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ABSTRACT

In this paper we develop an approximation formalism for the queue length distribution of general
queueing models. Our formalism is based on two steps of analytic approximation employing both the
lower and upper bound techniques. It is favorable to a fast numerical calcuation for the queue
length distribution of a superposition of a superpostition of arbitary type traffic sources. In the ap-
plication, M+Y N,;D,/M/1 is considered. The calculated result for queue length distribution
measured by arriving or leaving customers shows a good agreement with the direct simulation of
the system, Especially, we demonstrate that our formula for M/M/1 is equivalent to the exact sol-
ution, while that D/M/1 is simplified in an analytic form.
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1. INTRODUCTION

Statistical analysis of queueing systems is ex-
tremely important in the broad area of our so-
ciety. For instance, in the future Broadband
Integrated Service Networks(BISDN), a link of
Asynchronous Transfer Mode (ATM) will be req-
uired to carry a wide variety of traffic types as
well as large numbers of sources. Fast analysis of
the statistical distribution of various parameters
must be performed carefully to provide high qual-
ity services and to ensure efficient operation of
switching networks. One of the most important
information one needs to acquire in traffic analy-
sis is the queue length distribution (QLD), which
is defined as probability Pl@>r] that the queue
length @ is larger than r. In this paper, we con-
sider the queue length as the number of custom-
ers in the system consisting of a queue and a ser-
ver. In general, P[Q>r] can be measured by eit-
her a random observer outside the system or ar-
riving costumers at the system, though the prob-
ability measured by the latter observers is more
appropriate for an estimation of the loss prob-
ability at a switching node with the finite size buf
fer.

In the fast few years, numerous approaches
suzh as the analytic approximation and the direct
numerical simulation of the system have been
studied on the QLD of various complicated traffic
models that have no exact analytic formulas,!'~%
The simulation method is one of the easiest way
to acquire more of less an accurate QLD for most
queueinyg systems, but it requires an excessive
time to get a good sccuracy for large r values.
For instance, a direct numerical simulation of a
typical queueing ststem needs to generate more
than 10% customers to find the condition that »
satisfies P{ Q> 7]~ 107", Hence, it is not feas-
ible to implement this scheme in the future ATM
switching systems where the loss rate is required
to be of below the order of 101",
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On the oteher hand, most analytic approaches!®!
6] have concentrated to find either the upper or
lower bounds on the QLD. In such an approach, it
is desirable to find a formalism which has follow-
ing advantages : (i) the formalism is favorable to
a fast numerical computation, (11) it can be appli-
cable to the superposition of arbitrary type traffic
sources, sources, and (iii) the deviation from the
exact solution is small. It is noted that Nakagaw-
a'*! made an approach based on the fundamental
recursion formula and the Chernoff bound tech-
nique for general queueing problems. However,
his formalism was not rigorous in a modification
that the calculated result is further divided by a
constant factor to match the exact solution for
for Pl@>0].

In this paper, we develop a new approximation
formalism on the QLD for general queueing prob-
lems. Our formalism is based on two steps of ana-
lytic approximation, The first step is to find a low-
er bound below the exact formula. After this
step the service and arrival processes can be con-
sidered separately. However, as the resulting
form is still difficult to solve, we apply the Cher-

-noff bound technige to find an upper bound on

the distribution function obtained in the previous
step. In this latter process, the probability gener-
ating function (FGF) of both the arrival and ser-
vice processes are introduced in a natural man-
ner. Consequently, we can handle the superpo-
sition of arbitrary type traffics easily, because
the PGF of a superposed traffic sources can be
represented by the product of PGFs of all indi-
vidual sources. The bound characteristics is lost
in our approach using mixed bound techniques.
However, our philosophy on the problem is that
this approach gains the better approximation than
other formalisms using multiple bounds in the sa-

1516

me direction ). Furthermore, our approach has

other advantages mentioned above,

In the application of the proposed formalism,
we will consider M+ N; D, /M/1 where a Poisson
and a group of heterogeneous constant bit rate
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(CBR) sources are superposed at the server whose
service follows a Poisson process. This model is the
generalization of M/M/1 but a special case of
G /M /1 while maintaining the non-burstiness
properties. The G/M/1 queue can find its appli-
cation in packet switch networks. To the best of
our knowledge, except for M/M/1, no analytic sol-
ution for the QLD of M+YN, D,/M/1 is known,
We therefore compare our calculated results with
the direct numerical simulation of the system, Es-
pecially for M/M/1, we will demonstrate that our
formalism gives the well known analytic solu-
tions.

In the application to other queueing problems
such as M+ N; D;/D/1, our formalism showed a
good agreement with other formalisms.®! We also
developed an approximate formalism for delay
and waiting time distributions for single server
queues utilizing the moment generation functions

of arrival and service processes in the similar mix-

ed bound techniques. This will be subject of anot-
her paper, 1%}

II. FORMALISM

We consider a queue with the customer arrival
producing a stable queue. The stable queue may
be defined as that for an arbitrary 0 < € < 1,
there exists a finite time interval T such that
1-P[No(t) > 1]< € for ¢t > T where P denotes
probability and Nn(¢) refers to the number of the
event of @=n in an interval ¢.

Let A: be the number of arriving customers in ¢
and S: be the number of customers that a server
can finish its service without any idle period in
the same interval. S: is independent of A:.. The
utilization factor of a queueing system is defined

as

—lim £L4.]

et E[S.]’

where E[*] refers to the mean or expectation val-

ue. A stable queue is guaranteed when p < 1. For
a stable queue, T'is the sufficient time interval of
an ensemble process for statistical analysis of the
QLD. This means that the queue length at the
present time is only affected by the arrival and
transmission events occurred within T'in the past.
So we assume that the present time ¢4 lies beyond
T after the switching systern is turned on, or in
other words that the switching system is station-
ary,

For the analysis of a queueing process, we div-
ide the time interval (&1 — 7, #1) into sufficiently
large numbers of subinterval. These intervals are
labeled as 1, 2, 3:-- starting from # to the past.
Without loss of generality, the queue length is
measured at the end of each section. In other wor
ds, we suppose that observers who can be either
the incoming customers, the server or anyone,
and they measure the queue length at the end of
each section. It is noted that subintervals are not
necessarily uniform, We have the following prop-
erty of queue length ¢. at the end of the i-th sec-
tion.

q=qi+1tai—biZq+1 +ai—s, (1)

where a: and b the number of arriving and leav-
ing customers in the i-th section, while s: is assoc-
1ated with the number of customers that can be
transmitted by a busy server in the same period.
In other words, s: is the sum of b and the number
of customers that the server could have further
served in its idls period. Using the recursion re-
lation in Eq. (1), we find that the queue length at
t has the following relation for all i = 1,

Q=q1 é qi+1 +A(“‘Sl - Si, (2)

where Ai =Y g and S =Y. 5. AsEq. (2)is
true for all ensembles, it implies

P[Q>r] %P[A.*S;>r], (3)
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for all 21 and =0, Hence, we have

P[Q>r]émgx{P[AﬁS.-r~1§0]}. (4)

In general, as the size of the subinterval can be
arbitrary, we can consider Eq. (4) in the continu-
ous time domain, and have

PlQ > r]én:lf(})({P[A:*S:*r—lé()]}. (5)

In the rest of our formalism, we will restrict to
the case of continuous time process, Discontinu-
ous time process can be formulated in the similar
way.

Now, we apply the Chernoff upper bound tech-
nique to Eq. (5) to obtain(See Appendix for a
proof)

PlA~S8—r—120] émgigl{‘l’m(z)‘}‘sl(z Dz iy
(6)

where the probability generating function (PGF)
Yy (z) of the random variable U taking on integral
values n=0, 1, 2--++- 1s defined by

Yu(z)=E[]=Y¥ PlU=nlz" (7

Finally, denoting Q(r) as an approximate QLD for
general queues in the continuous time process,
our proposed formula is give as

Q(r):ng)x{rr;i{l{‘l‘m(z)‘l’s,(z' Dz UL (8)

If measurements of the queue length are per-
formed in a deterministic rate, the time interval ¢
is restricted to the discontinuous time space. For
instance, if customers arriving at the D/M/1 qu-
eue measure the queue length, the interval ¢ can
be restricted to integers i =1, 2, --- assuming that
the inter-arrival time is one unit interval.

With Eq. (8), the characteristics of bound is
not well determined, because both the lower and
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upper bound techniques are utilized in the formal-
ism. However, we believe that for most queueing
models this appoach gains a better approximation
than other methods using multiple bounds of the
same bound characteristics. Eq. (8) is quite sim-
ple in form and favorabel to a fast numerical cal-
culation, Furthermore, it can be easily applicable
to queueing models with a superposed arriving
process and a single server, because the PGF of a
superposed arrival process is given by the prod-
uct of the PGF’s of all sources.

Let the functions in the parentheses of Eq. (5)
and Eq. (8) for given » = 0 have the maximum
values at ¢ = t (r) and t'(r), respectively. As t
(r) is approximately equal to ¢'(r), we will not dis
tinguish them in the rest of this paper. t(r) may
be understood as the most probable time interval
that an increment in queue length is greater than
» with the condition of no idle state No(z(r))=0.
t(r) increases monotonically as r increases, be-
cause an accumulation of the longer queue length
usually needs the longer time interval. As p
increases, the parenthesis of Eq. (8) as a function
of ¢ is enhanced at larger ¢ values, and conse-
quently t(r) increases. However, for a given r, it
remains finite unless the service load exceeds
one, The characteristics of z(r) sensitively de-
pend on multiplexing conditions of arriving cus-
tomers as well as on the type of the traffic model.

[I. APPLICATION

Though the QLD can be dependent on both the
service policy and the measurement scheme, Eq.
(8) can be generally applicable to most single ser-
ver queueing systems. In this paper we well focus
on the conventional model that the idle server
starts its service whenever a customer bring the
éystem a load which requires a certain amount of
service time. P[ Q> r] measured in two different
ways by arriving customers (Scheme 1) and by
leaving customers (Scheme [I) are equivalent if
the state changes by unit step values only.!”!
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However, it should be noted that our formula Eq.
(8) generally approximate the QLD in the differ-
ent manner in schemes I and [I. This is because
that PGE of a non-Markovian traffic model de-
pends on how it is measured. But the difference
between two results as well as their deviations
from the exact solution are small enough to be
negligible for normal traffic models with a single
server,

In this section, our approximation formalism is
applied to M+3; N, D;/M/1. As some special cases
of this queueing system, we also consider M/M/1,
DIM/1, M+D/M/1, and ND/M/1. To the bast of
our knowledge, except for M/M/1 no analytic sol-
ution is available for M+Y N,D,/M/1. So, we will
compare our formula for the QLD with a direct
simulation of the system, The simulation of the
system was carried out with 10° customers. To
obtained the QLD, we considered 10° ensemble
processes, each of which has 10° customers, In
the simulation of all the queueing system dis-
cussed in this paper, we confirmed that the QLD
in Scheme 1 is nearly equivalent to that in
Scheme 1I.

1. The M/M/1 queue
For the M/M/1 queue, we will prove that Eq.
(8) is equivalent to the exact formula'”

Ple > rl=(&)™, 9)

where A and p represent the mean arrival and ser-
vice rates of the Poisson processes, respectively.
For a stable queue, A < g i1s assumed. In both
measuring schemes 1 and II, the PGF of the
number of arrivals in M/M/1 is given as

Wu(z) == MtV (10)
and that of the service process is

Yy(zl) = eM(l/rl) (11)

In this section we have dropped the subscripts A
and S used with PGF’s in the previous section,
This must not cause any confusion, as we use dif-
ferent variables z and z7! for the arrival and ser-
vice process, respectively. Substituting Egs. (10)
and (11) into Eq. (8), we have

(?(r)=p;zix{a' TrD gitlzi-l putlfz-11y - (12)

where a real number zsatisfies 2 2 1 and is a uniq-
ue solution that minimizes the function in the par-

enthesis of Eq. (12) for given ¢. After some lines

of calculation, one can easily show that Eq. (12)

is equivalent to Eq. (9). Furthermore, the time

interval ¢ that maximizes the right-hand side of

Eq. (12) is calculate as

o) =L (13)
H—A
and the corresponding z is
z=H (14)
A

2. The DIM/1 queue

We consider a queue where the inter-arrival
time is deterministic and the service follows a
Poisson process. Without loss of generality, it is
assumed that the inter-arrival time is a unit in-
terval and the mean service rate satisfies y > 1
for a stable queue.

We first consider that the queue length is meas-
ured by customers arriving at the queue (Scheme
1 ). Because there is no other sources in the sys-
tem, the measurement is performed by the arriv-
ing customers at every unit time interval. Hence,
the interval ¢ is restricted to integers i =1, 2, 3...
In this case, we have the PGF of the number of
arriving customers for { units of time interval

Wo(z)=z', =1, 2, 3...., (15)

and that of the service process following a Pois-
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son process
Wu(zl) =m0V (16)

Substituting Egs. (15) and (16) in Eq. (8), we
obtain our approximate formula for the QLD of
DIM/1,

- 1 7
QUrin=maxle *"*V, g+ terte vh D)

i>r+1

where z; = pi/(i —r—1), 1> r+1. When the con-

dition u < ¢ ' /(r+2) is satisfied, Eq. (17} is sim-

ply Q(r, I)=e **V_This condition can be satis-
fied by high u values and corresponding low util-
1zation factor,

Though the interval ¢ is restricted to integers,
one may take the derivative of Eq. (17) with re-
spect to [ to get an approximate maximum value.
One can easily show that Eq. (17) 1s simplified to
the following formula.

QUr,H =¢"", (18)

where ) < & < 1 is the solution to the following

equation :
In(&) = u(é—1). (19)

7 that maximizes the right-hand side of Eq. (17)

in this approximation and the corresponding 2z

are also calculated as
r+1

T(r):TTﬁE' 2=

s —

On the other hand, let us consider our approx-
imaion in scheme Il that the queue is measured
by leaving customers. For a given time interval ¢
> (), [t]+1 customers arrive from a CBR source
with probability #=t-[¢]. while [¢t] customers
with probability 1—#. [¢] denotes the integral
part of t. Hence, the PGF of the number of arriv-
ing customers for an interval t > 0 is given as

838

Y(z)=n2"" +(1-n) 2l (20)

The PGF of the service following a Poisson is the
same as Eq. (11). Our approximate formula for
the QLD of the D/M/1 queue in the Scheme Il is

given as

Qr. ) =max!{miniz" " '{nz+1—nle* VN
(21)

Considering n as a constant and [¢] in the real
domain, we can further approximate Eq. (21) in
the following analytic form ;

Q(r ly=¢ IL+1 nrers v (22)

where ¢ the solution to Eq. (19) and 5 can be
chosen to be an arbitrary number on between ()
and 1. Except the term of & in Eq, (22), the re-
maining term is just a constant ¢(1 £ ¢ £1/&)

depending on the utilization factor.

Table 1. Calculated results for QLD of D /M /1 using
(17), (18). (21) and a simulation (S) of the

system,
Q(r)==Value * 10"

D T (17) (18) (21) S n
V] 3.57 4.09 7.13 4.12 -2

0.3 2 5.87 6.83 18.16 6.69 5
14 1.12 1.14 3.47 7

4] 6.28 6.29 6.45 6.29 -1

3 6.17 6.17 6,34 6.18 2

10 6.06 6.06 6.22 6.07 3

0.8 15 5.95 5.95 6.11 H.69 4
20 5.84 584 6.00 4.92 -5

25 5.73 5.73 5.89 -6

In Table I, we show some calculated results for
QLD with two values of the utilization factor p =
0.3 and 0.8 using Eqgs. (17), (18), (21), and a sim-
ulation of the system. The calculated result
obtained using either (17) or (18) is in an excel-
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lent agreement with the simulation for most val-
ues of p and r, while (21) shows an upper bound
on all other formulas.

3. The M + X ND/ M/ 1 queue

In this section, we suppose that the multiplexer
handles a group of heterogeneous sources in ad-
dition to a stream following the Poisson process
with the mean arrival rate 1. The mean service
rate of the server is assumed to be u. Among m
types of CBR sources, there are N, sources of
type j generating customers at the rate of one per
D; time units,

In Scheme I, the PGF of the arrival process is
dependent on the boundary conditions at both ends
of a time interval, the resulting formula is rather
complicated. To simplify our discussion, we will
consider our approximation only in Scheme [I.
The PGF of the arrival process is given in a sim-
ple form because the phases of two boundaries of
the interval seen by leaving customers are ran-
domly distributed.

In Scheme 1[I, we first consider the PGF of the
arrival process.

\PM+EN,D,(Z)=\PM(Z)WZN,D/ (2), (23)
where Wu(z) for the Poisson arrivals was already

defined in Eq. (10), and the PGF associated with
S N, CBR sources is given as

TEN’D](2)=JI§!WD/(2)N’. (24)
where

‘l‘Dj(z)=ﬂfz“"”’]+l+(1—r1,')z“’n” (25)
and

n = ﬁ - [bt;—] (26)

Using Egs. (11) and (23), we obtain an approxi-

1o —— Eq.(27)
—o— Simulation
10°2
3 (D, p)=(10,0.8)
10
0
6 10°% ! 1
B
1078 I (2,0.8)
107 1
16°°
107 (10,0.2) (5,0.5) 1
‘040 n I i
10 20 30 40

r

Fig. 1. The QLD of M+D/M/1. The mean service rate u

is set to be 1. The solid lines are guides for the
eve,

—— Eq.Q27)
—o— Simulation

P[Q>t)

Fig. 2. The QLD of ND/M/1. We choose D= 1000 and u
=1,

mate QLD of M+Y. N;D;/M/1 in Scheme 1l as

Q(r, II)=max{minlz *exp{t(z—1) (/1*“;—) !
>0 221 1

7
Miz+1-n)"™ H, (27)
where
m t
k=r+1 "EIN,[E].

Using Eq. {27), we considered some special cas-
es such as M+D/M/1 and ND/M]/1, as well as
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—— Eq.(27)

-—o—  Simulation

(A, p)=(05,0.8)

P[Q>r}

0.1,0.4) (0.3,0.6)

10 20 30 40

Fig. 3. The QLD of M+Y ' ND, /M/1. We choose (D,

=)
D., D2)=(10, 100, 1000), (N, Nz N:)=(1, 10,
100), and u=1 for some values of 4 the arrival
rate of a Poisson source,

M+Y N, D, /M/1. Figure 1 shows calculated QLD
of M+ D/M/1. At the input of this system custom-
ers from a Poisson and CBR sources are superpos-
ed. For this calculation, the service utilization fac-
tors are chosen to be p = 0.2, 0.6, and 0.8. As the
mean service 1s chosen to be one per unit time,
the mean arrival rate of customers from a Poisson
source 1s given by 4 == p —1/D. The closed cir-
cles denote results using Eq. (27), while the open
circles refer to results obtained by a direct simu-
lation of the system. Each symbol will be used for
the same meaning in other figures in this paper.
Figure 2 displays the QLD of ND/M/1 for p = 0.2,
0.6, and 0.8 of superposed homogeneous CBR sour
ces. The inter-arrival time of a customer stream
was chosen to be 1000 for this calculation. In Fig-
ure 3, the QLD of M + ¥ | N,D, /M/1 for p = 0.
4, 0.6, and 0.8 are plotted. For this calculation,
we considered three values of A = (.1, 0.3, and

5 with fixed set of CBR sources, (D\, D2 D3)=
(10, 100, 1000) and (N1, Nz Ni)=(1, 10, 100).

The agreement between Eq. (27) and a direct sim-

ulation of M + ¥ N,D, /M/1 for all situations is ex-
cellent, Though Eq. (27) is complicated, it can
basically be approximated by the form of &', as
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is shown in these figures. We therefore have the
conclusion that the QLD is exponential for the
system M + Y. N;D, /M/1 in our approximation for-
malism. We like to remind the reader that the
waiting-time distribution of G/M/1 is of the same
form as for M/M/1."7!

V. CONCLUSION

In this paper we developed a formalism for an
approximate QLD of general queueing models.
Our approximation method consists of two steps
of bound techniques, one lower bound and a sub-
sequent upper bound. We showed that our for-
mula for the M/M/1 queue is equivalent to the
exact solution, Our calculation for the QLD of M
+¥ N,D, IM/1 showed a good agreement with
the direct simulation of the system. As our for-
malism is favorable to extremely fast numerical
calculation, it can be successfully implemented in
general switching systems for reliable real-time
analysis of the QLD.

APPENDIX
In this appendix, we prove that

PlA~S-r-120] & Eléliln{‘l‘A,(Z) ‘I’S.(z“l)(Al)

z lr+1llr.

Proof: At first, for random variable N taking in-
teger values 0, +1, +2.... and another real vari-
able M > 0, we have

PINzO]l=Pz¥21], 221 LA2)
and

PIMz1]=2E[M], (A3)

where E[*] denotes the expectation value. From
these two equations, we have
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5. J. W. Roberts and J. T. Virtamo, “The superpo-
sttion of periodic cell arrival stream in an ATM mul-
tiplexer”, 1EEE Trans. Commun. vol. 39, no. 2,
pp. 298-303, 1991.

6. K. Nakagawa, “Loss and waiting time probability

P(NZ0]SE[z"21], 221 (A4)

Hence, taking N =A:~S:—r—1, we have the fol-
lowing re;lation

approximation for general queueing”, Tech. Rep.
IEICE Trans. Commun. vol. E76-B, no. 11, pp.
1381-1388, 1993.

7. See, for instance, L. Kleinrock, Queueing System-
s, vol. 1 & 2. Boston, MA : Wiley, 1974.

8. F. Guillemin and W, Monin, “Management of cell
delay variation in ATM networks”, in Proc. IEEE
GLOBECOM ’92, pp. 128-132, 1992.

9. K-S. Lee and H. S, Park, “Approximation of the
queue length distribution of general queues”, ETRI
J. vol. 15, no. 3/4, pp. 35~45, 1994,

10. K-S Lee, Y. S. Kim, and H. S. Park, unpub-

lished.

PlA—-8—r—120] Smin{E[z¢5 1]}, (45)

We note that A and S are independent with each
other and that E[24]=Wa(z) and E[z7%]=¥;
(z71). This completes our proof.
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