DEri=

A Parallel Emulation Scheme for Data-Flow
Architecture on Loosely Coupled
Multiprocessor Systems

Yong Doo Lee*, Soo Hwan Chae®™ Regular Members

g AT 28 T2 AA A 2HS RS Hl o] H
Z 2 AFE 729 1y o Ed o] BEsE Bt
FEgHE F B O FegH £ 4%k ;e

Abstract

Parallel architecture based on the von Neumann computation model has a limitation as a
massively parallel architecture due to its inherent drawback of architectural features. The
data-flow model of computation has a high programmability in software perspective and high
scalability in hardware perspective. However, the practical programming and experimentation of
data-flow architectures are hardly available due to the absence of practical data-flow architectures,
while a number of von Neumann parallel machines are available. In this paper, we present a pro-
gramming environment for performing the data-flow computation on conventional parallel machines
in general, loosely coupled multiprocessor systems in particular. We build an emulator for tagged
token data-flow architecture on the iPSC/2 hypercube, a loosely coupled multiprocessor system.
The emulator is a shallow layer of software executing on an iPSC/2 system, and thus makes the
iIPSC/2 system work as a data-flow architecture from the programmer's viewpoint. We implement
various numerical and non-numerical algorithms in a data-flow assembler language, and then com-
pare the performance of the program with those of the versions of conventional C language. Conse-
quently, we verify the effectiveness of this programming environment based on the emulator in
experimenting the data-flow computation on a conventional parallel machine.

2 o

wolwk A mulel P Ael Al bz H4 el Hepgoz Qs iE YANe wERAE @A
}\

e}, oy Ea - AlArde AxEold 31 Taoid A slngold B M AL 2w gl
D} et dA dle]71%—‘?’? ol M= e e W 9 A E S ssla k) hul, o]yt WAl) AAlE B
Ik A doly B A glons g ol FEl A R A G AR
Bhbel of gkl gt Ur'a; A A2l A dlolE] B g e] AtE FAE A Ae 22w
APPSR e SN 8 AL AR BT AR

Dept. of Computer Eng., Hankuk Aviation Univ.

Dept. of Electronic Eng., Taegu Univ. -
B 93190

1902

www.dbpia.co.kr

WL/ AR AEER SE RN AlAYe

e ol F g A3

Bl 29 g5 o Bafol Mol M #%E

#73
TEBIY T B
= IPSC/2 Al =~
&S doly E2
ol g A, el) BE e s A el Ny
g g el & thatdde 4 sy]r.

A EH ol += iPSC/2 Al 280 4] &
elo] HlolE] E&g ¢

olE} i & &}

1. Introduction

Device technology is expected not to guarantee
the linear increase in its switching speed, whereas
a state of the art computer do not meet the high
computing power required in scientific compu-
tation, Parallel processing 1s considered a promising
approach for coping with the demmands of com-
putation. In order to enable parallel processing, a
number of parallel machines based on the von
Neumann computation model have been built.
However, the inherent sequential nature of the
model prevents massively parallel architectures,
Those machines in general suffer high communi-
cation latency and poor programmability since
users must face low level architectural features in
programming applications{ 1],

The data-flow model of execution is provided as
a solution to the von Neumann bottleneck, thus
envisioning true parallel processing. Dynamic in-
struction scheduling, based on the data-driven
principles of the model, provides a potential to
resulting in the
The
semantics of the data-flow model

hide communication latency,
exploitation of fine-grain parallelism[2],
functional
allows the data-flow mode to be a viable alterna-
tive to address the issue of programmability of
multiprocessor systems. Consequently, given the
limitations of this explicit parallelism approach,
data-flow is more robust and versatile in that it
will provide complete transparency to the user
and high accessibility to large-scale parallel ma-
Indeed,
intrinsically scalable,

chines. the data-driven approach 1s

This work demonstrates that data-flow archi-

< A A EtE e ol gl o) El = iPSC/2 dto]] fH.E o] &35} Tagged Token Hl o] & =

> crEE A §Abah
9 ol telof vLZ%M A4 C clolo o

FES TRE

IEgo]d vk AlBolu g ZZ2 v e <] Zol] A}
AR 7t

#aht of el 7}x) 4 A da
19 o] A %5S v s,
& ALTE et o) g1y

T &8 H)
tﬂ Hi’]- o=}

23 H doly 2

tecture has superior programmability from the
programmer’s point of view in conventional seque-
ntial multiprocessor systems and higher processor
utilization. The execution time of numeric and
non-numeric algorithm both on the data-flow ma-
chine and the conventional sequential multiprocessor
system was compared. We selected the INTEL
iIPSC/2 hypercube system as a prototype distri-
bution message passing multiprocessor system,
We implemented a macro actor tagged-token
data-flow machine emulator on the iPSC/2 hype-
rcube system,

II. Background and Emulation Model

2.1 The programmability issue

In a conventional von Neumann programming
enviroment, 1t 1s essentially the programmer’s
responsibillity to ensure that the memory latencies
are masked by the execution of other tasks and
that the tasks are appropriately synchronized
amongst themselves. This i1s the issue of progra-
mmability of multiprocessor systems. In fact,
maintaining a large number of tasks active among
multiple processors in an intricate configuration,
and synchhronizing them in proper order to obtain
a safe execution, 1s a humanly impossible feat.
Indeed,

large multiprocessor systems (greater than two)

the problems of task partitioning for

are extremely difficult to surmount, In the con-
ventional models of execution, the programmer
must be aware of the potential parallelism in the
program as well as of all the synchronization
requirements so that the program can be parti-
allocated,

and sequenced safely, 1.e.,

1903

tioned,

www.dbpia.co.kr

RSP CEE '93-12 Vol 18 No. 12

produces the same results as if the program had
been run on a single processor machine. Since
there are many potential points of synchro-
nization to be mapped over a large number of
pairs of processors, safe programming can only be
guaranteed by a very conservative approach to
dependencis would be introduced. In order to
fully utilize the potential of multiprocessor tech-
nology, a different approach to programming is
needed altogether. Such as the functional model
of execution in which instructions are functions
to which arguments are applied. This solution has
the advantage of embedding in program the data
dependencies, thereby relieving the programmer
from this burden.

2.2 Data-driven : A Functional Model of Execution

The degree of explicit control of the scheduling
of operations on hardware resources characterizes
the very principles of computation models. The
pure data-driven computation model and the von
Neumann model are the two extreme of the
continuum in the scheduling perspective. The
scheduling of operations in the von Neumann
computation model is static, i.e. the execution se-
aquence is decided at compile time, while the

scheduling in a pure data-driven computational
model is dynamic upon availability of operand
data.

In the data-driven computational model, a
program is represented as a data-flow graph(Fig.
1), a digraph with an explicit data-dependency re-
lation by arcs as well as computation by nodes
and implicit semantics of data-driven execution,
The major impact of the data-driven model is the
capability to hide the latency, and to eliminate
explicitly synchronization by dynamic scheduling
based upon data availabflity, while maximally ex-
posing available parallelism{2],[3]. In short, the
data-flow model of execution has been designed
in order to solve two of the most important
problems of multiprocessor systems design :

-High memory latency:a large scale multi-
processor should contain many processors which

1904

can be widely separated. This implies that com-
munication costs for synchronization between
processors are very heavy and will add a con-
siderable penalty to data transfers.

-High context switching time and low pro-
cessor utilization : all processors in multiprocessor
constitute a long pipeline (including the internal
pipeline segments of the processor themselves, if
applicable). In order to keep this pipeline operating
at maximum efficiency, a large unmber of jobs
must be kept active simultaneously. This problem
1s further complicated by the fact that task
switching between processors may be very high.

Fig 1. An example data-flow graph for b* —4ac

2.3 The Macro-actor data-driven model

Even though the data-flow computation model
has a potential to hide the latency and to expose
available parallelism, the model in its pure form
would not be acceptable due to expensive hard-
ware cost and the scheduling overhead. In fact,
dynamic scheduling is not necessary for the in-
struction in a sequential thread, only introducing
scheduling overhead, 1.e., cost of machine operands
and waste of system resources in passing operands
without registers. Overall, compared to the von
Neumann machines, the data-flow architectures
costs are expensive due to the hardware supports
for the execution control, e.g. operand matching
facility.

The von Neumann model, on the other hand, is

www.dbpia.co.kr

RL[RE HEAT: BE ZRAM ALLYE T dlo)E) B2 HHE T2 [y ol S oM M W

fragile at the unpredictable operations due to its
static scheduling. Therefore, the stackness of the
control at a point between the two extremes of
scheduling is desirable to resolve the bottleneck.
As an alternate, a macro actor data-driven model
was proposed(4](5]. The model reduces the over-
head from dynamic scheduling at the micro level
by clustering a set of sequential instruction into
an actor executed in sequence, while it preserves
the benefits of dynamic scheduling by maintaining
the principle of data-driven execution at the
macro level.

2.4 The dataflow model for emulation

The target dataflow model for emulation is a
tagged token macro actor dynamic data-flow
architecture(MATTDA) that has been heavily
simulated in USC(University of Southern Califo-
rnia) data-flow researach group. The MATTDA is a
data-flow/von Neumann hybrid model proposed to
reduce the synchronization overhead and exploit
the locality among instructions|3)],{6]. The sche-
duling unit is a collection of instruction clustered

according to performance criteria at compile
time.

As shown in Fig.2, the MATTDA consists of
identical processing elements(PE) connected by
a packet network with a global I-structures for
structured data. The basic structure of each PE
is the same as the MIT tagged token data-flow
architecture ;a four-stage pipelined architecture
which consists of Match unit, Fetch unit, ALU
unit and Output unit,

In the MATTDA model, a token can carry
“fat” data such as vectors. The Vector data of in-
coming tokens are stored in the Data store and
only the data frame pointer or vector data are
sent to ALU which can directly address the
matched vector data.

A von Neumann execution model is currently
assumed for the ALU. As in conventional as-
sembly language, the micro instruction within the
ALLU has three addressing modes ; immediate, di-
rect and indirect addressing. Each datum of vec-
tor token data can be referenced by its port
unmber and its displacement from the vector

Topology: 6-dim. hypercub;h

@ O
ONCR0L <

Processing Element

To/from the communication network

—

Waiting
Match

Instruction Token
Fetch Queue

v

ALU

Token
Formatting

Fig 2. The data-flow model for emulation

1905

www.dbpia.co.kr

HELE S ®H ik '93-12 Vol. 18 No. 12

head. After processing the macro data, the ALU
should indicate the range of valid data for pro-
ducing new *tnkens with a tag to the OUTPUT
facility.

Opera._onally, on each PE, every incoming
token is enqueued in Match queue implemented
by associative memory or hash queues in general.
According to the associative or hashing function,
tokens are matched with the tags. Once all the
input tokens for an actor are matched, an activity
for the actor is formed and then enqueued into
the Enable actor queue. Later, when the actor is
scheduled, the instructions inside the actor are
sequentially executed, finally generating a num-
ber of output tokens. These tokens are again
routed to the destination PEs. Consequently, we
see that two levels of scheduling is employed in
the MATTDA : data driven scheduling at the in-
ter-actor level and control-driven scheduling of
von Neumann model at intra-actor operations,

II. The mapping the MATTDA to iPSC/2 system

3.1iPSC/2 Architecture

Intel’s iPSC/2 Concurrent Supercomputer is
the cost effective solution for large-scale appli-
cations. Typical application include computation :
mechanics, petroleum exploration, electronic de
sign, molecular modeling, and tactical and stra
tegic systems, In and iPSC/2 system, a large
number of processors or nodes work concurrently
on the parts of a single problem[7].

An 1PSC/2 system consists of compute nodes,
I/O nodes, and a front-end processor called the
host, A nodes is a processor/memory pair. lts
physical memory is distinct from that of the host
and other nodes. Faeh node runs the NX/2
operating system, uses message pas:smg to com
municate with other nodes, and can access both
the host file system and the iPSC/2 Current File
System.

1906

System Resource Manager

Interconnection Network

Fig 3. 1PSC/2 system

3.2 The communication in iPSC/2 system

IPSC/2 support both synchronous and a synchro-
nous communication among PEs. In the current
programming environment, a number of C library
function are provided to support those two
communications, The synchronous commumnication
enforces the process which calls a communication
function, i.e., to send or receive a message, to be
suspended until the requested function finishes.
The functions for sending and receiving a mess
age in C language are send() and recv(),
repectively.

The asynchronous communication enable the
computation and commurication to be overlapped.
The process which calls an asynchronous send or
receive function does not have to wait until the
communication for the message finishes. This 1s
more efficient in execution time than the
synchronous communication. The functions for
asynchronously sending and receiveing a message
in C language are isend() and irecv(), repectively.
[ibrary functions to secure mutual exclusion for
critical sections which is indispensable in asyn-
chronous communication are provided.

In addition to general communication facilities
as noted previously, there is an asynchronous
communication function in which the user can in-
stall a service routine in for a messages of a type.
When a message arrives arrives at a a PE, the
system is trapped to the service routine for the
type of the message which was the install by the

user. This capability i1s very useful where a reg

www.dbpia.co.kr

L/ HER AEAT S ZEAA A2 S M dlole] 29 FAHE 2o iy A Bulol ol e K

ular manipulation for all messages of a type 1is re-
quire,

3.3 Mapping the emulated model to the iPSC/2

The main objective of the emulator is to make
an iPSC/2 system work as the MATTDA by
providing a shallow layer of software on iPSC/2
Though the hardware of an iPSC2 does not pro-
vide the exact facilities for the MATTDA, we
can utilize some of them in our emulator. So, we
attempt to map the components of the target
emulation system to the iPSC/2 system in order
to maximally use physical components. With this
objective in mind, we map each node in the
iPSC/? into a processing element(PE) of the
MATTDA system by locating processes corre-
sponding to major function units. The interprocessor
communication facilities of the iPSC/2 are just
mapped into the interconnection network among
PEs. The system resource manager which consists
one 32 bit microprocessor, main memory and UNIX
as a operating system is mapped to the system
manager processor of the MATTDA{4],17].

HOST Process

Graph file # 4
Download | ;

IV. The Overall structure of the Emulator

The emulator consists of two kinds of processes.
The HOST process running on the System Re-
source Manager of iPSC/2 system emulates the
general function of System Resource Manager of
the MATTDA. As the PEs in the MATTDA are
functionally homogenous, one single process
named the NODE process is provided for each
node in the iPSC/2 system. The NODE process
emulates the function of hardware components of
a PE and [-structure controller in the MATTDA.

4.1 The HOST process

The key role of the system resource manager of
the MATTDA is to provide the user interfaces.
On the system management side, it also provides
facilities for downloading of dataflow program
graphs and configuration information, and input/
output interfaces during execution. The HOST
process has the corresponding software components
to emulate the functions of the system resource
manager. Whenever a program is executed, the
HOST process loads the NODE process on each

Inter NODE
mowsdp. COMMuUNication

R— 5. HOST to NODE
communication

l NODE1

Fig 4. Mapping of IPSC/2 system to emulation model

l NODE2

1907

www.dbpia.co.kr

SRE SR ik '93—12 Vol 18 No. 12

node allocated to the user. Then, the HOST pro-
cess sends the program graph to a NODE
processes of the nodes through a message with
appropriate inormation for system configuration.
During the process of the program execution, the
HOST interacts with nodes to service the 1/O
functions. Finally, when the program has termi
nated, the HOST process collects the execution
result and then releases the NODE processes
from the nodes.

4.2 The NODE process

A NODE process resides on each node of the
iPSC/2 system, emulating a variety of function of
a PE in the MATTDA system. The NODE
processes consist of a number of engines for the
mathch, fetch, alu and output facilites of the
MATHCH, FETCH, ALU and output tacilites of
the MATTDA. For input tokens, the engines ope
rates with an appropriate function. Finally, tokens
generated by a PE are routed to appropriate PEs
according to mapping rules. The routing of tokens
in NODE process 1s done by using the asynchronous

communication facilities in the iPSC/2? system.

4.2.1 PARSE engine

As mentioned earlier, there needs to be com-
munication between a NODE process and the
HOST process in the Resource Manager Control-
ler of the iPSC/2 system. At the beginning of
program execution, the HOST process sends a
message of GRAPH type bearing the program
graph to all NODE processes 1n participating
nodes. The key role of the PARSE engine 1s to
process the message and build an internal data
structure for the program graph by parsing the
message. When the PARSE engine receives a
packet of GRAPH type for the HOST process, it
extracts the data part, i.e.. the graph, and then
parses graphs, while building an appropriate data
structure for the graph. As depicted in Fig. 5, the
data-structure consists of two parts:.a program
and a token structure. The program structure
called “Fetch Hash Table” is provided to main

1908

tain the structure of input data-flow program
graphs, while a token structure called "Token
Queue” is provided for the initial tokens specified
in the program. Since only the tokens that follow
the mapping function for the tag value are
enqueued in the Token Queue, initial tokens are

distributed on the appropriate nodes|81{9].

PE
0|~ 4—s{[macro-actors] | ———»{ [macro-actors[-—
i '
2]] v ;
(hstuction] "
; v
@
_PE
TR T S 7 S
1 \ PR x Ta
2 Data
m—
Data

Fig 5. Data structure from Program graph atter parsing

4.2.2 The MATCH engine

In the MATTDA machine, the number of
input/output tokens for an actor is hmited up to
5, respectively, The tokens consist of two parts:
data and a tag. The tag field consisting of a col-
lection of components, i.e., code block, statement
and iteration field, is provided for matching
purposes. The key role of the MATCH engine 1s
to perform the matching operation for the input
tokens and to create an activity to enable actors,
The data-structures operated by the MATCH
engine consist of a Token Queue(TQ), a Matching
Hash Table(tMHT) and a Enable Queue(EQ).
The TQ is a first in first-out(FIFO) queue for
storing the incoming token in the PE. The MHT
shown in Fig. 6 is a hash table, each entry of
which 1s a pointer to a linked hst for storing
tokens until the firing of the actor for the tokens.
An entry of the MHT may hold tokens with dif-

ferent tag values, since the hash function 1s applied

www.dbpia.co.kr

LR AT B E LA A A MES ol a2 ARy 72

of frF ol gl ol Aol Mg #%

only to part of tag components. The Enabled
Queue is a FIFO queue for storing activities,

The MATCH engine consists of two parts:a
communication service routine and a matching
routine, When a message of the TOKEN type
arrives at a PE, an asynchronous interruption in
the MATCH engine occurs for the message. The
routine extracts a token from the message and
then prepares for the matching by enqueuing the
token 1n the Token Queue, For the matching of
incoming tokens, the MATCH engine dequeues a
token from the TQ and then determines an entry
in the HQ by calculating the hash function for
the tag of the token. Starting from a first token
linked to the entry, the HATCH engine attempts
to match by comparing the tag of the token with
that of the incoming token. If either no tokens
are matched(Fig 7.1) or the incoming token is
not the last token for a set of tokens for an actor
while the matching succeeds(Fig 7.2), the token
is enqueued In the hash entry(note here the
storing location is different in either case).
Otherwise(Fig 7.3),
maining tokens for the hash table and forms an

the engine extracts the re-

activity for an actor. The activity is then enqueued
in the Enable Queue.

mhink _.—_ mhink mhink
———{Token) —® (Token} —® (Token) ~— W

........................ TS A .

-
rink N
A

\oiﬂnk

Fig 6. Match hash table

4.2.3 FETCH engine

In the MATTDA machine, an actor is a collec-
tion of instructions, i.e., a macro actor, On the
firing of an actor, the ALU sequentially executes
the instructions of an actor in a control-flow

fashion of the von Neumann computer. The role
of the FETCH engine is to emulate the operations
of the FETCH hardware. The Fetch Hash Table
(FHT) shown in Fig. 8 is a main data structure in
the engine. Each entry in the FHT forms a queue
for the instructions of the corresponding actors.
The hash function of the FHT to an actor is
composed of a linear combination of the identifier
of the code block to which the actor belongs and
statement number of the actor. The FETCH en-
gine schedules an actor by dequeing an activity
from the data structure storing activities. It

@ input token
. matched token
mhlnk
@ e R e U D
mhink OPTINK om

mhink \gpmk
match hash table Tok

1. Matching fails : enqueue at the tail of the queue.

T3>}

mhlnk mhln mhlnk

HERET

2. Matched but not yet fully matched:enqueue in the head of
the cluster of matched tokens.

I

match hash table

match hash table

3. Fuily matched(all operands are ready) extract the tokens
from the hash table.

Fig 7. The operation for matching

1 _m=-inst T m-‘i‘nst | i

Ne=O

fetch hash table

Fig 8. The structure of FETCH hash table

1909

www.dbpia.co.kr

58 RE EE "93—-12 Vol.18 No.12

locates the code for the actor in the FHT by
using the tag of tokens in the activity and setting
a pointer with the location. The structure of the
FETCH hash table is shown in Fig. 3.

4.2.4 The |-structure engine

The MATTDA machine has a global heap,
I-structure for storing structure data. I-structure
Is a memory structure that has write-once seman
tic and employs split phase operations. The
write-once semantics of the I-structure supports
the fine-grain synchronization at a data level,
while the split operation provides thesystem with
potential to hide memory latency which is one of
the critical problems of a multiprocessor system,
In the current implementation, the I structure 1s
utilized to handle only the array type data struc-
ture{8]. Thus, cells in I-structure can only be
accessed through array handling instruction. A
more in-dept explanation of the mechanism and

operational principles of the I-structures is as bhe

Zero Dimensional Array
)

One Dimensional Array
[) " . _

low :

- Split-Phase Operation : For a READ request
to an empty cell, the request is queued in the de
ferred list and is pending until the cell is written.
When a WRITE command is requested on a cell
with deferred requests, the requests are responded
with the data carried in the command and the
WRITE operation is performed on the cell,

- Centralized | structure :I-structure pools re
side in a node which executes all array bandling
instructions generated in the system. The node
works in such a fashion as a dedicated I-structure
controller. This centralized 1 structure is simple
in managing the l-structure since the name space
for the array can be continuous and has a great
deal of extensibility 1n implementation of the
[-structure. In scientific application, the data
structures are heavily accessed, which causes the
centralized implementation of the I-structure to
be a bottleneck of system performances,

- Distributed 1-structure : [-structure are evenly

max name - 1

ken) <D
[Token)

v

max name - 1

di -1

Fig 9. Internal representation of an | structure

1910

www.dbpia.co.kr

BT/ AR AR B E AN A S HHE olE F2 ¢ AHE TR [T ol Geol Mol M Hik

distributed across the nodes in the system. All
nodes in the system perform the service for the
structure handling. This approach achieves the
load-balancing of works related to structure
handlings. The name for an array produced in a
node must be consistent and be acknowledged in
other nodes, which forms a global name space, In
implementation, the names in a local node con-

tinually increase in numbers differing from corre-
sponding global names. The global name for an

array is assigned to maintain the information of
the node in which it 1s allocated and the local
name. In current implementation, the global name
1s the summation of the node 1d and value
obtained by multiplying the local name with the
count of nodes in the allocated the given program.

4.2.5 ALU engine and OUTPUT engine

An actor in MATTDA consist of a collection of
instruction. When an actor is scheduled on ALLU,
instruction in the astor are sequentially executed
in a control-flow fashion. The intermediate rsults
of an instruction 1s transferred to the next
instruction through register files, When the EXT
instruction is encountered, the execution for the
actor terminates. The MATTDA machine has
five hundred register files. Each register can be
addressed directly and indirectly in instructions,
The register files are divided into five physical
groups. Each group, which consists of one hun-
dred registers indexed from zero to ninety-nine,
corresponds to an input or output port. For example,
the first group stores the token values of port (.
The major data structures used in implementation
of an ALU engine are the Register File Butter
and the Result Token Queue. The Register File
Buffer 1s a data structure corresponding to the
register file in hardware and has the same role in
execution, The Result Token Queue is a buffer
which stores the result tokens on ports. The In-
struction set defined for the MATTDA machine
1s divided into six groups.

During the execution of an actor, instructions
for token formation build data for tokens on the

appropriate entry in the Output Token Buffer.

The key function of the QUTPUT engine is to

form output tokens and send them to the corre-

sponding nodes. Using the Result Token Buffer

in the list of destination actors in an activity, the
Output engine forms the tokens by combining the
data with tags. More precisely, for each desti-

nation node determined by using the mapping
function for the tag of the token, a token is
formed by duplicating the data value for the:
token which is stored in the Result Token Buffer,

and the tag value of the destination actor at-
tached to the tag field of the newly generated
token. The complete token is temporarily stored

in the Output Token Buffer. At the stage of token

routing, if the destination node of a token is the

same node as the current node, the token is di-

rectly enqueued at the tail of the Token Queue in

the node ;otherwise, the token is packed into a

message of TOKEN type and is routed to the des-

tination node through interconnection networks.

4.3 Function Linkage Mechanism

In conventional von Neumann computers, an
activation frame is provided to function invocation.
The operations included in function invocation, i,
e, parameter passing and result returning, are
performed by suing the activation frame. In other
words, the activation frame becomes the name of
an instance of a function and the name space is
defined as the memory range available for acti-
vation frames.

A function in data-flow graphs is represented
by a re-entrant code-block specified with an
input/output arc and a collection of actors, The
formal input arguments to a function are tokens
flowing into the function body. The formal output
of a function is tokens produced out of the func-
tion body. Inside a code block, and actor is ident-
ified by a tuple (code block number, statement
number). The code block number is the identifier
for code block, and the statement number is the
identifier of an actor. The tuple can be assigned
statically at compile time,

9N

www.dbpia.co.kr

A E &R LaE '93—12 Vol 18 No. 12

In a data-flow computation, a tag is extended
to name the instances of a function. A context
field in the tag contains a unique value defined
dynamic ally for the instance, Together with the
static components of the tag, the context field
constitutes the naming convention. The dynamic
property of the context results in the intervention
of the system resource manager. Whenever a
function is invoked, the manager provides a
unique context value for the invocation, After
the fiction has finished, the context value is
returned to the system resource manager for

reuse,

4.3.1 Naming Convention

As mentioned earlier, a system resource manager,
we call it context manager, 1s required to service
the naming of dynamic contexts., Practically,
there are two schemes in managing contexts:
centralized and distributed management. In a
centralized management, there is a only single
context manager in a system, whereas one con
text manager exists on every PE in distributed
management. Even though a centralized manage
ment is simpler than a distributed case, it suffers
from the low scalability in that the centralized
manage may be a bottleneck when the number of
PEs are larger.

In current implementation, we choose distributed
management to balance the load evenly on every

Function

<

PE :Every PE has a context manager which
generates a globally unique name for a function
invoked at the PE. The size of context allowed to
each context manager 18 a hundred. Thus, the
maximum number of functions invoked simul-

taneous In 4 system becomes 1s PE*100.

4.3.2 Argument Passing and Result Returning

Since arguments and results of a function in a
dataflow are passed to a function body in the
form of a token, the key operations are related to
changing the tag, particularly the context field of
the tag. In the argument passing, the context
component in the tag of the argument token is
replaced with the context of the callee’s obtained
from the context manager. On the other hand. for
result returning, the caller’s context extracted
from an argument token during argument passing

is restored at the context field of result tokens.

4.3.3 Actors for Function Linkage

Special actors are provided to support the func
tion calling. The actors are GXT. ETG, CTG and
RTX :The GXT actor provides a new tag for a
function. The ETG actor extracts a tag Valtje
from an input tokenpl51,110]. The CTG replaces
the context part of the tag of a token on one
input with that provided on the other port. The
RXT actor replaces the tag of an input token and

returns the context to the system resource manager.

[T I

Fig 10. Overview of function calling mechanism

1912

www.dbpia.co.kr

W/ AT SR L2 AN A2 S dlol] s AFE TEe) 1A ol ol do] M F

- GXT actor : a resource management actor, the
GXT obtains a context from the context manager
and provides a new tag for a function by combining
the code-block and a context. The input of he actor
15 a code block number for the function, The out-
put token of the actor carries a tag value formed
by the combination of a context and the supplied
code block number,

- ETG actor : the key role of the ETG actor is to
prepare the result returning by providing the
required information. Two kinds of input are sup-
plied to the ETG actor : an argument token and
the destination information. Given the input
argument token, the ETG actor extracts the
caller’s information such as iteration field, the
caller’'s context number and code block number.
On the other hand, the destination information is
supplied as operands of the actor, The infor-
mation the includes statement number, token
count to fire and port number of the destination
actor, Using this information, the ETG actor
generates a tag for an actor to which the function
result will be passed.

-CTG actor : The input of the CTG actor is a
token with a context number and code block
number for the function on port 0 and a data
token on port 1. Similar to the ETG actor, the
information of destination such as the statement
number, token count to fire and the port number
are supplied as operands. The CTG actor replaces
the context, code block number and statement
number components of the argument token's tag,

-RXT actor; The inputs of the RXT actor
consists of two tokens bearing a destination tag
and returning data, respectively. Like the GXT
actor, the RXT actor is also a system manage-
ment actor, performing two operation : First, the
RXT actor returns the context of the function to
the context manager for reuse, Next, the actor
forms a result token by combining the tag and
returning the data supplied as input.

V. Performace evaluation

5.1 Algorihm Description

5.1.1 Floyd’s Algorithm

Floyd’s algorithm is for a method calculating
the distance of shortest paths for all pair of nodes
in the directed graph G. It 1s based on a heuristic
to divide the distance into two logical groups and
to select the smaller one as the local minimum
{11],112]. For nodey, the distances from node,
and node, are two cases:one is the distance
when node, 1s considered as a via node and the
other 1s when nodey 1s not considered. In this
case, the smaller one of the two is the candidate
for the shortest distance between the two nodes
since the two cases of distances are distances for
distances paths from node; to node,.

By generalization, the shortest distance can be
obtained by iterative applications of nodes and
choosing the smaller one as the new local mini-
mum distance between the minimum distance
obtained through proevious iteration and the dis-
tance newly obtained in the iteration.

The algorithm is expressed by two classes of
iteration. One class i1s the iteration for applying
via nodes and the other class is for generating all
pairs of nodes in the digraph. In the algorithm,
the digraph G is represented in adjacent matrix a
which’s two-dimensional. The element Ali]lj] is
the distance between node; and node,. The rough
desription of the algorithm is outlined below :

Algorithm Floyd (IN N:int, A:array OUT
B :array)
begin
for k=0 to N do
for i=0to N do
for j=0to N do
begin
if Ali]lk]+ AlkI[ICALL]
Bli][j]= Aik + Akj :
end

end :
1913

www.dbpia.co.kr

BEEH SRR LA "93-12 Vol. 18 No, 12

5.1.2 The LU decomposition

The problem of LU decomposition was formally
depicted solving L and U for a given matrix A
where A=LU and L is lower trianguiar and U 1s
upper triangular.

For the case of a 4*4 matrix,

all al2 @13 al4
a2l a22 a23 a4
a3l a32 a33 a3
adl ad2 ad3 ay4

20l 12 213 o14] [B1L J12 f13 p14
21 022 03 24| | 1 g0 g2 g
Bl a32 433 03| | WL F32 B33 B
Al w2 43 24| | AL BA2 B3 pd4

The i, j'* components of the above equation are
represented in three cases.

i =aij = ail flj+ai2 f25+ ... + «ii pij
i=j=2aij=xl Blj +ai? f2j+ ... + xii pi)
i =aij =ail flj+ai2 p2j+ ...+ aii pij

The Crout s algorithm quite trivially solves the
set of N2+ N equations for all the «'s and s by
just arranging the equations in a certain order
[13],[14]. That order is follows :

-Set «11=1 and f11=-all

- For each j =2,3,....N do these two procedures :
for 1=2,3,...,N solve for f, according to the fol
lowing equation.

Bij =aij— ¥ aik ki

Next, for 1=2,3,....N solve «,; in the equation :
; 1 Lo e ki
A1) = — a1~ Y atk fk)
pi;

5.1.3 Householder Algorithm

A matrix B is upper Hessenberg 1f bij—0ivj+
1. householder algorithm i1s a direct and fairly
efficient way to reduce any square matrix to upper
Hessenberg by unitary similarity transformation.

{The principle of the algorithm.»

Let x be any nonzero vector with real coefficients,

1914

Define

ca= 4 [Xlea

cu=X +oe,

< m=1/2lul -

Then R-—~=t1—{(1/m)uu!!, is a Householder trans-
formation{ 14 1.1 15], is a unitary matrix with the

property that Rx = —age
{Description of the algorithm. >

The following is the description of ky, iteration
where k = to n—2. On each ky, step, Ay, = () for
k{1

- Takes a vectpr(x==2af " |, a" Yo o)
ab L) for matrix Ay

- Computes the Householder transformation for
Ry 1 for the vector X,

- Takes Uy | to be the matrix

k-1 0
0 KRk-1

- Takes UY | to be matrix
kot

tk—1 0
0 Rk-1

- Calculate A, =U, | A, U",

5.1.4 The QR Aigorithm

The QR algorithm is widely considered to be the
eigen problem method of choice for all matrices
except sparse matrices of large order[16],[17].

<The principle of the algorithm.)

Let A be any square matrix for which the eigen
value 1s to be computed.

- Factorizes A as followings

A-x] = QR

Compute new matrx A

new A= RQ+ al

After substituting this relation for Ry, we have

new A = QAQY

www.dbpia.co.kr

o /wkE BET 58 T2AAM A AYE WH ol S8 AFE TR i ol Bol ol BE IR

- If we iterate the previous two step, we get a
sequence of A’s that converge to a matrix A of
the form

where @ is approximation of eigen value. The QR

algorithm process stops at Ay when the coordinates
aV, 5 ,..., a%) of Ay are negligible.

e AN
(x=aN

T= {‘f h—}
of 0k

{Description of the algorithm)

The QR algorithm with origin shift consists of
construction of the iterative process of matrices
Ay according to the following recursive rule :
A=A
-For k=0, 1...,N compute matrices Q and Ry
with Q, unitary and R, upper triangular, which
satisfy the factorization

Ay —al =QR

where R=S, 1....,83 2, S2 1=QuA and Sy is
plane rotation matrix and x,. is the Rayleigh quo-
tient of the vector e, applied to AY,.
- Compute

A1 =RQu+al

5.2 Performance of Algorithm

We implemented the above algorithms using
data-flow graphs and parallel-C programs, respe-
ctively. For example, the data-flow graph for the
Floyd algorithm is shown in Fig. 12. The data-flow
graphs are executed on the emulator, whereas
parallel-C programs are executed on iPSC/2 without
the emulate layer. For performance evaluation,
the execution time of the algorithms are measured,
and corresponding speed-ups calculated. They are
depicted in Fig. 11 and Fig. 12 for each case.

Overall, the two approaches do not show the
ideal speed-up, 1.e., the speed-up proportional to
the processor number. The main reason is that
the interconnection network speed of the iPSC/2
system is extremely slow. The iPSC/2 system, a
distributed memory parallel system, provides a
facility to communicate via message exchange

Speed-up Graoh

30+t q
25t
Floyd
T 20t -
: QR
o 1s} .
s /-’/ LU
oy e .]
— T Household
L =TT Houshold |
° ';.’.—/ e —7
4-/‘_ e~
10 20 =

Processor MNumber

Fig 11. Speed-up on the emulator (data-flow graph)

Speed-up Graph
R T

30 E
25 ¢ E
T 20+ 4
i
m
e 15} g
s
104 J
st

Processor Number

Fig 12. Speed-up on the 1PSC/?2 parallel-C implemen-
tation

among PEs. Compared with other parallel machines
available, iPSC/2 system has a relatively slow
mterprocessor communication time as shown in
Fig. 13 where io,, is the fixed overhead to-construct
a message and set up the appropriate communi-
cation mechanism, 10y, is the time to send a double
precision number. Consequently, the low com-
munication speed causes low system utilization as
both the data-flow and parallel-C implementation
spend a large of time on communication,

As shown in Fig, 12 and 13, the data-flow ap-
proach is better in its performance under the
scalability perspective. The main reason for the
result is that the dynamic scheduling of the

data-tflow approach i1s more suited to exploit the
1915

www.dbpia.co.kr

RE R (5 B dm sCak '93—12 Vol 18 No. 12

Model iooh(us) | iodp(us/dbl)
NCUBE 384 104
iPSCr28X 900 34
iPSC/2vX 900 3.0
Wrap 0 0.4
iWrap 0 0.2
T800 - 20 0.95 46

Fig 13. Communication and computation parameter for
various computer

fine-grain parallelism. On the other hand. from
the parallel-C implementation. we observe that
algorithms with irregular structures are very dif
ficult to parallelize since users have to consider
the synchronization among multiple concurrent
tasks. Thus, parallelism in the algorithm can not
be efficiently exploited, resulting in low system
utilization, During synchronization, a PE may be
idle without computing nor actively communicat
ing with one of its neighbors. When we define the
synchronization overhead as idle time(t,,.), we
can formulate t,g. of an algorithm mapped on a p
processor as

4
S ()
[. .

bae =1t »

where t is the execution time, t', 1s the time
that the i'* PE spends actively communicating
with its heighbors, and t' is the time that the i""
PE spends doing local computation. In the paral
lel-C implementation, the large idle time caused
from the synchronization over results in the
poor-up shown in Fig. 13. In summary. the data-flow
approach is better than the conventional parallel
approach both in programmability and parallelism
exploitation.

V. Conciusion

In this paper, we present the experimental results
of data-flow computation versus conventional par

1916

allel programming approaches on a von Neumann
parallel machine, We design and implement a
data-flow emulator on the {PSC/2 system. Using
the emulator, we experimented with data-flow
computation by implementing a number of algori
thms in data-flow graphs. The performance of the
algorithms in the data flow appoach 1s compared
with the cunterpart of the conventional parallel
programuming approach.

IForm experimentation, we show that the data
flow approach 1s better conventional parallel pro-
gramming. In the iPSC/2 system, the user has to
partition and allocate the program. [t is extremely
difficult to design an efficient parallel algorithm
since the user has to specify all the synchronization
names and operations explicitly through com
munication prnimitives according to criteria of
optimally reducing the {requency of synchronization
and the total dle time which are hardly estimated
n programming time. Overall, the synchronization
proved to be large grain and caused low system
utitization, while adding difficulty in the paralle
lization of algorithms,

In a data fow machine, sysnchronization s
supported m the hardware, which implies that
the synchronization s implicit. Regardless of the
number of PEs, program behavior is deterministic,
Due to the implicit synchronization and determu
nistic behavior of a program, the problem related
to synchromzation is transparent to users, There
fore, the degree of programmability on the dataflow
system Is comparable to that on a single processor
system. However, we can not avoid the overthead
of the emulation based on software, In order to
achieve a more realistic performance evaluation,
more elaborated emulation based on a high rate of
hardware components or a practical data-flow ma-

chine 1s desired in the future.

Acknowledgement
Y.D. l.ee wishes to thank the Ministry of Edu
cation for the financial support. This paper is

based on the work performed at University of

www.dbpia.co.kr

/R HET K S22 MM A 2DE Y oy 29 AHE TR 1Y) &l MY HR

Southern California while he was visiting Pro-
fessor. Also the author would like to express his

appreciation to Professor J-H Gaudiot and his
Data-flow group members at U.S.C, for their

supports of this research.

2 =22 19919 ugF sEdTFxdd|of 2|stod
HATEHAS.
References
1. Arvind and R. A, Iannucci, “Two fundamental

[#2]

. J. L. Gaudiot and Namhoon Yoo,

. J. L. Gaudiot and M. Ayed,

issues in multiprocessors : the data-flow soluti-

Technical Report LCS/TM-241, Lab.
Comput. Sci., M.I.T., Sept. 1983.

. J. L. Gaudiot, “Data-driven multicomputers in

ons.”

Digital Signal Processing,” Processings of the
IEEE, vol. 75, no. 9, sept. 1987.

J. L. Gaudiot and Yi-Hsiu Wei, “Token
Relabeling in a Tagged Token Data-Flow Archi
tecture,” IEEE Transactions on Computers,
vol. 38, no. 9, Sept. 1939,

"Marcro
Data-Flow Simulator,” Department of Electri-
cal Engineering-Systems, USC, lLos Angeles,
California, Oct. 1990.

“Data-Flow As
Department of Electrical

"

sembly Language,
Engineering-Systems, USC, Los Angeles, Cali-
fonia, Nov. 1990.

. Robert A, lannucci, “Toward a Data-Flow/von

Neumann Hybrid Architecture,” Proc. of the
15th Annual International Symposium on Com-
puter Architecture, pages 131-140, 1988.

9.

. Intel Cop, “IPSC/2 Simulator Maunal,” Tech.

Memorandum 143, Argonne National Lab., Nov.,
1990.

. Arvind and R, E. thomas, “I-sturctures : An ef-

ficient data type for functional languages,”
Tech. Rep. LCS/TM-178, Lab, Comput. Sic.,
M.L.T., june 1980.

Arvin and K. P. Gostelow, “The U-Inte-
rpreter,” 1EEE Computer, pages 42-29, Feb,
1982.

10. Guang R. Gao, “A Code Mapping Scheme for

11.

12.

13.

14.

15.

17.

Data-Flow Software Piplining,” Kluwer Aca-
demic Publishers.

L. Fox, “An Introduction to Numerical Linear
Algebra,” Oxford University Press, New York,
1965,

N. Gastinel,
Hermann, Paris, 1966.

Alton S. Householder, “The Theory of Matrices
in Numerical Analysis,” Blaisdell Publishing

“Analyse numerique lineaire,”

Company.

Alto S. Householder, “Principles of Numerical
Analysis,” Dover Publications, New York,
1953.

Alton S. Householder and F. L. Bauer. “On
certain iterative methods for solving linear

systems,” Num, Math. 2, 55-59, 1960.

. W, H. Press, B. P. Flannery, S. A. Teukolsky,

W. T. Vetterling,
Art of scientific Computing,” Cambridge Uni-

“Numerical Recipes, The

versity Press, 1986.

F. Szidarovszky and S. Yakowotz, “Principles
and Procedures of Numerical Analysis,” Ple-
num Press, New York, 1978.

1917

www.dbpia.co.kr

BEE S SR 5CiE '93-12 Vol. 18 No.12

F #E F(Yong Doo Lee) F&Li
195241 5% 15214

197581 290 ol gk i

ohat 4]
198341 291 o bl et dlobel

ot]

199154 9%1 s gbral i ot o obgl o

4], e 5'L n}r }\}v ,r],)

RAETRRES
19814 8 - 198251 29 1 i1 - gl ob A b/t A dgl
]l 9l

199154 891 ~ 199341 221 £ Univ. of Southern Califorma
Ml
19824 390 ~ G s o el Shar g apel Skl ap g shat g

AR L RO I R S R G B 1 L Y

1918

www.dbpia.co.kr

R

1

¥ % 1(Soo Hoan Chae) IR ¥l

19508 104 2811

SOH DRERAL T JCE) DB SO)
197TH 8 H @5 iy A4

BRI R il

119850 51 RIS RCHRE S (A

HU)
DRESHIbE AR AR
CLAA L G ot SERBRE L B0

EISIE I RO 0 RN SO A 2 S D0y

