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Periodic Binary Sequence Time Offset Calculation
Based on Number Theoretic Approach for CDMA System

Young Yearl Han* Regular Member

ABSTRACT

In this paper a method calculates the time offset between a binary sequence and its shifted se-
quence based on the number theoretic approach is presented. Using this method the time offset be-
tween a binary sequence and its shifted sequence can be calculated. It has been recognized that
the defining the reference (zero-offset) sequence is important in synchronous code division mul-
tiple access(CDMA) system since the same spreading sequence are used by the all base stations,
The time offset of the sequence with respect to the zero offset sequence are used to distinguish
signals received at a mobile station from different base stations. This paper also discusses a method
that defines the reference sequence.
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1. INTRODUCTION

In the recent years, direct-sequence ocde divison
multiple access (CDMA) technology has been
considered for digital mobile system and personal
communication network applications. In CDMA
systems spreading sequence is used to spread and
despread information data. In the proposed
CDMA system, the time offset of the spreading
sequence is important since the same spreading
sequences with different time offset are assigned
to each base station{1]. When the sequence
length is short the relative time offset between
two sequences can be found by comparing the
two sequences, However as the sequence length
increases it is not easy to find the relative time
offset between two sequences,

In this paper we present a method that calculates
the time offset two binary sequences of length
p-1, where p is a prime number. This method
exploits the fact that every integer which is rela-
tively prime to p possesses a unique index among
the integres of the set {0, 1, 2,---,p-2}. Definition
of reference sequence (zero offset sequence) will
be discussed. This paper is organized follows,

Section 2 provides the description of method
which can be used to calculate the relative time
offset between two binary sequences. sequences.
Section 3 is devoted to the implementation of the
method described in section 2. The sequence
patterns that can be applied to the proposed
method are anayzed in section 4. And section 5
states concluding remarks.

[I. DESCRIPTION OF THE METHOD
We define a periodic ¢(p)-tuple sequence

Cl=(Cy, Cy,-, Com-1)
Cl= (Cw(p)—b Co [ Cw(p)—z)

ci= (CG’(P)—i’ Cw(p)—H*l 2Ty C'P(P)'l"l) (1)

Cotp 1= (CI: Cz e, CO)

p is a prime unmber. ¢(p) is an Euler’s phi function
and is the number of positive integers less than p
that are relatively prime to p. If a prime number,
1, 2,---,p-1 are relatively prime to p. Thus we
have @(p) =p-1. Observe that C;=C, 4 4, and C'
=Citeln 0<i<eplp)-l.

Once C° is defined, C\, 0<i<p-1, can be
obtained by shifting C cyclically i units to the
right, Each element symbol is chosen from the
symbol set {1, —1} or {1, 0}. We define A (C') as
follows

AfC)=(C i g8"+Cpymitr 8 4 Coipy-i- g 1)
(2)

which is a weighted sum of sequence elements,
g is a primitive root modulo p. By a primitive root
modulo p we mean an integer g such that g° g!
.-, g9 "1 form a reduced residue system modulo
p. That is, the integers, g?(mod p), g'(mod p),--,
g*®"1(mod p) are a rearrangement of 1, 2,---,p-1.
The sequence g*, g!,---(mod p) is periodic and the
period of this sequence is ¢{p). It can be shown
that there exists ¢(p-1) primitive roots modulo p
(2, 3] and we will use the least primitive root
modulo p throughout this paper. In order to show
that equation (2) is related with shift of the periodic
o(p)-tuple sequence, we prove some properties of
equation (2).

[Theorem 1} If A (C) #0 (mod p), 0<i< e
(p)-1, Ag(CY, 0<i< ¢(p)-1 form a reduced residue
system of modulo p.

Proof : Since g' = g't¢® (mod p)[2], we have

AG(C%) = (Corg®+Cig' +o 4 Cypy-1g7” )
=g0(Co+Cyeg! +-4 Cuipy-1-2°® 1) (mod p)
ACH) =(Cprg'+Crg? ++ Cyipy-1°2Y)

=gl (Co+Cyg! ++ Cppy-1-8*P ) (mod p)
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ALCH 1) = (Cyrg?® 4 Cyog" oo Cogr 18P
=gvP L (C,+C-g! +"'+Cw‘\pv‘vl'gw(p]—l) (mod p)  (3)

Let a=Cy+Cy-g! ++ Cup-1-g*® 1 #0 and
the greatest common divisor of a and p be 1, gcd
(a, p)=1, then the set a-g', a-gl.--, a-g*®"!
forms a reduced residue system modulo p. Cons-
equenctly A (CY, 0<i< ¢(p)—1, forms a reduced
residue system modulo p.

[Theorem 2} If A, (C") (mod p). 0<i<e(p)l,
do not form a reduced residue system modulo p
then A, (C') =0 (mod p) for 0<i<(p)—1

Proof : If A,(C') (mod p) do not form reduced
residue system modulo p for 0 <i < ¢(p)—1, then
there exists an integer j, 0 <] < ¢(p)—1 and 1 #
j, such that

A,(C) (mod p) = A (C'") (mod p)

Hence

A(CH =g (Cu+Crgl +t Cpyn1-g* V)
=g (Cy+Cp-gl Ft Copr-g”” )
= A,(C'*) (mod p)

Since g' # g'™!, we have

(Cy+Cyrgt 4+ Cpppy-1°g°® 1. =0 (mod p)

Consequently

A (C) =0 (mod p) for 0<i<olp)—1

Let p be a prime with primitive root g. If bisa
positive integer with gcd(b, p) =1, then the least
nonnegative integer i such that g'="b (mod p) is
called the index of the integer b to base g modulo
p and is denoted by i=ind, b. It follows that
every b which is relatively prime to p, possesses
a unique index i1 among the integers of the set {0,
1,-,0(p)—1hL

For example consider the primitive root g=2
of p=5, we have g'=1, g =2, g?=4and g*=
3(mod 5) hence ind, 1 =0, ind, 2=1, ind, 4=2
and ind, 3=23. We will use the relationship g' = A,
(C)(mod p) in finding the index of A, (C) modulo
p. Using he primitive root g=2 of p=>5, we can
construct the following table of least indices.
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AC) (mod5) | 1 2 4 3

ind, Ag(C) 0 1 2 3

We introduce the definition of a reference sequence,
Assuming A,(C") (mod p), 0<i< ¢(p)—1. form
a reduced residue system modulo p, we define the
reference sequence (zero offset sequence), CY,
which satisfies the following equation,

ind, [A(C)]=0 (4)

If A (C' (mod p), 0 <i< ep)—1, form a reduced
residue system modulo p, there always exists an
unique index corresponding to an A, (C). Next we
prove a theorem which enables us to find the
time offset between two binary sequences.

[Theorem 3]. If A (C') #0 (mod p), then for
the sequence C'*/ and C'

{ind, [A,(C'") (mod p)]—ind,[A.(C") (mod p) ]}
=} (mod o(p)), 0<i<olp)—1,0<j<jolp)—1 (5)
Proof : If i, j, b€ {0, 1,---,p—1}, we have

ind, [A,(C'*1) (mod p)] =ind, [g'"-(Co+C;-g!
+o+ Cpip 10g2°" ! (mod p)]

=ind, [g' " -g® (mod p) ]

=ind, [g'*'*" (mod p) ]

and

ind, [A,(C") (mod p)] =ind, [g' ™" (mod p) ]
Hence, we have

[(+j-+b)—(i+b)]=j (mod ¢(p))

This gives the stated formula,

We illustrate the use of the result of theorem 3
with an example.

Example 1. Suppose that p=11.2(=g) is a
l'east primitive root modulo 11 and the period of
sequence is 10( = @(11)). Table 1 shows three
cases for binary Hamming weight, w(C) is the
number of 1’s in the periodic ¢(p)-tuple sequece.
We used the relationship g' = A,(C)(mod 11) in
finding the index of A (C) modulo 11
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Table 1. The value of Ag(C) (mod 11) and its index for p=11 and w(C)=1, 2, 3

a) In the case of p=11, w(C)=1

p=11  w(C)=1
¢| ccm . Cin ?"(:’)u)indz AC) Cilit, o Cin '("m‘ocd)u)inda AC)
¢"|{1000000000 1 0 1-1-1-1-1-1-1-1-1-1 2 1
¢loi1o00000000| 2 1 A1 -1-1-1-1-1-1-1-1 4 2
¢|lo010000000| 4 2 “1-11-1-1-1-1-1-1-1 8 3
€/0001000000| 8 3 -1 -1 -1 1 -1-1-1-1-1-1 5 4
¢/0000100000 5 4 1-1-1-11-1-1-1-1-1] 10 5
¢joo0o0010000| 10 5 1-1-1-1-11-1-1-1-14 9 6
¢{00000061000| 9 6 “1-1-1-1-1-11-1-1-1 7 7
c|0000000100 7 7 1.l -l-1-1-1-11 -1 -1 3 8
c*loooo0000010 3 8 1-1-1-1-1-1-1-11-1 6 9
€10000000001 6 9 11 -1-1-1-1-1-1-11 1 0
b) In the case of p=11, w(C)=2.

p=11 , w(C)=2
¢| ot o G | MO e o) CLCia, o+ . Cix ) 1y [inde Adtc)
¢ 0000001010 1 0 “1-1-1-1-1-11-11-1 2 1
¢[0000000101 2 1 B S (S S S ) U B U 4 2
¢tj{1000000010 4 2 1-1-1-1-1-1-1-11-1 8 3
¢j6100000001 8 3 “11-1-1-1-1-1-1-11 5 4
¢'/1010000000 5 4 1-11-1-1-1-1-1-1-1 10 5
¢®{0101000000 10 5 5 U0 WS U TS S WS S (S O | 9 6
10010100000 9 6 1-11-11-1-1-1-1-1 7 7
0001010000 7 7 “1-1-11-11-1-1-1-1 3 8 |
¢|oooo0101000| 3 8 11 1-11-1-1-1| 6 3 |
c°{0000010100 6 9 “1-1-1-1-11-11-1-1 1 0 11
¢) In the case of p=11, w(C)=3

p=11 , w(C)=3
i CCu, -, Cig (:'o(dmm indz Ag(C) C.Cu. - . Cia (ﬁmu) indz Ag(C)
0110000001 1 0 S111-1-1-1-1-1-11 2 1|
¢{1011000000 2 1 1-111-1-1-1-1-1-1 4 2
¢j0101100000 4 2 S11-111-1-1-1-1 -1 8 3 T
c|0010110000 8 3 “1-11-111-1-1-1-1 5 4
c¢looo1011000 5 4 1111 -111-1-1-1 10 5
¢f0000101100} 10 5 “1-l-1-11-111-1 -1 9 6
0000010110 9 6 -1-1-1-1-11-111 -1 7 7
10000001011 7 7 “sb-1-1-1-1-11-111 3 8
/1000000101 3 8 1-1-1-1-1-1-11-11 8 9
¢/1100000010 6 9 11-1-1-1-1-1-11-1 1 0
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We can take CY as a reference sequence in
applications, We used difinition of zero offset se-
quence from equation (4). To calculate the time
offset between reference sequence and its shifted
sequence, we need only calculate ind,[A.(C)
(mod p) ] of the shifted sequence to find the time

offset with respect to the zero sequence.
[l. REALIZATION OF THE METHOD
In this section we describe the realization of

theorem 3. The realization of A, (C) calculator is
illustrated in Fig. 1.

€'= (Copei. Contor . Conaset)
| 5

+
+

Figure 1. A,(C) calculator.

D is a symbol delayer. In calculating the value of
A (), Cuip——) 1s fed into the A,(-) calculator.
Next C,pi—i—» enters the A,(-) calculator. The
added value become C,,,—,—2+C,p -,-1-8. After
all symbols arrive, the value of A (-) becomes
Ag( : ) = Czp(p)*l +g (Cq)(p)ﬂ“%l + Cw(p)~ +2°8
44 pr)ﬂ—yg“""”z)

which is extracted out at the time t=(p—1)T.
p—1 is the sequence length and T is the symbol
duration.

We have a one-to-one correspondelice between
AL(CY (mod p), 0<i<e(p)—1 and index of A,
(C') modulo p. This relationship provides us to
design a logic circuit that convert A, (C") (mod
p) to index of A,(C') (mod p). Table 2 shows the
value of A, {C) (mod 11), 0<i<9, ad corre-
sponding value of index in decimal and binary

digits.
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Table 2. The truth table of A (-) and its index in case
of p=11.

Ag(-) (mod 11)| pgrs ABCD index
o T 0001 | 0000 0
. 0010 | 0001 1
3 001l | 1000 | 8
4 T o100 | o010 2
5 | o101 | o100 4
e 0110 | 1001 9
I A S TR AT 7
8 1000 | 0011 3

9 1001 | 0110 6

10 1010 | 0101 5

The boolena expressions for A, B, C, D, obtained
from Table 2 are

A=pqrs+pqrs
B=qrs +qrs +pqrs

C=pqr +pqrs +paqrs

D=pqgs +pqr+prs (6)
1
] A
P — —
{ B
q = )
: <
<4 }
i/
r
i C
{
s .
{ ) D
—
.,_—q_j
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where p is a complement of p. The logic circuit
that implement the boolean expressions is given
in Fig. 2. The logic circuit can be constructed by
using OR-gate and decoder.

V. PATIERN ANALYSIS

We now investigate the patterns and number of
ways of the (p-1) tuple sequence (C;, Ci41,*+,Ci-y)
for which equation A (C) =0 (mod p) holds.
The numbers g° gl--,g*?"! form a reduced
residue system of modulo p as described before.
But it is convenient to use numbers g° (mod p), g
'({mod p),--,g*® " 1(mod p) which are rearrange-
ment of 1, 2,--,p-1. In order to find the patterns
that we must avoid in applying theorem 3 consider
following equation

n=d;+d;+; +-+ di4+, = 0(mod p),
d;efl, 2,p—1, r<p-1 (7)

The equation (7) indicates that the sum of distinct
positive integers with summands from {1, 2,--,
p—1iequalstok-p, k=1, 2---,

The generating function for patterns and num-
ber of way for which equation (7) hlods can be
wrtten as follows

Go-1(n=0(mod p)) =¥ (1 +x) ®)

where n is the sum of distinct positive integers that is
zero modulo p. Subscript (p—1) of G indicates
summands less than or equal to p~1. If we multiply
p—1 times, the power series is of the form 1 +a,x+
a,x2 - app-1pxPP 12 The coefficient of x9 is
the number of ways that q is a sum of distinct posi-
tive integers with summands {1, 2,---,p—1}.

Example 2. Suppose that p=5. The generating
function is

G4(n = O(mod 5))=ﬂ 1 +x)

=1+ 01+x%) Q+x*) Q1+x9)
=1+x+x+x*7) QA +x3) 1+x)
=1+ x+ 1+ x T2+ 5+ 3134 24 x1+243) (1 4 x4)
=1+ x+x2+ &2+ x5+ & F34-x1)
+ &EFI A )+ (x4 g2t
+(Xl+2+4+X3+4)+x1+3+4+x2+3+4+x1+2+3+4 (9)

=1+x+x2+ 23+ 22+ 235+ 2x0 + 25X + B+ 0+ %10
(10)

Each coefficient of x9 in equation (10), is the number
of ways such that g is a sum of distinct positive
integers with summands {1, 2,---,p—~1}. Each power
of x in equation (9) corresponds to a sum pattern of
distinct possible integers with summands {1, 2,
p—14

There are two n’s, namely n="5, 10, that holds
equation n=0(mod 5) and corresponding patterns are
2+3), 1+4) and Q+24+3+4). With p=5 we
have following equation

Ci-g®+Cit1-8+Citrg?+Ciszg®)=0 (mod 5)
11

With g==2 which is a least primitive root of modulo 5
we can write equivalently

(Ci‘l+C,+1‘2+C,+2'4+Ci+3'3)5 0 (mod 5) 12)

By applying equation (12) the three patterns becomes
©,1,0,1) (1,0, 1,0 and (, 1, 1, 1) in the form of
binary sequence, It is noted that sequence (0, 1, 0, 1)
is the one step cyclic shift of sequence (1, 0, 1, 0).
Trivial solution (0, 0, 0, 0) satisfies the equation (12),
but it is excluded since the summands are from the
set {1, 2,--,p—1}.

The ratio of total pattern and the number of pat-
tern that the suggested method can be applied to is 1
for p=5, 1 for p=7 and 0.939 for p=11. In the total
pattern we have excluded the all zero, one sequence
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and sequences that don't have the period ¢(p) when
shifted.

V. CONCLUSION

In this paper the relative time/phase offset
between two binary sequences of length ¢(p) is
investigated. The proposed method that calculates
the time offset between two binary sequences is
based on number theoretic approach. The method
exploits the fact that every integer which is rela-
tively prime to p possesses a unique index in num-
ber theory. The zero offset (reference) sequence
is defined and circuit realization is described to
calculate the time offset between two sequences
effectively. However there is a restriction in ap-
plying this method. The number of restricting
patterns which were analyzed and found was small
compared with the number of the total patterns.
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