration phase to generate a configuration ma-
pping, and a loading phase to actually restructure
a physical LSCA into a target virtual array either
by hard-wiring or soft-wiring. In this paper, con-
figuration 1s defined as the process of generating a
configuration mapping from a source graph to a
target graph. Embedding is defined as the process
of performing configuration and actual loading.
The configuration and embedding of a target vir-
tual array in FT reconfiguration are called by us,
respectively, fault-tolerant (FT) configuration and
Sfauli-tolerant (FT) embedding. The time spent in
configuration and loading phases is called array-

embedding overhead,

2.2 Fault-tolerant reconfiguration techniques
Testing and FT configuration may be controlled
either by an external machine or the array itslf,
and as such, there are four possible reconfi-
guration strategies :
1. Controller-driven Testing and Controller-
driven Configuration (CTCC),

2. Self-Testing and Self-Configuration (STSC),

3. Self-Testing and Controller-driven Configur-

ation (STCC),

4. Controller-driven Testing and Self-Configur-

ation (CTSC),

The conventional FT reconfiguration techni-
ques proposed for LSCAs are classified into two
groups [17,18,22,32] : static (or physical) FT reco-
nfiguration and dynamic (or logical) FT reconfi-
guration. Static FT reconfiguration deals with pro-
duction defects and always adopts the CTCC
strategy (e.g., [14,19,36,37,38]). The technolo-
gies proposed for static FT reconfiguration (fol-
lowing manufacturing and testing) include elec-
trical and laser programmed fuses, laser welding,
E-beam programming of electrical switches, and
discretionary wiring [31,32,39,40]. In static reco-
nfiguration, the connections in the physical array
are hard-wired to form a target virtual array of
specific interconnection pattern and size, and
they cannot be altered once the physical array is
reconfigured. In contrast, dynamic FT reconfi-
guration can deal with both production defects
and operational faults (e.g., [6,8,12,23,40,411). It
may be performed and unlimited number of times
at system power-up and at run time, as may be
required during the life of the physical array.
This technique requires a form of electrically
programmable switches which are built into the
physical array.

A comparison of these two reconfiguration
techniques shows that the static FT reconfi-
guration techniques tend to have low area over-
head (hardware) and good performance but are
expensive in terms of the initial equipment cost
and/or the fabrication-customization throughput
rate. Dynamic F'T reconfiguration techniques of-
fer multiple reconfiguration capability from fa-
ults, but the area overhead (extra circuitry)
tends to be higher, and testing and configuration
control software must be provided either on or off
silicon, so as to allow multiple reconfigurations
[18,32,33]. This paper will focus on dynamic FT
reconfiguration since the integration of FT and

1557

www.dbpia.co.kr

B E (5 SR SCEE "93—10 Vol 18 No. 10

functional reconfigurations requires recovery from
operational faults.

2.3 Testing and configuration in dynamic

auit-tolerant reconfiguration

Operational faults may be detected either on
system power-up or in the middle of computation
at run time. In power-up-time dynamic FT reco-
nfiguration, one test of a physical array is suf-
ficient to detect both operational faults and pro-
duction defects, and either of the controller-driven
or self-testing strategies can be employed. Detec-
tion of operational faults at run time raises the
problem of performance degradation regardless of
the testing strategy. Since the time of fault oc-
currence cannot be predicted, each cell should be
tested while it performs computation, The testing
in rum-time dynamic FT reconfiguration involves
much higher overhead than the testing in power-
up-time dynamic FT reconfiguration.

In controller-driven testing techniques, no ad-
ditional and software support needs to be pro-
vided within each cell, as it is assumed that there
Is an external unit which is responsible for tniti-
ating the test. Performance degradation is inevi-
table in controller-driven testing schemes because
the entire computation performed in the physical
array is interrupted whenever the external unit
initiates testing. Self-testing techniques require
additional hardware and software support within
each cell. However, self-testing schemes can
examine the array with low performance degra-
dation, because self-testing schemes are impleme-
nted by making the cells themselves responsible
for performing periodic testing concurrently with
their normal operation. In this way, testing can
be interleaved with computation {33,42,43]. More-
over, the self-testing strategy has the potential
for better fault coverage because of the proxim-
ity of the testing unit and the unit under test
(33]. Hence, for run-time dynamic FT reconfi-
guration, the self-testing strategy is more appeal-
ing than the controller-driven one, as it offers
better fault coverage and better performance.

1558

The price is the requirement of extra hardware
and software support at each cell. Among self-
testing techniques, the Concurrent Built-In Self-
Testing (CBIST) technique, which tests combina-
tional logic circuits concurrently with normal op-
eration (e.g., [44]), is most attractive. It has no
periodic testing inside of a cell, and the reduced
detection time between fault occurrence and fault
detection at run-time may result in even better
performance of a cellular array.

The only task of the FT configuration is to con-
figure a physical graph into a target virtual array,
The task has nothing to do with ongoing compu-
tation in the array, and imposes no additional
overhead regardless of when reconfiguration is
performed. Thus, the array-embedding overhead
remains stable at all times for any given configur-
ation strategy. Either of the controller-driven and
self-configuration strategies can be employed in
power-up-time and run-time dynamic FT reconfi-
gurations. The selection between the two stra-
tegies entirely depends on a particular implemen-
tation of dynamic FT reconfiguration. The con-
troller-driven configuration strategy requires an
external host that is responsible for FT configur-
ation. In the self-configuration strategy, addi-
tional hardware and software support is required
at each cell to perform FT configuration locally.
The advantage of the self-configuration strategy
is that FT configuration can be made transparent
to most of system since the FT configuration
task is made local to each node [33].

2.4 Control strategy in dynamic fault-tolerant
reconfiguration

The conventional dynamic FT reconfiguration
techniques are classified into two groups : centra-
lized and distributed approach [33]. A centralized
scheme adopts the CTCC strategy, thus, testing
and FT configuration of the array are controlled
by the external unit, called a controller (e.g., [10,
16,22,24,451). In a distributed dynamic FT reco-
nfiguration scheme, the STSC strategy is ado-
pted and the cells themselves are responsible for

www.dbpia.co.kr

W /2R AY B doldTe A olg ¢ A8 HE M7l A7 H

performing testing and FT configuration in the
asynchronous mode (e.g., [8,12,13,41]).

The STCC and CTSC strategies have not been
adopted yet for dynamic FT reconfiguration.
However, the CTSC strategy is clearly of no use,
It suffers from performance degradation caused
by controller-driven testing, and requires ad-
ditional hardware and software support at each
cell for self-configuration. In contrast, the STCC
strategy can be viewed as the compromise be-
tween the CTCC and the STSC strategy. A suc-
cessful implementation of the STCC strategy will
not involve testing overhead as does the CTCC
strategy and will have less area overhead than
the STSC strategy. Hence, the STCC strategy is
a viable technique for dynamic FT reconfigura-
tion.

2.5 Temporal classification of dynamic

fauit-tolerant reconfiguration

The FT reconfiguration can be performed at
three distinct instances :static FT reconfigura-
tion right after fabrication, dynamic FT reconfi-
guration on system power-up, or dynamic FT re-
configuration at run time, When FT reconfi-
guration is performed, and no user computation is
involved, the only task is to embed a target vir-
tual array into a defective physical array. Hence,
static or dynamic FT reconfigurations on system
powe-up are straightforward and can be acco-
mplished in three steps : a testing phase, an FT con-
[figuration phase, and a loading phase.

In contrast, there is an ongoing computation in
the physical array at run time. Dynamic FT
reconfiguration performed at run time has to re-
cover the topology of a target virtual array as
well as the functionality assigned to the virtual
array. If physical cells are homogeneous, that is,
the same function is built into every physical cell,
FT reconfiguration can be completed in the above
three steps. In order to compensate for the cost
of extra-hardware, however, the dynamically FT
reconfigurable arrays often employ programmable
cells and are utilized for a broader problem do-

main, If physical cells are programmed to execute
different functions, it is necessary to reassign
their functions when faults occur at run time [1].

Thus, dynamic FT reconfiguration at run time
is more complex than FT reconfiguration at other
instances, and requires the above three steps plus
one more step ; it is termed a reinitialization phase.
The reinitialization phase has been considered
partially in [1,13]. It should be handled carefully
so that it be transparent to the external world
[22]. The reinitialization phase always imposes an
overhead time to recover the computing struc-
ture of an algorithm at the time of fault occur-
rence [9].

[I. Functional Reconfiguration

The computing structure of each algorithm can
be represented as a directed graph, called a com-
putation graph (6], whose arce represent the com-
munication structure of an algorithm and whose
vertices are associated with the appropriate arith-
metic and logic operations for the algorithm. An
arc of a computation graph is defined an external
arc if it 1s used for communication with the exter-
nal world, Otherwise, an arc is called an internal
arc-Either the tail or the head of an external arc
is a dummy vertex. In the paper, computation
graphs and virtual arrays are collectively called
logical computing structures, Since computation gra-
phs are derived from different application algo-
rithms, each computation graph exhibits its own
interconnection patterns (i.e., the communication
structure) and size (the number of vertices), When
a physical array is not big enough to embed a
computation graph, a partitioning technique has
to be employed by which a large computation
graph can be transformed into a smaller compu-
tation graph or partitioned into small computation
graphs that can fit into the size of a physical ar-
ray [1]. In the paper, our interest in functional
reconfiguration does not lie in such partitioning
techniques regarding size but in its capability of
identifying whether computation graphs of differ-

1559

www.dbpia.co.kr

SEAESEH L 9310 Vol.18 No. 10

ent interconnection patterns can be embedded
into a physical array. Functional reconfiguration
is generally considered to fail when a given com-
putation graph cannot be embedded into a physi-
cal array. In most of our discussion, it is im-
plicitly assumed that the size of a computation
graph is small enough to be embedded into a
physical array.

The design and manufacturing cost of LSCAs
led few researchers to consider the use of LSCAs
for arbitrary algorithms (e.g., [5,26]). Even in
algorithmically specialized processors such as sys-

tolic arrays, programmable processor modules are
more favored than dedicated modules (e.g., 4,46,
47,48]). For the economic viability of LSCAs, it
1s desirable to enable them to embed and thus ex-
ecute arbitrary computation graphs. Such capa-
bility is of importace independent of its economic
value, since it may be possible to attain the ef-
ficiency of special-purpose devices with standa-
rdized devices {22].

The paper defines two kinds of functional reco-
nfigurations, termed dvnamic functional reconfi-
guration and static functional reconfiguration. A
physical cellular array is said to be capable of
dynamic functional reconfiguration when successive
configurations of the physical array into different
computation graphs are possible at run time. If an
interconnection topology is replaceable only at
power-up time and just arithmetic and logic
operations can be reassigned to cells at run time,
or if very few computation graphs could be em-
bedded at run-time, the array is said to have
static functional reconfigurability, Clearly, dynamic
functional reconfiguration is a necessary feature
for integrated reconfiguration, The paper shall fo-
cus on dynamic functional reconfiguration, and
that is what the paper means when the term func-
tional reconfiguration 1s used. The paper shall not
discuss the question of how to derive comptation
graphs, such as signal-flow graphs and data-flow
graphs, from application algorithms. Many methods
for such derivation are mentioned in the litera-

1560

ture (e.g., [1,49,50]). The paper concentrates on
the discussion of how to embed computation
graphs into an LSCA, assuming the existence of
appropriate computation graphs for application
algorithms.

3.1 Functional embedding and functional

configuration

The embedding of a computation graph into a
physical array, which we call functional embedding,
basically requires two steps :functional configur-
ation to compute a configuration mapping from a
computation graph onto a physical graph, and
Sfunctional loading to load a computation graph into
a physical array according to the configuration
mapping {26,51] (Fig.3). Since computation gra-
phs derived from different application algorithms
will have different communication patterns and
different assignment of arithmetic and logic ope-
rations to vertices, the main question in func-
tional reconfiguration is how to accomplish the
above two task with as little overhead as poss-
ible. One solution to this problem is to design a
polymorphic LSCA {5] that allows simple and ef-
ficient functional embedding for a variety of com-
putation graphs. Such a polymorphic LSCA can
then be used either as an accelerator attached to
a general-purpose host machine or as a stand-
alone machine equipped with a controller, and
will be utilized to execute many computation-in-
tensive algorithms by frequently changing and
executing them,

A configuration mapping from a computation
graph onto a physical graph, which we call a
physical mapping, can be obtained directly or in-
directly. Note that in conventional functional
reconfiguration approaches (e.g., 15,261, underly-
Ing physical arrays are considered fauit-free. Di-
rect computation of a physical mapping is pe-
rformed by mapping a computation graph directly
onto a physical graph :indirect computation of
the physical mapping is performed by indirectly
mapping a computation graph onto a physical

www.dbpia.co.kr

RL/ZRFE YA EE doldAne JHE o8 &0 Hd Helv|o Ard

Input

()

()

Configuration
LS
1
1
1
i
1
|
§ A physical graph:
: a 3X3 mesh
1

A configuration

mapping

@ @ @)

Output
A computation graph

A physical array
reconfigured into the
computation graph

Fig 3. Functional Reconfiguration

graph by measns of an intermediate logical array
of predefined interconnection pattern and size. In
section 2, the paper introduced the term wirfual
array for such an intermediate logical array.

In indirect functional configuration, a configur-
ation mapping from a virtual array to physical
graph, which we call an array mapping, is gene-
rated and stored by the controller. Later, when a
computation graph is mapped onto a virtual ar-
ray, a configuration mapping from the compu-
tation graph to the virtual array, which we call a
logical mapping, 1s obtained, and a physical map-
ping is computed by combining a logical mapping
and an array mapping. The advantage of indirect
functional configuration is that physical mappings
for many computation graphs can be obtained
easily and efficiently by using virtual arrays as in-
termediate means. Since most computation-inten-
sive algorithms exhibit regular or near-regular

computation graphs [1], it is easier and more ef-
ficient to map each of these computation graphs
onto an appropriate regular virtual array than
onto a physical graph. The direct configuration
strategy may be more difficult to implement and
more inefficient than the indirect configuration
strategy, since it has to map all (regular and ir-
regular) computation graphs onto a physical
graph, The direct configuration strategy, how-
ever, can provide more powerful mapping capa-
bility than the indirect configuration strategy. In
the paper, functional reconfiguration with the di-
rect configuration strategy is considered. A func-
tional reconfiguration technique with the indirect
configuration strategy is nothing but a combi-
nation of pre-existing functional and FT reconfi-
guration techniques,

After physical mappings of computation graphs
have been obtained through functional configur-

1561

www.dbpia.co.kr

S (S 2SR 33k '93—10 Vol.18 No. 10

ation, each of these computation graphs has to be
loaded into the physical array for its execution.
Functional loading, however, involves overhead,
here called graph-switching overhead. The controller
has to load arithmetic/logic and switching ins-
tructions assigned to each vertex of a compu-
tation graph into the memory of each cell in the
physical array. However, it has been observed
that interleaving computation and instruction
loading with a single interconnection network in
the physical array may contaminate information
processed in the array {8], and may affect turn-
around time. Hence, those instructions have to be
loaded into each cell’s memory between the time
the physical array completes execution of an old
algorithm and the time the array starts execution
of a new algorithm, unless there exists an extra
interconnection network that enables communi-
cation between an external host and the cells
without interrupting computation in the physical
array (e.g., [5.26]). The physical array cannot
perform computation during the functional loa-
ding. It is a reasonable assumption that graph-
switching overhead 1s tolerable, since each algor-
ithm is computation-intensive and will need a suf-
ficient amount of execution time, but it is desir-
able to reduce graph-switching overhead.

Functional reconfiguration requires three steps
an analysis phase to find a computation graph of
an algorithm, a configuration phase to obtain a phys-
ical mapping, and a loading phase to actually load
a computation graph into a physical array. Con-
troller-driven configuration strategy is our choice
for functional reconfiguration, as it allows for a
practically unlimited number of computation gra-
phs. The analysis phase is far beyond the scope
of this paper. Only functional configuration and
embedding are discussed here.

Three representative approaches proposed for
dynamic functional reconfiguration are [5,26,27].
There are proposals that may be considered for

static functional reconfiguration (e.g., [6,18,41]).

However, they mention FT reconfiguration only
and never consider how to handle computation
1562

graphs. In those approaches, once a physical ar-
ray has been reconﬁguréd into a target virtual ar-
ray, computation graphs of all algorithms should
be first mapped onto the virtual array. For algo-
rithms whose communication patterns do not
match well the interconnection topology of the
virtual array, it is necessary to reconfigure the
physical array into another virtual array suitable
for those algorithms, Such a requirement imposes
non-negligible array-embedding overhead, beca-
use a physical array cannot perform useful com-
putation during the reconfiguration process. Even
when the communication pattern of an algorithm
matches well the interconnection pattern of the
virtual array residing in a physical array, there is
still high graph-switching overhead. Functional
loading in those proposals requires complete in-
terruption of a physical array and its controller.

IV. The relation between fault-tolerant and
functional reconfigurations

The analysis of the FT and functional configur-
ation tasks reveals an important relationship be-
tween FT and functional reconfigurations, The
task of the FT configuration is to map the virtual
array at the time of fault occurrence onto a
physical graph. The task of the functional con-
figuration is to map arbitrary computation graphs
of various topologies onto a physical graph. We
notice that FT and functional configuration tasks
are not different in terms of their functionality.
The difference between them is only in the objects
to be handled (Fig.4).

In FT reconfiguration, a single virtual array of
predefined interconnection topology and fixed
size is allowed ;thus, an FT configuration algor-
ithm is customized for the fixed virtual array and
is often implemented as built-in hardware so that
it can be performed in real time. Since an arbi-
trary number of computation graphs should be
handled in functional reconfiguration, a functional
configuration algorithm tends to be complex (e.
g.. [26]).

The configuration prohlems in FT and func-

www.dbpia.co.kr

B /ERFE YW EE ol AN ol ge 4ol ¥y Nelvlel A7

Application
Algorithms

15t
=

13!

1B

PHYSICAL MAPPING Jioe

Virtual Arrays

Py

A Physical Graph

DNIGdVIN AVERIV

P

FUNCTIONAL
CONFIGURATION

FT
CONFIGURATION

Fig 4. Functional Configuration versus FT Configur ation

tional reconfigurations can be thoroughly under-
stood by means of the subgraph homeomorphism
problem [52-57]. Here we briefly outline a subgraph
homeomorphism and relevant results. A more
complete and detailed discussion of the SHP can be
found in [58]. Let G and H be two graphs, both of
which are multigraphs (or multidigraphs). In a
multigraph, no loops are allowed but more than
one edge can join two vertices. (In a multidigraph,
no arc whose head and tail are the same vertex is
allowed, but more than one arc can join two verti-
ces.) A subgraph homeomorphism is a pair of 1-1
mappings (4, #), the first from vertices of H to
vertices of G and the second from edges (arcs) of
H to paths (directed paths) of G, requiring that a
path (directed path) in G corresponding to an
edge (arc) (x, y) in H go from ¢(x) to ¢(y) in G.

The graph H is called an input graph and the
graph G is called a base graph. We call ¢ a vertex
mapping and 0 an edge mapping. If the image of
the edges of H are a set of paths which are ver-
tex-disjoint up to end-vertices, the homeomorphism
is a wverlex-disjoint homeomorphism and we say that
H is vertex-disjoint homeomorphic to a subgraph of
G. If the set of paths is edge-disjoint, then H is
edge-disjoint homeomorphic to a subgraph of ¢, The
subgraph homeomorphism problem (SHP) is de-
fined by :

Instance : An input graph H and a base graph G.
Question : Does G contain a subgraph homeomo-
rphic to H?

An important class of problems related to the

1563

www.dbpia.co.kr

$RBLE (R &R ik '93-10 Vol 18 No. 10

SHP is the SHP for a fixed input graph [59].
Both the vertex-disjoint SHP and the edge-dis-
joint SHP are NP-complete for undirected and
directed graphs [55]. Robertson and Seymour
[60,61] showed that the SHP for a fixed input
graph is in P-class for undirected graphs :how-
ever, as the authors themselves note, their
results are of little practical significance, and
that problem is still considered intractable. The
SHP for a fixed input graph is NP-complete for
directed graphs [59,62]. With the above back-
ground, we can define the FT configuration prob-
lem as the SHP for a fixed input graph and the
functional configuration problem as the SHP.
Thus, we can see that the FT configuration prob-
lem is in P-class though it is still intractable, and
the functional configuration problem is NP-com-

plete in its most general form.

V. Integrating FT and functional
reconfiguration

The_ integrated reconfiguration on highly defec-
tive LSCAs requires powerful dynamic FT confi-
guration capability. Any logical computing struc-
ture in the system, not just a single target virtual
array, has to be reembedded into the physical ar-
ray on the occurrence of operational faults. In ad-
dition, a functional configuration algorithm has to
be capable of mapping an arbitrary computation
graph onto a physical graph of a highly defective
physical array. To obtain the above dynamic FT
and functional reconfigurability, the basic re-
quirement is that a cellular array architecture and
an accompanying configuration method provide
powerul connecting capability so that communi-
cation paths between non adjacent processors can
be established by detouring many defective pro-
cessors. Also, the time complexity of the con-
figuration algorithm has to be polynomially bo-
und, while achieving short communication delay,
good survivability, high utilzation, and Jow area

overhead.

1564

To this goal, the nature of integrated reconfi-
guration on highly defective arrays is discussed in
subsection 5,1, Testing and configuration strategies
for integrated reconfiguration on highly defective
arrays are covered in subsection 5.2, along with
some simulation results.

5.1 Integrated reconfiguration on highly defective
arrays

For integrated reconfiguration on LSCAs with
many faulty processors, the object to be handled
by an FT configuration algorithm should be any
logical computing structure, while a functional
configuration algorithm has to deal with a physi-
cal array that i1s no longer a fault-free perfect ar-
ray. The difference between FT and functional
configuration tasks vanishes, opening the inte-
grated reconfiguration, In this paper, the confi-
guration task in integrated reconfiguration is ca-
lled a wnified configuration problem. The unified co-
nfiguration problem is the SHP, thus its co-
mputational complexity is NP-complete [58]. Ho-
wever, a general solution of the unified configur-
ation problem 1s required since functional reco-
nfiguration (and thus integrated reconfiguration)
cannot be achieved otherwise. We need to de-
velop an approximation algorithm with poly-
nomial-time bound using techniques such as
suggested in [63]. Having a general solution, ne-
vertheless, does not prevent us from having bet-
ter individual solutions for special cases of that
problem. For example, individually-custormized
configuration algorithms can be written for some
selected input graphs and can coexist with the
general solution, so as to achieve better results
for those selected graphs than the general sol-
ution can, This is useful when handling the typical
topologies that are most commonly used, such as
a linear array, a mesh, a binary tree, and a hexa-
gonal array.

5.2 Control strategy for integrated reconfiguration
While the author shall continue to pursue self-

www.dbpia.co.kr

WX/ AAFR R Ee oA R I G o) & AEe HE Mel7lef Ad

configuration strategies, the author 1s eager to
see if other approaches can provide an immediate
solution to the exponential complixity of the con-
figuration, as it was introduced in [6]. Let us
analyze the situation,

Since integrated reconfiguration requires that
an arbitrary logical computing structure be em-
bedded into a cellular array, an LSCA designed
with the self-configuration strategy has to con-
tain programmable self-configuration hardware(e.g.,
[6]). In this case, an individually customized
self-configuration algorithm needs to be prepared
for each logical computing structure so as to
program self-configuration hardware, Preparing
an individual self-configuration algorithm for each
logical computing structure is very costly, be-
cause a virtually unlimited number of iogical com-
puting structures are allowed in integrated reco-
nfiguration,

A more difficult problem is to keep a poly-
nomial-time bound for each self-configuration al-
gorithm. The paper mentioned that the unified
configuration problem is NP-complete. In order to
keep polynomial-time bound, each self-configur-
ation algorithm should incorporate an ad hoc
technique suitable for the corresponding logical
computing structure. This task is not easy be-
cause a decision to try another configuration
mapping has to be made at a cell based on local
knowledge. Also, complex self-configuration algo-
rithms have to be avoided, as they create a po-
tentially prohibitive area overhead. The indirect
configuration through a few, fixed number of in-
termediate virtual arrays may help overcome
such difficulties, This technique, however, ca-
uses frequent exchange of intermediate virtual
arrays, because a computation graph can be em-
bedded into a physical array only after a suitable
intermediate virtual array has been embedded
into the physical array {e.g., [6,41]). Thus, the
self-configuration strategy combined with the in-
direct configuration technique suffers from high
array-embedding overhead,

The configuration and loading phases are inhe-

rently indistinguishable in self-configuration. A
target logical computing structure is formed in a
physical array while self-configuration is in prog-
ress. The self-configuration process cannot over-
lap computation with configuration, and wastes
computing resources whenever self-configuration
is performed. Another problem is that the con-
troller can know only whether or not self-con-
figuration succeeds (e.g., [18,41]), since self-con-
figuration is an autonomous operation within a
physical array. The controller has no way to ob-
tain information on the physical mapping of a
logical computing structure, essential for the as-
signment of functions to cells in programmable
cellular arrays, except by polling the array.

The controller-driven configuration strategy
does not impose a limit on the number of logical
computing structures, and needs no extra hard-
ware support. In addition, computation can be
overlapped with configuration since configuration
1s done by the controller. Whereas the self-con-
figuration strategy does not allow complex con-
figuration algorithms, the controller-driven con-
figuration strategy allows algorithms of high com-
plexity [22]. Furthermore, it allows the develop-
ment of a general configuration algorithm with
polynomial-time bound that can handle arbitrary
logical computing structures, which is, at this
time, unattainable with the self-configuration stra-
tegy.

The above discussion shows that at least in-
itially, the controller-driven configuration strat-
egy is more feasible than the self-configuration
strategy. However, it has the disadvantage of re-
quiring global knowledge of a physical array, so
that effective and efficient configuration be
attained, The only way to obtain such information
is to perform run-time tests [33]. The controller-
driven testing strategy also involves serious
overheads such as periodic testing long detection
time, To preserve the benefits provided by the
controller-driven configuration strategy, we need
to combine it with the self-testing strategy in or-
der to acquire the global knowledge as little

1565

www.dbpia.co.kr

SR B 15 938 CAE "93~10 Vol.18 No. 10

run-time tesing overhead as possible. Therefore,
in the long range, the STCC control strategy is
considered most suitable for integrated reconfi-
guration, provided a cellular array can be desi-
gned to support it.

A new cellular array architecture designed with
the STCC strategy, called the ALFA processor
array, has been proposed in [64], as the first at-
tempt to tackle integrated reconfiguration, The
ALFA array allows massive defects, and is reco-
nfigured based on a heuristic, polynomially-bound
configuration algorithm. Extensive simulations
show that the ALFA array and the accompanying
configuration algorithm achieve very good results
overall, and demonstrate the feasibility of inte-
grating FT and functional reconfigurations in de-
fective LSCAs. Fig.5 shows the average size and
utilization obtained on a 40 x 40 ALFA array for a
linear array, a binary tree, a mesh, and a hexag-
onal array. Since no results are available for
integrated reconfiguration at this time, the res-
ults have been compared with the results of the
octally-connected massively fault-tolerant cellular
array (MFCA) [6], which is by far the only appro-
ach proposed to handle massive defects. The MFCA
adopts the STSC strategy, and the complexity of
its self-configuration algorithms is exponential.
No results are given for a hexagonal array in [6].
The comparison in Fig.5 (a), (b) and (c) shows
the new results are clearly superior to the results
of the MFCA. The reader is referred to [64] for a
detailed discussion of the new approach and vari-
ous simulation results

VI. Summary and conclusion

Many approaches have been proposed for FT
reconfiguration, With the exception of the Mass-
ively Fault-Tolerant Cellular Array [6], their ca-
pability is limited to handle a small number of
defects, despite the fact that LSCAs are very
hard to make without many defects. The time
complexity of configuration in the Massively
Fault-Tolerant Cellular Array is currently expo-

1566

nential, and utilization and survivability is low
(with the exception of iinear computing structures),
Production cost of manufacturing LSCAs favors
the consideration of functional reconfiguration,
however, very few realistic approaches have
have been developed to date, A natural and chal-
lenging question is whether it is possible to inte-
grate FT and functional reconfigurations in hi-
ghly defective LSCAs, and if so, what are the
requirements for integrated reconfiguration.

To answer this question, this paper took the
first step by identifying the characteristics of FT
and functional reconfigurations. The paper dis-
cussed control strategies, and distinguished dif-
ferent types of FT and functional reconfigura-
tions., Among the tasks involved in reconfi-
guration, configuration is an essential task in FT
and functional reconfigurations. This process
maps one topology onto another topology. The
paper has shown that the difference between FT
and functional configuration tasks vanishes in
integrated reconfiguration. The paper also dis-
cussed which control strategy is useful for
integrated reconfiguration,

When designing an LSCA, we have to under-
stand what type of reconfiguration is desired, and
have to consider the issues of appropriate control
strategy, locality (local communication), regula-
rity (regular interconnection), modularity (ident-
ical components), massive fault-tolerance, poly-
morphism (customizability for a variety of co-
mputations), complexity of the configuration al-
gorithm, survivability/utilization, communication
delay, and scalability. An open question is which
celluar array architecture is suitable for inte-
grated reconfiguration in the presence of many
defects, and how one can achieve low area over-
head, short communication delay, high surviva-
bility/utilization, and polynomially-bound time co-
mplexity of configuration.

www.dbpia.co.kr

By /2U7E I Ee dolsine ML olgd deEal ¥8 Helrig] A 74

Average size

Fig 5. Simulation Results. In (c) and (d), the number # at the tick mark of the y axis implies n X n.

1600 ¢ ALFA
1400 4 2
12004 MFCA €
1000 + 5
800 ~ i s
600 g
400 4
200 ~
0 t t + + { 04 t + + + 1
1 09 08 0.7 0.6 05 1 09 038 0.7 0.6 05
The working probability of a processor The working probability of a processor
(a) Linear array
on Nl . » . .
sy _\o——o——-u\‘\u:‘:
= 1 MFCA R
2 %1 ¢
§ 54 g
44 B}
3] £
Z 24 =]
1+
0 + — + + 4 04 - + —]
1 09 08 07 0.6 0.5 0.9 08 0.7 0.6 05
The working probability of a processor The working probability of a processor
(b) Binary tree
ALFA.
§ ‘—-_-‘____.
. s
\l\. §
5
MFCA
0 t -+ t + { 0+ t +
1 09 08 0.7 0.6 0.5 09 08 0.7 0.6 0.5
The working probability of a processor The working probability of a processor
(c) Mesh
40 » 70 T
35 J T —.
\ 60 '-\ ALFA
g 30 4 — £ 50 .
a2 25 . ALFA 1 -
h T § 40 T~
20 4 —~—— 2
g — S 30
; 15 4 =]
10 = 20
S 4 10
0 + -+ + -+ -4 04 + t t -
1 09 08 0.7 0.6 0.5 09 08 0.7 0.6 0s
The working probability of a processor The working probability of a processor
(d) Hexagonal array

www.dbpia.co.kr

1567

SRBRE {5 SErds ik "93—10 Vol. 18 No. 10

1.

2.

3.

4.

d.

6.

7.

3.

9.

10. A. Boubekeur, et al,

11.

References

S. Y. Kung, VLSI Array Processors, Prentice
Hall, 1988

W. Maly, “Prospects for WSI : A Manufactur-
ing Perspective,” IEEE Computer, Vol.25, No.4,
pp.58-65, April 1992

H. T. Kung, “Why Systolic Architectures?,”
IEEE Computer, Vol.15, No.l, pp.37-46, Ja-
nuary 1982

S. Y. Kung, “On Supercomputing with Systo-
lic/Wavefront Array Processors,” IEEE Proce-
edings, Vol.72, No.7, pp.867-884, July 1984

L. Snyder, “Introduction to the Configurable
Highly Parallel Computer,” IEEE Computer,
Vol. 15, No.1, pp.47-56, January 1982

M. S. Lee and G. Frieder, “Self-configuration
of Defective Cellular Arrays,” Complex Sys-
tems, Vol.1, No.1, pp.81-105, February 1987

M. Chean and J. A. B. Fortes, “A Taxonomy
of Reconfiguration Techniques for Fault-Toler-
ant Processor Arrays,” IEEE Computer, pp.
55-69, January 1990

R. C. Aubusson and I. Catt, “Wafer-Scale Inte-
gration-A Fault-Tolerant Procedure,” IEEE
Journal of Solid-State Circuits, Vol. SC-13, No.3,
pp.339-344, June 1978

M. Berg and 1. Koren, “On Switching Policies
for Modular Redundancy Fault-Tolerant Co-
mputing Systems,” IEEE Transactions on Co-
mputers, Vol.C-36, No.9, pp.1052-1062, Septe-
mber 1987

“Configuring a Wafer-
Scale Two Dimensional Array of Single-Bit
Processors,” IEEE Computer, Vol.25, No.4,
pp.29-40, April 1992

V. N. Doniants, V. G. Lazarev and R.
Stefanelli, “Fault Tolerance of Cellular Proce-
ssing Arrays : Algorithmic Methods for Yield
Enhancement and Reliability,” Microproce-
ssing and Microprogramming 25, pp.113-118,
1989
1568

12.

13.

14.

16.

17.

18.

19.

20.

21.

22.

D. Fussell and P., Varmann, “Fault-Tolerant
Wafer-Scale Architectures for VLSI,” Proc.
9th Annual Symposium on Computer Archi-
tecture, pp.190-198, 1982

D. Gordon, I. Koren and G. M. Silberman,
“Restructuring Hexagonal Arrays of Proce-
ssors in the Presence of Faults,” Journal of
VLSI and Computer Systems, Vol.2, No.1-2,
pp.23-35, 1987

J. Greene and A. E. Gamal, “Configuration of
VLSI Arrays in the Presence of Defects,”
JACM, Vol.31, No.4, pp.694-717, August 1984

. K. S. Hedlund, "WASP-A Wafer-Scale Sys-

tolic Processor,” ICCD 85, pp.665-671, October
1985

J. H. Kim and S. M. Reddy, “On the Design
of Fault-Tolerant Two-Dimensional Systolic
Arrays for Yield Enhancement,” IEEE Trans-
actions on Computers, Vol.38, No.4, pp.515-
525, April 1989

I. Koren and D. K. Pradhan, “Modeling the
Effect of Redundancy on Yield and Perform-
ance of VLSI Systems,” IEEE Transactions
on Computers, Vol.C-36, No.3, pp.344-355,
March 1987

R. M. Lea and H. S. Bolouri, “Fault Toler-
ance : Step towards WSI,” I[EEE Proceedings,
Vol. 135, Part E. No.6, pp.289-297, November
1988

T. Leighton and C. E. Leiserson, “Wafer-
Scale Integration of Systolic Arrays,” 1EEE
Transactions on Computers, Vol. C-34, No.5,
pp.448-461, May 1985

H. F. Li, R. Jayakumar and C. Lam, “Res-
tructuring for Fault-Tolerant Systolic Arrays,”
IEEE Transactions on Computers, Vol.38,
No.2, pp.307-311, February 1989

F. Lombardi, -
arrays by diagonal deletion,” Integration, the
VLSI Journal, Vol.6, pp.263-290, 1988

R. Negrini, M, Sami and R. Stefanelli, “Fault
Tolerant Techniques for Array Structures
used in Supercomputing,” IEEE Computer,
Vol.19, No.2, pp.78-87, February 1986

“Reconfiguration of hexagonal

www.dbpia.co.kr

B /2AFE YH EE Aol HTL FHE 188 &2 ¥ NV A+ E

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

A. L. Rosenberg, “The Diogenes Approach to
Testable Fault-Tolerant Arrays of Proces-
sors,” IEEE Transactions on Computers, Vol.
C-32, No.10, pp.902-810, October 1983

P. J. Varman and 1. V. Ramakrishnan, “Opti-
mal Matrix Multiplication on Fault-Tolerant
VI.SI Arrays,” IEEE Transactions on Co-
mputers, Vol.38, No.2, pp.278-283, February
1989

M. Wang, M. Cutler and S. Y. H. Su, “Reco-
nfiguration of VLSI/WSI Mesh Array Proce-
ssors with Two-Level Redundancy,” IEEE
Transactions on Computers, Vol.38, No.4, pp.
547-554, April 1989

I. Koren, et al, “A Data-Driven VLSI Array
for Arbitrary Algorithms,” IEEE. Computer,
Vol.21, No.10, pp.30-43, October 1988

H. T. Kung, “iWarp multicomputer with an
embedded switching network,” Microproce-
ssors and Microsystems, Vol.14, No.l, pp.
59-60, 1990

J. A. Bondy and U. S. R, Murty, Graph The-
ory with Applications, Elsevier Science, 1976
N. Deo, Graph Theory with Applications to
Engineering and Computer Science, Prentice-
Hall, 1974

F. Harary, Graph Theory, Addison-Wesley,
1969

J. B. Butcher and K. K. Johnstone, “Wafer
Scale Integration,” IEE Proceedings, Vol.135,
part E, No.6, pp.281-288, November 1988

R. O, Carlson and C. A. Neugebauer, “Future
Trends in Wafer Scale Integration,” Procee-
dings of the IEEE, Vol.74, No.12, pp.1741-
1752, December 1986

1. Koren and D. K. Pradhan, “Yield and Per-
formance Enhancement through Redundancy
in VLSI and WSI Multiprocessor Systems,”
Proceedings of IEEE, Vol.74, No.5, pp.
699-711, May 1986

. R. Negrini and M. Sami, “Redundancy and

Fault-Tolerance Aspects in VLSI Processing
Architectures,” COMPEUROQO 87, pp.3-7, May
1987

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

I. Koren and A. D. Singh, “Fault Tolerance in
VLSI circuits,” IEEE Computer, pp.73-83,
July 1990
S. Y. Kung, S. N. Jean and C. W, Chang,
“Fault-Tolerant Array Processors using si-
ngle-track Switches,” IEEE Transactions on
Computers, Vol.38, No.4, pp.501-514, April
1989
K. Yamashita, et al, “A Wafer-Scale 170,
000-Gate FFT Processor with BUILT-IN
TEST Circuits,” IEEE Journal of Solid-State
Circuits, Vol.23, No.2, pp.336-342, April 1988
H. Y. Youn and A. D. Singh, “On Impleme-
nting Large Binary Tree Architectures in
VLSI and WSI,” IEEE Transactions on Co-
mputers, Vol.38, No.4, pp.526-537, 1989
A. H, Anderson, J. I. Raffel, and P. W,
Wryatt, “Wafer-Scale Integration Using Res-
tructurable VLSI,” IEEE Computer, Vol.25,
No.4, pp.41-47, April 1992
W. R. Moore,. “A Review of Fault-Tolerant
Techniques for the Enhancement of Inte-
grated Circuit Yield,” Proceedings of the
IEEE, Vol.74, No.5, pp.684-698, May 1986
I. Koren, “A Reconfigurable and Fault-Toler-
ant VLSI Multiprocessor Array,” Proc. 8th
Annual Sysmposium on Computer Architec-
ture, pp.425-442, May 1981
S. Chau and D. Rennels, “Design Techniques
for a Self-Checking Self-Exercising Proce-
ssor,” In Defect and Fault Tolerance in VLSI
Systems, 1. Koren ed., Vol.1, pp.191-202, 1989
M. C. Howells, R. Aitken and V. K. Agarwal,
“Defect Tolerant Interconnects for VLSI,” In
Defect and Fault Tolerance in VLSI Systems,
I. Koren ed., Vol.1, pp.65-76, 1989
R. Sharma and K. K. Saluja, “An Implemen-
tation and Analysis of a concurrent built-in
self-test technique,” IEEE International Sym-
posium on Fault-Tolerant Computing, pp.
164-169, 1988
K. S. Hedlund and L. Snyder, “Systolic Archi-
tectures-A Wafer Scale Approach,” ICCD 84,
pp.604-610, October 1984

1569

www.dbpia.co.kr

B BIE S ER ik '93—-10 Vol. 18 No.10

46.

47.

48.

49.

50.

5l

52.

53.

54.

55.

56.

M. Annaratone, et al, “Architecture of Warp,”
COMPCON Spring 87, pp.264-267, February
1987

A. L. Fisher, et al, “The Architecture of a Pro-
grammable Systolic Chip,” Journal of VLSI
and Computer Systems, Vo.1, No.2, pp.153-
169, 1984

D. L. Landis, N. Nigam, and J. W. Yoder,
“Wafer-Scale Optimization Using Computa-
tional Availability,” IEEE Computer, Vol.25,
No.4, pp.66-71, April 1992

S. K. Rao, “Regular Iterative Algorithms and
Their Implementations on Processor Arrays,”
Ph. D. thesis, Stanford University, Stanford,
California, 1986

J. D. Ullman, Computational Aspects of
VLSI, Computer Science Press, 1984

L. Snyder, “Parallel Programming and the
Poker Programming Environment,” IEEE Co-
mputer, Vol.17, No.7, pp.27-36, July 1984

T. Asano, “An approach to the Subgraph Ho-
meomorphism Problem,” Theoretical Com-
puter Science 38, pp.249-267, 1985

S. Fortune, J. Hopcroft and J. Wyllie, “The
Directed Subgraph Homeomorphism Pro-
blem,” Theoretical Computer Science 10, pp.
111-121, 1980

S. Khuller, *“Parallel Algorithms for the
Subgraph Homeomorphism Problem,” Algori-
thms and Data Structures, F. Dehne, J. R,
Sack and N. Santoro (Eds), Lecture Notes in
Computer Science 382, pp.303-315, 1989

A, S. LaPaugh and R. L. Rivest, “The
Subgraph Homeomorphism Problem,” Jouranl
of Computer and System Sciences 20, pp.
133-149, 1980

A. Lingas and A. Proskurowski, “Fast Paral-
lel- Algorithms for the Subgraph Homeo-

1570

57.

58.

60.

61.

62.

64.

. D. S. Johnson,

morphism and the Subgraph Isomorphism
Problem for Classes of Planar Graphs,” Fo-
undations of Software Technology and Theor-
etical Computer Science, K. V. Nori (Ed.),
Lecture Notes in Computer Science 287, pp.
79-94, 1987

K. E. Strange and B. Toft, “An Introduction
to the Subgraph Homeomorphism Problem,”

Proceedings of the third Czechoslovak Sym:-
posium on Graph Theory, Graphs and Other
Combinatorial pp.296-301,
1982

J. Han, “Three Types of Reconfiguration in
Large Scale Cellular Arrays: Their Math-
ematical Characterization and Computational
Complexity,” submitted

“The NP-Completeness Co-
lumn : An Ongoing Guide,” Journal of Algo-
rithms, Vol.8, pp.285-303, 1987

N. Robertson and P. D, Seymour, “Graph
Minors-A Survey,” Survey in Combinatorics,
I. Anderson (Ed.),
Press, pp.153-171, 1985
N. Robertson and P. D. Seymour, “Graph
Minors. VII. Disjoint Paths on a Surface,”
Journal of Combinatorial Theory, Series B 45,
pp.212-254, 1988

N. Robertson and P. D. Seymour, “Disjoint
Paths-A Survey,” SIAM J. on Algebraic and
Discrete Methods, Vol.6, pp.300-305, 1985

M. R. Garey and D. S, Johnson, “Computers
and Intractability : A Guide to the Theory of
NP-Completeness,” Bell Laboratories, 1979

J. Han and G. Frieder, “Integrating Fault-Tol-
erant And Functional Reconfigurations On De-
fective Processor Arrays,” to appear in the
InfoScience 93, Seoul, Korea, October 1993

Topics, Prague,

Cambridge University

www.dbpia.co.kr

RX/2ATFR YY) EE do)ATFE YN & ol 4 A& WY Halel A7

m® # —(Jae-Il Han) A alg
1958'd 291 1494
1980 : dA st w3 24
(o] 8tAh)
1986 : U] & Syracuse University
AAareta 2A(MAD
1992 : v] = Syracuse University
Harstat 2 (2hAh)
19939 38~ &A : P ZAAFNATE BAHY A74
Mg+
w2l dor:wyy BA N, 13 2 A&, ¥4
A ~" gz o], Concurrent Pro-
gramming

1571

www.dbpia.co.kr

