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ABSTRACT

In this paper, we evaluate the performance of a Futurebus® based multiprocessor system with
MESI cache coherence protocol for four bus transaction types. Graphical symbols and compiler of
SLAM 1II are used in modeling and simulation. A steady-state probability of each state for MESI
protocol is computed by a Markov chain. The probability of each state is used as an input value for
a correct simulation. Processor utilization, memory utilization, bus utilization, and the waiting time
for bus arbitration are measured in terms of the number of processors, the hit ratio of cache mem-
ory, the probability of read operation, memory access time, the number of memory modules, thé
probability of internal operation, and bus bandwidth.
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G EIR 93 183 A multiprocessor system is an interconnection
of two or more CPUs sharing common memory
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and input-output equipments. The excellent benefit
derived from a multiprocessor organization is an
improved system performance. It i1s achieved
through partitioning an overall function into a
number of tasks that each processor can handle
indivisually, And, multiprocessing improves the
reliability of the system so that a failure or error
in one part has a limited effect on the rest of the
system.. For example, if a fault cause one processor
to fail, a second processor can be assigned to per
form the functions of the disabled processor. !

The simplest interconnection system for multi-
processor system i$ da common communication
path connecting all of the functional umts. This
common path is often called a time-shared or
common bus. The common bus multiprocessor
system consists of a number of processors connected
through a common path to a memory urit. Only
one processor ¢an communicatie with the memory
at any given time. This organization is the least
complex and the easiest to reconfigure.

However, system expansion, by adding more
processors or memory, increases the bus contention,
which degrades system throughput and increases
arbitration logic. The total overall transfer rate
within the system 1s hmited by the bandwidth
and speed of this single path. For this reason, pr
vate cache memortes and high performance bus
are used to mmprove the performance of multi
processor system. ™!

If multiple caches are allowed to have copies
simultaneously of a given memory location, a
mechanism must exist to ensure that all copies
remain consistent when the contents of that
memory location are modified, "

In this paper. we suggest a Futurebus' based
multiprocessor system with MESI cache coher
ence protocol, examine that multiprocessor sys
tem, and evaluate their relative perfomance of
four bus transaction types on the basis of a simu
lation model. Before a simulation, a steady state
probability of each state 1s obtained with a4 Markov
chain.'”8! This steady state probability of each
state is used as an input value for a correct simu-
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lation. Time and average utilizations are obtained

with a set of parameters change.

Il. FUTUREBUS ' AND MESI| CACHE COHERENCE
PROTOCOL

2.1 Futurebus

Futurebus ' is a revised and substanially extended
version of the original TEEE 896.1 1987 Futurebus
standard, where the basic protocols and facihities
were developed, From 1983 to 1987 the [EEE
Futurebus Working Group, provided a forum for
leading experts to develop innovative technologies
and protocols for a scalable performance multipro
cessor system bus, The most recent Futurebus”
efforts, from 1988 onwards, represented a com
mercial consolidation of all the basic Futurebus
philosophies into a realizable and practical stan
dard as an industry consensus developed between
the major organizations who became interested
developing products based on Futurebus™

Futurebus * represents i major paradigm shift
for the computer industry. Tt is the first compre
hensive bus arhitecture designed a priort to be an
OPEN shandard(An mterface specification  for
which there are no restrictions for who mayv use
it1, and which was explicitly designed to support
multiple generations of computer technology.

Futurebus ™ derves 1its name from its lack of
built in obsolescence pararneters, and its upwardly
compatible architecture and protocol extensions,
Futurebus™ represents a significant departure from
the philosophy of other standard or proprietary
buses. The most mportant objectives of the
Futurebus ™ project were”

1) to create d bus standard that would provide a
significant step forward in the facilities and per
formance available to the designers of future
multiprocessor systems, and,

21to provide a stable platform upon which
manutacturers can hase several generations of

computer systems,
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Table 2.2 Major Features of Five Buses.

[ Features NU BUS VME BUS | MULTIBUS II | HiPi BUS | Futurebus+ ]
Addressing | 32 16,24,32 |32 32 32, 84 M
Capability
(bita)

Data Path 8,16, 32 8,16, 32 8, 18, 24, 32 64 32, 84, 128,
Capability 256
(bits)
Data Path Yes No Yes No Yes
Multiplexed
Bus Sync. Asyne. Sync. Sync. Async.
Protocol 10 MHz 10 MHz 12.5 MHz | technology
independent
Sequence 2,4,8,16 | Block Block Block 1,2,4,8,16,
Access transfer transfer transfer 32, 64, words
Support not to or ED*
cross 256 controlled
byte
boundary
Byte Little | Big Little Little No
Ordering Endian Endian Endian Endian constraints
Data 37.5,block | 57 MB/s 40 MB/s 100 MB/s | 3.2 GB/s
Tranafer trans,
Rate
Standard {EEE 11906 | IEEE 1104 | IEEE 1296 IEEE 896
Message No No Yes No Yes
Passing
Cache Some No Some Some Yes
Support
Live No No No No Yes
Insertion
Bus TTL TTL TTL TTL Any
Drivers ‘Technology

2.2 MESI Cache Coherence Protocol

One specific application which the Futurebus™®
1s extraordinarily well suited to, is the shared
memory multiprocessor system. The Futurebus®
protocols include all the transaction types necessary
to drive the states of various cache modules to
conform with almost any arbitrary cache coher
ence protocol. The Futurebus®™ Working Group
discovered, early in 1986, that all the existing
cache coherence protocols are really vanations on
the same theme, but with an arbitrary nomenclature
for the cache states. The result was the develop-
ment of a unified cache model called the MOSEI
Futurebus™, uses a slight restricition of this model
(MESI : Modified, Exclusive, Shared, and Invalid),
in which tradeoffs were made to increase system
performance and the allow operation of the protocols
across bridges. !

The coherence of data in multiple caches is
based on the cache coherence attributes invalid,
shared unmodified, exclusive unmodified, and
exclusive modifted., Only one of these cache attri-
butes may be valid for a cache line in a particular

module at a given time. [hese tour attributes
comprise the following cache line states.

The nvalid attribute is true for a cache line if
there 1s not an up to data copy in the module’s
cache. All cache lines in a module’s cache are
marked invalid when a system reset is received.

The shared unmodified attribute is true for a
cache line if there is an up to date copy of che
line in the module’s cache and the module is to
assume that a copy also exists in another module\/s
cache, Modules are allowed to invalidate a shared
unmodified copy of a cache line at any time.

The exclusive unmodified attribute is true for a
cache line if there is an up to data copy of the
line in the module’s cache and the module has
been guranteed that no other copies of the line
are valid 1n any other cache in the system.

The exclusive modified attribute is true for a
cache line if there is an up to date copy of the
line in the module’s cache and the module has the
only valid copy in the system. The module has
the responsibility to eventually update memory.

MESI cache coherence protocol guarantees that
only one processor on the bus has a modified copy
of any given cache line at the same time,

The IEEE 896.1 cached transactions are Read
Invalid, Write Invalid, Read Shared, Copyback,
Read Modified, Invalidate, Shared Response, and
Modified Response.

When a processor issues a read, if the location
requested is Shared Unmodified, Exclusive Unmo-
dified, or Exclusive Modified, the operation is
said to be a read hit. In the case of a read hit, no
bus transaction is necessary and the processor is
allowed immediate access to the data. 1f the lo-
cation is invalid, the operation is said to be a read
miss,

When a processor issues a write, if the location
request is Exclusive Unmodified Exclusive Modi-
fied, the operation is said to be a write hit, and
no bus transaction is needed, If the lcoation is not
tagged exclusive, the operation is said to be a
wirte miss, even if the location is valid.
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[I. MODELING AND SIMULATION

To show the performace of the multiprocessor
systemn using the MESI protocol, we used SLLAM
111" SLAM I is an advanced FORTRAN based
simulation languagé which allows models to be
built using its graphical models that are easily
translated into input statements for direct com-
puter processing. The simulation model was veri-
fied through tracing optional sequences with
MONTR, TRACE control statement. For simulation
results, a set of paramenters was successively
changed under UNIX system V.,

3.1 System Configurations for Simulation
Figure 3.1 shows the shared memory architecture
considered in the simulation. The system consists

Processor #1 . . . Processor #N
Cache #1 . ] . Cache #N
Futurebus+
Memory #1 . . . Memory #M

Fig 3.1 A Futurebus™ based Multiprocessor System,

of N statistically identical processors. Each pro-
cessor is associatied with a private cache memory
and is connected to a Futurebus*. The main
memory is divided into M interleaved modules to
increase the bandwidth.

3.2 A Markov State Diagram for the MES! Protocol

A cache block(line) in the MESI protocol can
be one of the five states : NOTIN(not in cache),
EXCLUSIVE UNMODIFIED(in cache, clean.
potentially shared), EXCLUSIVE MODIFIED(in
cache, modified, only copy), SHARED UNMO-
DIFIED(in cache, clean, multiple copies), and
INVALID(not valid). This protocol assumes that
missed blocks always come from other caches if
one or more copies are cached.

The state transition diagram of a block is shown
in Figure 3.2. In order to compute the Markov
state diagram, we can get the steady-state prob
ability of each state :

Py m/{w-+r-+m)

P = r(1-s)(Py+P)) /{im+ (N=1)s(r +w) +w)
Po = (N~ Dist(Pe +Pay) +r1stP + P im+w+ (N-Dsw)
Puy = w/im=+ (N-Ds(r+w) +w)

Py ((IN=1Dsw(1-Py))/(r+w+m—+ (N—1sw)
Py4 Py + Py +Peoy+P =1

The simulation parameters and their ranges are
summarized in Table 3.1

:Notin

: Exclusive Unmodified
: Exclusive Modified

: Shared Unmodified

: Invalid

: miss ratio

: hit ratio

: read ratio

: write ratio

: # of processor

- ratio of shared blocks

Fig 3.2 A Markov State Diagram for the MESI protocol.
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Table 3.1 Summary of parameters and their ranges

Parameter Range

s 25 %

r 70 - 90 %
h 90 - 99 %
Memory Access Time 320 - 1600 ns
Block Size 64 bytes
EumbegfmeyMomlea g-g)

Bus Bandwidth 32 - 256 hit
Internal Operation 50 - 90 %
Processor Clock 20 Mhz

3.3 Assumptions

A few number of assumptions are needed for
our simulation,

1)In simulation, the operation of processor
module depends on the state of cache block. In
order to adopt this operation to the simulation,
the steady-state probability of each state is used
as an input value of the simulation for the correct
results of the simulation,

2) The default probability of the internal oper-
ation of processors is fixed as 0.7.

3) The processor, a central arbiter, and the
main meory are assumed to have fixed service
times 50ns, 45ns, and 320ns, respectively.

4) The default number of processors is 15,

5) The default hit ratio is 0.99.

6) The default read ratio 1s (.7

7) The default number of memory modules is 16,

8) The ratio of shared blocks, which the prob-
ability of a memory request to a shared block, is
0.0255.

9) The default bandwidth of the Futurebus™ is
64bit.

10) Simulation time is 1,000,000ns,

3.4 SLAM |l network modeling

A connected transaction is modeled such that a
processor occupies the bus during the entire dur-
ation of a memory access. A split transaction is
modeled such that a processor releases the bus as
soon as it has sent a request which contains the
desired operation and memory address to the
memory system,

A processor is modeled to conduct bus trans-
actions during its bus tenure, Each bus trans-
action encompasses the following :

1) A connection phase :the processor selects
and establishes a connection to a desired slave.

2) An optional data transfer phase:data are
transferred between the processor and the con-
nected slave.

3) A disconnection phase : the processor termi-
nates the transaction and disconnects from tf‘le
slave,

During the data transfer phase, the processor
conducts data transfers uning either the compelled
data transfer mode or the packet data transer
mode.

3.4.1 Processor modeling

SLLAM 11 simulation language provides ‘create’
statement for entity creation. The ‘create’ state-
ment is inappropriate in modeling the closed net-
work, however, Instead, we used a ‘queue’ state-
ment for modeling the closed network. It should
be noted that entities in SLLAM I are neither
created nor terminated within the graphical
model. Therefore, we must insert entity state-
ment to initiate the request of processors. The re-
quest of processors reaches the bus due to the
fixed probability.

The reference stream of each processor is viewed
as the merging of two reference streams-one being
references to shared blocks and the other refe-
rences to private blocks. Whenever a memory
reference is called for, the processor generates a
reference to a shared block with probabilty s and
a reference to a private block with probability 7-s,
In a similar fashion, the probahility of the reference
being a read is ¥ and the probability of its being
18 a write is [-7. The request 1s a hit with prob-
ability £ and a miss with probability i-A.

The processor modeling remains unchanged,
albeit transaction types change, Figure 3.3 shows
a graphical mode] for the processors,
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MSLCT : Memory SelLeCT
SHD : SHareD
PRV :PRiVate

PE :Processing Element
i :internal . poperation

Fig 3.3 Graphical Model for Processors,

3.4.2 Arbiter modeling

In this paper, central arbiter 1s selected for our
simulation because it 1s simple to model and be
cause it 1s been for most profiles. Any number of
the bus allocation schemes may be implemented.
A simple, single prioity, first-come-first-served
arbiter 1s modeled out of many possible schemes,
{ts arbitration time takes 45ns (from sending a
request to receiving a grant ),

3.4.3 Bus modeling
Entities have two attributes, which determines
the use of the bus. The requests wait for the bus

i a central until they reach the bus. According
to the value of the attributes, request of the win-
ner processor branches to one of the four possible
transactions, To solve the collision of the bus, we
define the bus as a resource.

Figure 3.1 shows a graphical model for the
Futurebus™,

[ach transaction take the same amount of time
in the connection phase and in the disconnection
phase. Timing values of the connection phase and
the disconnection phase are shown at Table 3.2.

Howerver, 1t must be noted that data transfer

time in cach varies with data transfer methods.

(2).EQ.1
o AEQ2_ pp

DTP

DTP : Data Transter Phase
MM : Memory Module
DP : Disconnection Phase
CP : Connection Phase
FB: Free Bus
ARB : ARBiter
FCFS : First Come First Served

Fig 3.4 Graphical Model for Futurchus '
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Table 3.2 Timing specifications in connection and dis-
cornection phases

Connection phase Disconnection phase
Maser(17) Master(8)
Futurebus+(5) Futurebus+(5)
Slave(47) Slave(16)
Futurebus+(5) Futurebus+(5)
Master(26) Master(26)

Total = 100 ns Total = 60 ns

How the transfer time varies is detailed in the

next two sections.

3.4.3.1 Transactions using compelled mode

Data transfer time for write or read operation
takes about 45ns. Therfore, we calculate the sus-
tained transfer rate in the compelled mode,

For a single word transfer, 20MB is transferred
per 1 sec for a 32-bit bus, 40MB for a 64-bit bus,
SOMB for a 128-bit bus, and 160MB for a 256-bit
bus. Meanwhile, for a single cache line(64 bytes)
transfer, total data transfer time is calculated as
follows :

For 32-bit bus : 100 + 16+ 45 + 60 = 880 nsec/64 bytes,
for 64 —bit bus : 100+ 8+45 + 60 = 520 nsec/64 bytes,
for 128—hit bus : 100+ 445+ 60 = 340 nsec/64 bytes,
for 256~ bit Hus : 100+ 2+45+ 60 = 250 nsec/64 bytes,

3.4.3.2 Transactions using packet mode

Futurebus™ provides two kinds of packet mode,
One is 75MHz(13.33 ns/transfer), and the other is
100MHz(10 ns/transfer). In this paper, only the
latter was considered. As in the case of the com-
pelled mode, we calculate the sustained transfer
rates with the packet mode. In a packet mode,
one start bit, one stop bit, and one empty cycle
are needed in addition to several data transfers,
For a single cache line transfer, toal data transfer

time is calculated as follows :

For 32 —bit bus : 100+ 19*10+ 10 == 350 ns/64 bytes,
for 64—bit bus : 100+ 11+10+ 60 = 270 ns/64 bytes,
for 128—bit bus : 100+ 710+ 60 = 230 ns/64 bytes,
for 256 —bit bus : 100+ 5+ 10+ 60 = 210 ns/64 bytes.

3.4.4 Transaction modeling

Connected transactions using compelled mode,
connected transactions using packet mode, split
transactions using compelled mode, and split tra-
nsactions using packet mode are modeled according
to following Futurebus™ transactions.

Four transactions have several phases :

1) ReadModified transactions and ReadShared
transactions have arbitration phase, connection
phase, data transfer phase, and disconnection
phase.

21 CopyBack transactions have arbitration phase,
connection phase, data transfer phase, and mem-
ory access phase prior to the same phases of
ReadModified transactions being performed.

3) Invahdate transactions have arbitration phase,
connection phase, and disconnection phase,

Connected transaction is used to conduct a mo-
dule s request and reponse 1n a single bus trans-
action. In a connected transaction, a processor
occupies the bus during the entire duration of a
mMemory access,

Split transaction is used to split a modul’s request
and reponse phases into seperate bus tenures and

transactions, The module serviving the request
responds by becoming a master, addressing the
requester, and transmitting a responses. In the
split transaction, the bus and memory modules
are seperate severs. A processor release the bus
as soon as it has sent a request that contains the
desired operation and memory address to the
memory system. The released bus can then be

(3) Bus tenure : Compelled - 360

‘ (1) Connected : MM-FM-FB
q = (2) Split : FB~MM~-FM-ARB
(An8 ] Packet - 110

RS : Read Shared
INV : INValid

CB : CopyBack
MM : Memory Module
FM : Free Memory
FB: Free bus

Fig 3.5 Graphical Model for Each Transaction.
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used for other purposes.
Figure 3.5 shows a graphical model for each
transaction.

3.4.5 Memory Modeling

Memory is defined as a resource, and consists
ot sixteen memory modules. Since memory is de
fined as a resource, requests wait for the memory
in each AWAIT node. Sixteen memory modules
are selected randomly with UNIFORM DISTRI-
BUTION.

Figure 3.6 shows a graphical model for memory.

(2).EQ2 FBR
men | 122 ME 11 {1
ME 1
{1 [ME 1] @ea3 - FB
L] L]
1
* .
MM
4).LE.V6 o ° (2).EQ2 FBR
ME 16/1 | 1 320 ME 16/1 | 1
ME 16 (21 eq3 ~ FB

FBR : Free Bus for Read shared

Fig 3.6 Graphical Model for Memory.

3.4.6 System Modeling

System’is described with SLAM II in a closed
network. System consists of several models me
ntioned above. Figure .7 shows a block diagram

for system.

Split Transaction

Connected Transaction

Fig 3.7 Block Diagram for System.
1822

V. RESULT ANALYSIS

Timings and average utilizations are used to
evaluate the performance of a Futurebust based
multiprocessor system using MES] protocol, The
experiment was repeated for 1,000,000ns for each
of the four transaction types—connected trans
action using compelled mode, connected trans-
action using packet mode, split transaction using
compelled mode, and split transaction using packet
mode —in order to compare their performances
and to obtain a general tendency with simulation
parameters change.

4.1 Performance Versus Number of processors

The average arbitration waiting time, processor
utihzation, bus utilization, and memory utilization
in the four transaction processing types were
calculated with the number of processors changed
from 4 to 40 with an interval of 4. The results are
given in Table 4.1,

From Table .1, we can conclude that connected
transactions using the packet mode performed
best. Because the bus tenure takes more times
than that of memory, connected transaction showed
better performance than split trasaction.

When the number of processors increased, the

bus utilization got saturated rapidly, thus causing

y . CCPR ] SCPR i
PP | avilne) pu6) w6 mu(6) | awilne) puld) (8 mu()

4 106 N8 B 09 114 83 X

8 267 91.7 H 13 35 810 M 1

12 481 903 61 18 585 850 7

16 743 888 74 2 1102 T98 87

2 1388 838 & 24 1837 740 B
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-
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8 M6 T9 8B 28 O S0 100
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the request to wait longer before being granted
bus service, Processor utilization decreased slowly
from the point when sixteen or more processors
were installed.

4.2 Performance Versus Hit ratio

The average arbitration waiting time, processor
utilization, bus utilization, and memory utilization
in the four transaction processing types were
calculated with the hit ratio changed from 0.9 to
0.99 with an interval of 0.01. The results are
given in Table 4.2.

From Table 4.2, we can conclude that connec-
ted transaction using packet mode performed
best. Because the bus tenure took more times than
memory access, connected transaction showed
better performance than split transaction.

[n most cases, performance of the multiprocessor
system i1s known to be influenced very much with
hit ratio change. However, since Futurebus®
fixed a cache line size as 64 byte, performance
was not as good as usual from (.90 to 0.98. There-
fore, for a good performance, hit ratio should
maintained about 0.99 or above in a Futurebus™
based multiprocessor system.

Table 4.2 Performances Versus Hit ratio

- CCHR SCHR o
Hit matio | i) puie) bu(%) mu(%) | awting) pul6) bu(%) mu(%) |
“ogo | 680 133 100 3l 667 102 100 25
091 67 143 100 3 5635 116 100 26
092 6406 180 100 31 5400 128 100 26
083 6381 204 100 31 5284 154 100 25
084 68 23 100 3 S029 181 100 26
095 5729 259 100 31 5014 186 100 24
096 512¢ 32 100 28 657 252 100 24
097 043 £3 10 3 B/O  BE 100 24
098 48 641 97 3l 2632 51 10 24
0% | M4 g9 B2l | 999 805 84 21
it rati CPHR SPHR
L Tatio 1 ting) gg(%) (%) mu(3%) | awt(ns) pu(%6) bu(%) mu(%)
090 617 10 37 | 3467 155 100 39
081 5389 115 100 36 348 168 100 4
082 sS40 29 100 38 241 202 100 38
053 8 BI W0 37 3117 29 0 38
094 M B 10 37 368 49 100 39
086 oo 29 W0 37 ms 37 100 38
096 361 412 100 36 293 33 100 37
097 80 S22 100 37 1872 505 100 38
098 429 740 % 33 107 89 94 36
0% | 41 92 & 23 2 P8 63 23

4.3 Performance Versus Memory Access Time
We changed the momory access time from 1

cycle(320 ns) to 5 cycles(1600 ns) with an interval
of 1 cycle. Arbitration waiting time, processor
utilization, bus utilization, and memory utilization
are given in Table 4.3. As memory access times
are increased, the processor utilization decreased
rapidly because of memory access delay increase.

From Table 4.3, we can conclude that the dif-
ference between the connected transactions and
split transactions is mostly influenced with change
of the memory access time. We also can see that
split transaction using packet mode performed
best because split transaction released the bus
during memory access.

We arrange the order of each transaction type
on the basis of its processor utilization :split
transaction using packet mode, split transaction
using compelled mode, connected transaction using
packet mode, and connected transaction using
compelled mode, in the same order.

Table 4.3 Performances Versus Memory Access Time

R, S
MAT{(ns)

CCAR SCAR
i) 200 bu0 o |l pi00) 50 i)

w ] ™ s 2 [ mz B
640 2117 3 91 a6 131 %6 87 38
960 4751 626 9% 43 1924 @7 9 5
120 | R 528 10 4B | 4z &5 m 6
L 1600 |nmo cz 100 5 | ow 06 84 7

SPAR

MAT() | wtlns) E(x) buco 1a08) | awtio) puio%)_buld)_mute) |

=T o= 21 w Wl ' 22
640 1225 m 5‘ kY] 518 BBl 41
%0 | BE @5 %6 47 ® B0 T 56
20 | @M 51 100 53 u8 ™9 B 69
160 | %1 60 100 53 26 650 87 83

4.4 Performance Versus Bus Bandwidth

The average arbitration waiting time, processor
utilization, bus utilization, and memory utilization
in the four transaction processing types can be
obtained with the bus bandwidth changed from
32-bit to 256-bit with an interval of 32-bit. The
results are given in Table 4.4,

From Table 4.4, performance improvement of
split transactions is larger than that of connected
transactions because split transaction is sensitive
to the data transfer time. And, performance im-
provement of the packet mode is larger than that
of compelled mode.
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We can arrange the order of each transaction
type : connected transaction using packet mode,
split transaction using packet mode, connected
transaction using compelled mode, and split tra

nsaction using compelled mode, in that order.

Table 4.4 Performances Versus Bus Bandwidth

N SCB.R
BwWbin awt(ne) pulde) bu(%) mulse)
K4 432 91.1 66 2
64 387 K2 62 2
128 347 R7 60 2
% w w1 @ 2 |
. SPBR
BWO | vt i) bu) %6 | awilos) pie) b mu%)
2 2830 645 14 2 472 816 0 2
64 887 822 <] 2 317 90.0 &3 2
128 453 878 0 2 61 91.0 58 2
| =6 | m0 %5 & 2 B a5 w2

4.5 Performance Versus internal Operation

The average arbitration waiting time, processor
utilization, bus utilization, and memory utilization
in the four transaction processing types can be
obtained with the internal operation changed from
0.5 to 0.9 with an interval of 0.1. The results are
given in Table 4.5,

As the ratio of internal operation increased,
performance is improved because of total time de
lay decrease.

We can arrange the order of each transaction
type : connected transaction using packet mode,
split transaction using packet mode, connected
transaction using compelled mode. and split tra

nsaction using compelled mode, in that order.

Table 4.5 Performances Versus Internal Operation

10 CCIR SCLR )
awt(ns) pu(3¢) bu(%6) mu(%) | awi(ns) 96)  bu(%6)  mu(%)
05 261 686 @ 27 26, 580 9 23
06 13 ™0 W/ 25 171 668 %5 24
07 e T 18 82 82 2
08 3/ @B 5 16 HS54 05 6 16
08 | 150 9719 X 09 | 16 %5 2 09
L0 CPLR ) SPLR B
awt(ns) pu(%) bu(%) mu(%) | awt(ns) pu(%6) bu(%) mu(%)
05 128 ™1 @ 3l 901 740 91 3l
06 616 815 T 26 ) B2 ™ 27
07 38 R0 64 21 8 897 64 22
08 01 BT M4 14 173 942 45 18
L 09 | 97 982 2 09 | 80 96 28 09
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4.6 Performance Versus Read Ratio

The average arbitration waiting time, processor
uttlization, bus utilization, and memory utilization
i the four transaction processing types can be
obtamed with the read ratio changed from 0.7 to
(.9 with an interval of 0.05. The results are given
in Table 4.6.

As the ratio of the read operation increases,
copyback of the content in cache memory 1s
decreased when the replacement 1s occured. The

refore, performance 1s improved.,

Table 4.6 Performances Versus Read Ratio

| awt(ns) pu(%€) bu(%) mu(%) | awi(ns) pu(%) bu(%) mu(%)
o0 | 1A 2 %0 812 & 2
075 | 6% 2 Bl1 w82 81 2 |
o | 569 2 %6 B8 0™ 2 \
08 | 475 2 648 B6 76 2 !
050 1 3% 2 56 88 T3 2
RR . RR
awilns) pu(%6) bu(%) mu awt(ns) pu(%6) bu(%) mu(%)
0.70 ¥ w2 &€ 2 21 00 6 2 i
075 1 3/ ®RT 6 2 %5 06 61 2
080 W W2 B2 260 916 58 2
085 | ;WS %2 2 97T % 2 :
0% | 25 %5 s 2 18 o6 5 2 !

4.7 Performance Versus Number of Memory
Modules

The average arbitration waiting time, processor
utilization, bus utilization, and memory utilization
in the four transaction types can be obtained with
the number of memory modules changed from 2
to 8 with an interval of 2. The results are given in
Table 4.7.

In view of total memory access time, two memory
modules take four cycles, four memory modules
two cycles, six memory modules two cycles, and
cight memory modules only one cycle. Theretore,
performance 1s improved according to increase of
the number of memory modules except for the case
of four memory modules and six memory modules.

We arrange the order of each transaction tvpe
on the basis of its system power : split transaction
using packe! mode, split transaction using com
pelled mode, connected transaction using packet
mode, and connected transaction using compelled

mode, 1n that order.
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Table 4.7 Performance Versus Number of Memory Mo-

dules
SCM.R
f oerNfM awt(ng) pu(36) bu(36) mu(%) | awt(na) pu(%6) buld) mu(%)
2 11489 315 100 k] 9833 346 100 4
4 5621 450 100 155 4548 97 100 18
6 535 418 100 107 3649 517 100 us
.8 171 730 9% 54 1040 802 88 61
CPMR SPM.R
o MM I otioa) pul0) bule) %) | awi(n) pul%)_ b
2 2648 634 2 65 1756 &8
1409 751 88 148 602 845 n 16
6 126 T3 8 95 %6 ®4 0 105
8 | 9% 806 8 4 | 3 81 & 43

V. SUMMARY AND CONCLUSIONS

In the shared bus multiprocessor system, bo-
ttlenecks of the bus and memory access delays
are known to be the two major problems which
negatively affect system performance. The former
problem is usually solved by employing the fast
bus which is capable of transferring a large amount
of data at a time. The latter latter problem is
solved with the use of privaie caches attached to
each processor,

In order to solve the problems mentioned above,
we selected the Futurebus™ based multiprocessor
system with MESI cache coherence protocol.
Then, we used simulation technique with SLAM
Il to evaluate the performance of that multipro-
cessor system, Before simulations, the steady-state
probability of each state was calculated using
Markov chain, This probability was used as an input
paramenter for correct simulation.

Conclusions based on the simulation results are :

1) In case where the number of processors varies,
we can arrange an order of four transaction types
according to its system power. The order of the
four types is connected transaction using packet
mode, split transaction using packet mode, con-
nected transaction using compelled mode, and
split transaction using compelled mode, in that
order.

2)In case of the change in hit ratio, we can ar-
range the order of each transaction type on the
basis of its system power : connected transaction
using packet mode, split transaction using packet
mode, connected transaction using compelled mode,

i

and split transaction using compelled mode, in
that order.

3) In case where read ratio varies, we can ar-
range the order of transaction type on the basis
of its system power : connected transaction using
packet mode, split transaction using packet mode,
connected transaction using compelled mode, and
split transaction using compelled mode, in that
order.

4)In case where internal operation varies, we
can arrange the order of each transaction type on
the basis of its system power : connected transaction
using packet mode, split transaction using packet
mode, connected transaction using compelled mode,
and split transaction using compelled mode, in
that order.

5)In case where memory access time changes,
we can arrange the order of each transaction type
on the basis of its system power : split transaction
using packet mode, split transaction using com-
pelled mode, connected transaction using packet
mode, and connected transaction using compelled
mode, in that order.

6)In case where number of memory modules
changes, we can arrange the order of each trans-
action type on the basis of its system power : split
transaction using packet mode,gsplit transaction
using compelled mode, connected transaction using
packet mode, and connected transaction using
compelled mode, in that order.

7)In case where bus bandwidth changes, we
can arrange the order of each transaction type on
the basis of its system power : connected trans-
action using packet mode, split transaction using
packet mode, connected transaction using cofpelled
mode, and split transaction using compelled mode,
in that order.

For all of the cases, the transaction using the
packet mode performed better than that using
compelled mode because of its fast data transfer
time. Connected transaction showed better per-
formance than split transaction except when
memory access time changed and when the number
of memory module was changed. When the memory
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access time or the number of memory modules
changed, split transaction showed better results
than connected transactions because spht trans-
action released the bus during memory access.
Finally, Futurebus™ is well suited to implement
the shared bus multiprocessor system in view of
the cache coherence protocol and connected
transaction using packet mode performed best

among four transaction types.
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