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A Study on the Numerical Wave Propagation Properties
of the Finite Difference-Time Domain(FD-TD)
Method for EM Wave Problems
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ABSTRACT

In this paper, the numerical wave propagation properties of the finite difference-time domain
(FD-TD) method is investigated as a discrete model describing electromagnetic(EM) wave propa-
gation phenomena. The leap-frog approximation of Maxwell’s curl equations in time-space simulates
EM wave propagation in terms of the numerical characteristic and the domain of dependence. A
geometrical interpretation of the FD-TD numerical procedure is presented. The numerical disper-
sion error due to the leap-frog approximation and its dependence on the stability factor are
illustrated. The FD-TD method using the leap-frog approximation is inherently a descriptive model,
Thus, not only any physical picture about EM wave propagation phenomena can be drawn through
this model, but also physical or engineering parameters in the frequency domain can be extracted
from descriptive results. E-plane filter characteristics in the WR-28 rectangular waveguide and re-
flection property of an inductive iris in the WR-90 rectangluar waveguide extracted from simulation
of the FD-TD model is included.
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[. Introduction

Propagation problems are one among three ma
jor categories of problems (equilibrium, eigenval
ue, and propagation problems) in physis and en-
gineering|1]. Electromagnetic(EM) wave scat
tering phenomena belong to this category. Pure
propagation phenomena are modeled with Max
well’'s two time depedent curl equations without
any source or dissipative terms. Thus, it 15 well
known that the time dependent curl equations are
an analytical model{physical law) ot EM wave
propagation since the analytical model mothem
atically simulates real propagation of fields in con
tinuous media.

Numerical computational methods in time do
main are playing an increasingly important role in
the solution of EM problems, since they can si-
mulate, albert in discretized form, physical phen-
omena as they evolve in nature. Many people
consider simulation to be a mere computational
technique yielding engineering parameters, since
frequency domain techniques have been dorminan-
tly used to calculate not physical processes. but
rather engineering parameters. Even though nu
merical simulation is one branch of the broader
area of computational electromagnetics. we like
to distinguish it from the purely computational
electromagnetics, which employs prescriptive mo
dels to predict specific engineering parameters.
Simulation methods are descriptive models, with
which physical processes can be described and
visualized.

The finite difference time domain(FD-TDH) meth
od using the leap-frog scheme has been mostly
used in the prescriptive way to calculate particu

lar engineering parameters of EM problems ||
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{141, The FD TD approach is actually a more
powerful numerical method for simulating EM
wave propagation phenomena. We study wave
propagation in a rectangular waveguide structure
in order to provide physical insight into the pro-
cess. In this way, the FD-TD process can be bet
ter understood, and more light is shed on the
property of continuous Maxwell's equations as
well, Futhermore, since the simulation method
vields physical pictures ot propagation phenom-
ena, 1t allows us to perform visual experiments
even though we must still rely heavily on heuris-
tic reasoning, physical mtuiton, and trial-and-er-
ror procedures, Many experiments can be carried
out with complete freedom from certain physical
constraints, since boundary conditions are simply
specified by numbers, Futhermore, when probing
(sampling) field quantities within a computational
domain, the system is not perturbed.

The behaviour of the leap-frog approximation
in a time-space grid structure resembles that of
the continuous model. Thus, discrete numerical
wave motion can be interpreted in analogy to the
continuous wave propagation phenomenon. The
concept of numerical characteristics and domain
of dependence were first introduced by Courant,
Friedrich, and Lewy(CFIL.} for a simple hyper-
bolic partial differential equation in their import
ant paper | 14]. By using these concepts, we de
velop in Section 3 and 4 the leap frog approxi
mation as a local wave propagation model in dis
crete time-space coordinates, and provide some
geometritical interpretation of the numerical pro-
CEeSS,

The discrete approximation creates a numerical
dispersion error which depends on the mesh size-

to wavelength ratio. The standard way of analy
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zing the distortion of a propagating wave is to
study its dispersion relation. The dispersion char-
acteristics of the FD-TD method have been an-
alyzed by Taflovel 16]. The effect of the stability
factor on the numerical dispersion has been de-
monstrated by the author {17} and [18]. These
characteristics and the effect will be described in
Section b,

A series of qualitative observations on how
wave propagates in a standard rectangular wave-
guide has been made. The observation and calcu-
lation results of engineering parameters can be
found in Section 6.

This paper starts with a review of mathemat-
ical solution methods for Maxwell’s equations in
hyperbolic differential equation form in the next
section. Discrete solution methods such as the
leap-frog approximation of Maxwell’s curl equa-
tions have been extensively dealt with in the l-
terature (2], 3], [6], or 111,

[I. Mathematical Review

The analytical solution methods of Maxwell's
two time dependent curl equations are studied in
this section, In order to study a pure EM wave
propagation model, Maxwell's curl equations are
considered without any source and dissipative
terms. They are in matrix form:

_(_}I‘:L 0 1/ 1vXx Oill

ot |V H —1l/u 0 [0 VX‘ H
(n

or in compact notation :

it 4 - o

U = (2)

ot &R

where

| E \

"l E

.| 0 1/e ‘

A ‘—1/;1 0

L:‘VX 0

l , and R is a position vector.
0 vXx

Maxwell's equations describe total field quant-
ites, I: and H :

E=IL+1T,
H—=H+H",

where the superscripts s and i indicate the scat-
tered and incident fields.

Propagation problems are mathematically tre-
ated as initial value problems in free boundaries
that have an unsteady or transient nature. If a
boundary value problem is added to an initial
value problem, then in mathematical parlance,
such a problem is known as initial boundary value

problem or mixed initial value boundary value pro-

blem. All EM wave scattering problem belong to
this class. The solution method for initial bound-
ary value problems[1] is briefly described below.
If the imtial condition of U is

U(R, t=0) = f(R) (3)
and the boundary condition is

UGR, 1) =g(R, 1), £20 (4)
then th(;, solution 1s

UR, 8= f(R+ct) (5)

where of course f(() must be equal to é((), 0).
Two solutions for a pulse propagation are shown
in Figs. 17(a)-(1), where the pulse excited in the
middle of waveguide is split into two solutions
like (5), a wave moving to the left and the other
wave moving to the right.

Fig. 1 illustrates the general initial boundary
value problem| 1] as follows, The value of the ve-
ctor L at some point x(space vector) at later
times is determined entirely by the data on the
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t r {Boundary condition)
|
Characteristics
P
B
A
- 1{ Initial condition
£=0 x

l(— Domain of dependence __)1

Fig. 1. Graphical representation of the general nitial
boundary value probelm

segment of the initial line lying between the out
most characteristics drawn backward from the
point p to the initial line. This segment is called
the domain of dependence of the point p. The
situation 1s shown in Fig. 1 for the one-dimenson
al case. It is known that the solution in the region
A, enclosed by the characteristics, is determined
by the initial condition and that the extension of
solution into region B is determined by the
boundary condition. More generally, the number of
unknown component of [/ that can properly be
prescribed on a curve [ is equal to the number of
characteristics entering region B from I, In pro
pagation problems, therefore, the solution mar
ches out from the initial state guided and modi
fied in transit by the boundary conditions.
Characteristics are the lines in the plane of the
independent variables along which waves(signals)
can propagate. [n a source free case, characterist
ics of Maxwell's equations are the same as those
of the homogeneous wave equation. The charac-
teristics produce a conical surface in two space
dimensions as shown in Fig. 2. The conical do
main £ 1n the two space dimensions becomes the
interval AB (circle) on the x-axes from the apex
(2", t"). The value of ; at (x", t") depends only

1598

on the values of U and U,(The subscript t in-
dicates a derivative with respect to time t.) on
the interval AB(circle) and this interval is the
domain of dependence of the solution at (x", t").
Thus the points A and B (or circl§) represent the
position of a wavefront in space as a function of
time in EM wave propagation. Maxwell's two
time dependent curl equations possess two famil-
1es of real charactenstics like the wave equation :
one describes forward traveling waves and the
other backward traveling waves. Physical sys-
tems that are governed by Maxwell's two time
dependent curl equations are ones 1n which waves
(signals) propagate at a finite speed (speed of

light) 1 a finite region as :
(xy = xa) =+ (e —x) = (et)- (6)

In the one space dimensional case, the lines of
PA - constant and PB == constant represent the
two families of characteristics along which the
wave (signal) propagates. An observer at point P
15 subject to the effects of what has happened in
the crosshatched region, AB. but disturbances
outside this region cannot be telt. This region is
known, therefore, as the domain of dependence at
point P Simularly, a disturbance created at point
P’ can be felt only in the vertically crosshatched
region known as the domain of influence. The
functional analogy of the domain of dependence
in this continuous case will be used to interpret
numerical (FD TD) wave propagation character
istics i a discretized computational domain in the
next section. As mentioned in the beginning of
this section, it 15 recommended to see other re-
ferences, for example 2] or |31, for finite differ

ence equation aspects.
lll. Local Wave Propagation Model

The leap frog approximation 1s shown as a local
propagation model for the FD-TD approach simu-
lating KM wave propagation phenomena in this

section. This illustration 1s based on the analogy
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of the numerical characteristic and domain of de-
pendence which Courant et. al. introduced in
their important paper {14} in 1951. They made an
analogy between continuous characteristic and
domain of dependence (of simple hyperbolic par-
tial differential equation) and numerical charac-
teristic domain of dependence (of one-dimensional
finite difference equation). We have observed a
relationship between both features. We first in
troduce the one-dimensional view of the numeri-
cal characteristics and allows us to analyze only
TEM propagation. Then, comparative pictures for
the two cases in two space dimensions are pres-
ented in Fig. 4 and 5.

Figure 3 shows the domain of dependence for
the finite differenced equation and the basic leap-
frog scheme in one space dimension. The point Q
at time level {(n+1)At is calculated from the
points A, B, Don time levels (n+1/2)At and nAa
t, which have in turn been calculated from C, D,
E, G, H, L on nat and (n—1/2)at, etc. Clearly
the numerical domain of dependence of the point
Q 1s limited by QCJ and QEN. The physical do-
main of dependence of Q is limited by the ex-
treme characteristics J and N through Q. The ex-
treme characteristics are determined by the up-
per limit value of the stability inequality.

t Domain of

x2

Fig. 2. Forward and backward characteristic cones with
apex at P and domain of dependence of Max-
well's two time dependent curl equations,

AN
T NENCT

A
At [-p---q----1 TR AL
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” ™ x 3, b, ¢ : Characteristic directions

* Q

(n+1)AL
® =
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b -
nAt D X -
7 |

Basic Leap-frog Scheme

Fig. 3. Numerical characteristics and domain of depen-
dence on the time-space grid structure,

Fig. 4. Charactenstic cones and domain of dependence
for the two space dimensions at time steps t;
and to,
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To obtain a convergent and thus stable calcu
lation, it is necessary that any pertubation that
can influence Q physically must also be able to do
this numerically (the discretization may not cut
off physically possible influences). This requires
the physical domain of dependence to be conta
med completely in the numerical domain of de
pendence. The slope of the characteristics leads
to the CFL stahility condition which will also be
described in the next section. The characteristics
and the domain of dependence play an important
role in the analysis of wave propagation phenom
ena.

For the 2-D case, the characteristics cones of
the continuous model in two space domensions at
two specific times ¢, and ¢ are shown in Fig. 1.
For the leap-frog approximation, a local wave mo
tion based on TE mode propagation 1s illustrated
n the discrete time-space mesh structure as shown
in Fig. 5 where the H field components are placed
at the points F, G, 1 and K. which are on the
characteristic lines (17(, BRP. (', and DI at
the half time steps on the half space intervals.
For a local wave motion based on TE mode propa
gation in the discrete domain, we illustrate the
2-D leap-frog approximation in the time-space grid
structure. This 1s shown in Fig. 5. The leap frog
scheme in Fig. 5 shows that H field values at the
points F. G, I, and K at a time step (n—+1/2) 4t
are dependent upon the /- field values at A, B, C,
D, and P at a time nAt, And the I field value at
the point P’; at a time (n+1¥Aat 1s updated by
using the H field values at the points I, G, I, and
K at a time (n-+1/2) At and the I field value at
the point from the previous time step nat, The
discrete characteristics of the leap frog approxi
mation for a time step form a square in a compu
tational domain since a uniform mesh size 1s em
ployed, otherwise a rhombus is generally formed,
with the four points A, B, C, and D for the K
fields and F. G, 1, and K for the /I fields. This
square behaves like the domain of dependence in
the continuous casel 15 . It is obvious that in the

three-dimensional (X, vy, t) mesh structure the

1600

characteristics of the differential equations are
circular cones, whereas those of the differenced
(leap froged)} equations are four-sided pyramids
on the square. But in the four-dimentional (x, v,
z, t) mesh structure, the characteristics of the
leap-forg approximation form a \fourrsided pyra-

mid on everv surface of a cube.

Fig. 5. Three dimensional (x, v. t) diagram showing
the characteristic of the leap frog approximation

for TE mode propagation,

V. Geometrical Interpretation

Projections {circles) of the domain of dependence
for continuous propagation are shown in the dis
cretized computational domain as the projections
(squares) of the discrete domain of dependence
on the two-space plane in Fig. 6. The square are
domains of dependence for the leap-frog approxi
mation, The CFL stability condition for the dif
ferenced equations states that in order to be con
vergent for all smooth mitial data, the square of
dependence of the difference equations must con
tain completely the circle of dependence of the
differential cquations, There 1s no loss of gener-
ality if we consider the grid point O to lie on the
taxis at x - xo and z=2z,. 1{f T = nat, then the

domain of dependence for the differential equa
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Fig. 6. Projections of the characteristic circles and
squares (propagation behaviour) in the space
plane (x, z)(domain of dependences) at time
steps ty, to, and t.

tion is given by

~
~—

xi4 22 < niatt (

and so in Fig. 6, OQ=nat where nis 1. Now the
square of dependence for the difference equation,
shown in Fig. 6, has OR =0S =naA/ where nis 1,
and so the CFL condition is satisfied provided the
square includes the circle, and this i1s the case
[15] if

c-n-Ats—L—-n-Al, (8)
V2
or
¢ ot < SF (9)
Al
Te u,

where ¢ is the speed of light, SF = \,' is the

2
stability factor, n is the number of iterations,
This confirms the stability inequality given by
Courant [14] and Von Neumann [15].

As the circles are interpreted as wavefronts at

given instants in the continuous case, the squares

are wavefronts in the discrete case. Since the
normal of wavefronts points into the propagation
direction, the numerical wavefront at the propa-
gation direction 45° in the uniform mesh corre-
sponds to the wavefronts of the continuous model
as shown in Fig. 6. And, as the angle of propa-
gation direction changes, 1.e., from the direction
of OQ to the axial direction, the difference be-
tween two cases is increased. No difference be-
tween numerical and continuous case at the pro-
pagation angle 45° will be noticed when analyzing
the numerical dispersion in the next section,

The value of the stability factor can be con-
sidered as a proportionality coefficient which con-
trols the propagated distance in the discrete com-
putational domain since the stability factor provides
a normalized distance vector on the grid struc-
ture. So, the maximum propagated distance is de-
termined by the maximum value of the stability
factor which provides the maximum 2t, This can
be explained with a forerunner. As the value of
the stability factor is increased, the effect of
forerunner is also increased. Thus, how the nu-
merical wave propagates in a uniform meshed do-
main can be predicated with (8). If SF is zero,
then the numerical wave is stationary, i.e., does
not propagate at all. Some value close to zero re-
quire a large number of iterations,

This effect of the stahility factor must be in-
cluded in the Fourier transform as follows :

N

S =Y Sulda, Jo, ke 72 Lo (10)

where s i1s spectrum, S is the time domain sam-
ple, n 1s the iteration number, (Zy, sy, ky) 18 the
sampling position in the computational domain,
and f 1s the frequency measured in cycles per
sampling interval.

V. Numerical Dispersion Relation

The standard way of analyzing the distortion of
a propagating wave is to study its dispersion re-

1601
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lation. The numerical discretization of Maxwell’s
equations produce a numerical dispersive phe-
nomenon that is different from the physical disper-
sion phenomena. As its name indicates, this nu-
merical artifact causes the phase velocity to be
come a function of the mesh size. A wave propa-
gating in a discrete mesh becomes progressively
dispersed with increasing travel time. Hence, nu
merical dispersion is a significant problem in the
method and thus its effect must be reduced as
much as possible. To see the dispersion effects of
the numerical approximation, we will analyze dis
persion characteristics in a region away from any
boundary in order to avoid boundary effects. The
velocity is also a function of the stahility factor.
Numerical dispersion characteristics have been
studied in [16]. The dispersion relation for the
3-D leap-frog approximation in a uniform mesh is
given by

@ 2L Sr sin(8, i}lwsm'(m ‘i[)

LAl
+sin® (g8, —) | (11)

2

in® (

where g«, By, and 8, are x—, y—., z— com
ponents of the wave number, and

ot e
~l TN g

SE =

We know that the continuous dispersion re-
lation in free space (no dispersion) is

‘)

Bi="r =Bt AR (12)

As AX, Ay, Az, and 4t go to zero, (11) reduces
to (12). This means that the dispersion increases
as the mesh size A/ becomes larger. For TE mo
de propagation in the two dimensions, (11) redu
ces to
R At o ., Brcost -l
in=( L=t ) = SF*[ sin®( Brcost ol )
2 2
. ssing A
fop B0 0L

<

(13)
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where # is the propagation angle with respect to
the positive x-axis. Equation (13) is further re-
duced for the normalized phase velocity as

Uph Ay S
— = ————————  g§in
& SE e al

Al -cosl Al sing

[SF y sin®( — ) +sin’( —z)-—)]

(14)

0.99 4 . ; 5 .
e p . L
; 3
= / 3
& § %
2 0981
5 g ()
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o e Lambda/als 10 3
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Fig. 7. Numenical dispersion characteristics for various

mesh sizes at NJ- =

N2

z
g o=
2 . N
> ~ B,
2 0964 A %,
l' \\
§ g meoe Lambdaaled n
| i K
g . cpes Lambdaialeg v
3 ] 8
Z 0947 ‘ N
K e L ambda/al= ! S
A LN
" RRSdT L ad Lambxdy/al=20 \\
L 8
o ‘o
0.92 = T T T v T ==
0 15 30 45 60 s i

Angle in degree

Fig. 8. Numerical dispersion characteristics for mesh si

zes at SI19+ ()5,
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Fig. 9. Numerical dispersion charactenistics for various
values in the stability inequality.

The normalized phase velocity, (14), is plotted as
a function of the propagation angle for four dif-
ferent mesh sizes at SF =1/ 2. This is shown in
Fig. 7 where the unity of the normalized phase
velocity indicates no dispersion at all. Fig. 8 de-
monstrates the same characteristic as SF = (.5 as
shown In [16]. By comparing the two figures,
Figs. 7 and 8, the smaller numerical dispersion er-
ror is shown at SF =1/v'2 rather than at SF=0.5
for the two-dimensional case. For the mesh size,
A/al=10. and any propagation angle in the
mesh the maximum dispersion error predicted for
SF=1/~2 is 0.837%, whereas for SF==(.5 the
maximum dispersion is 1.24%.

Fig. 9 illustrates the effect of the stability fac-
tor on the numerical dispersion error if the mesh
size is Ay/& ! =10. A comparison of the dispersion
property at four different values of the stability
factor (0.1, 0.3, 0.5, and 1/ v'2) means that the
upper limit of the stability inequality would yield
the least velocity error due to numerical disper-
sion for a given mesh size.

From Figs. 7, 8 and 9, it is observed that the
numerical phase velocity is maximum at a propa-
gation angle of 45 and minimum at angles of ("
and 90° for any mesh size. We can see from Fig. 7
that only at 45° the discrete propagation charac-
teristic meets that of the continuous propagation
as described in the last section. This agrees with
the above dispersion analysis. The numerical dis-

persion also cause the higher frequency compon-
ents to be delayed relative to the lower frequency
components and thus substantial tailing of the
signal arises [ 16]. In order to keep the dispersion
error less than 0.5% in the 2.D case, SF=1/ V2
and a minimum mesh parameter of Ay/13 must be
employed in the program formulation, Fig. 9 sug-
gests that upper limit of the stahility inequality
in {17 will ensure lowest dispersion error and sm-
allest number of iterations,

In addition to being dependent upon frequency,
the propagation velocity of the numerical solu-
tions is also dependent upon direction, This prop-
erty 1s called the numerical anisotropy resulting
only from the space discretization, not from the
time discretization. This occurs in the numerical
approximation of hyperbolic equations in two
space dimensions, but not in one-dimensional
cases. This error depends also on the number of
A per wavelength, and is minimized by increas-
ing the number of mesh elements per shortest
wavelength (A/A/ =12 for less than 0.5%) in the
simulation. The derivation for TE modes agrees
with the analysis of the numerical dispersion re-
lation, For a uniform mesh and the leap-frog ap-
proximation, the numerical phase velocity, c*,
associated with the space discretization can be
obtained with

~k

£ = [sin*( 8- cos ) cos® (Bl - sind)
v
i
+sin“( Bl -sind) cos’(BAL-cosh) ] ? (15)

where 6 is the propagation direction with respect
to the x axis, Note that if SAal—(), thenc*—0. A
polar diagram representing the normalized phase
velocity ¢*/c as a function of #A/ and the propa-
gation direction ¢ is shown in Fig. 10. Note that
the anisotropy error could be almost neglected if
a wavelength is resolved by more than 8A/.

Since errors due to numerical dispersion are in-
troduced by the leap-frog approximation of Max-
well’s equations, the numerical group velocity er-
ror must also be considered. The group velocity
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Anisotropy property for different angles 1.0+
;);»
308 vg SF=0.7071
= Vg SF=05
206‘ vg SF=0.3
S Vg SF=01
e
<047
g
c 024
z
0.0 T T
0 I
2 3 4 5
0
Fig. 11. Comparison of the group velocity error at the
propagation angle (07 or 90°) for various values
of the stability factor,
2041
A 8al
+ 4al
270 A 24l 1.0 ""-'---1..2,_- T
= RN
5 087 ERESSN
. . . © SoT .‘A"'m
Fig. 10. The amnisotropy is represented in a polar dia > 0.6 A, B
. (=3 ~ o
gram for four different mesh sizes. Note that g —&— Vg SF=0.7071 Tal
) CRIE I I = h
amplitudes are not related to each other ; hl Xf; SSI;::OdS] )
E 0.2 -=--o== Vg SF=01
o . . 0.0 1 T T T
indicates the speed and direction of the propa- 0.000 1.000 Bl 2.000 3.000

gation of the energy contained in the spectral

component of a wave packet or wave group. En
. . . Fig. 12. Comparison of the group velocity error at the
ergy is used here in the general sense of a quan g g ) 8 ‘ p‘ _y
) ) ] 3 ) propagation angle (45} for various values of
tity proportional to the amplitude of the variable

the stability factor,

squared. For dispersive waves, the group velocity
differs from the phase velocity and 1s perhaps a
more important quantity to examine in an error
evaluation than the phase velocity. The CFL sta
bility condition also governs the numerical group

velocity. As in the numerical phase velocity case, 081

the numerical group velocity error is minimum at Vi SF-07071

¢
. e . . = 06
the upper limit of the stability inequality as will = e VP SER07071
be shown later in this section, s Vg SI=05
The group velocity, vy,=dw/dA, 1s derived {rom Vph  SE=05
the dispersion relation (11) and is pad T Ve el
T e v sEe03
Vg™ 0.0 T T T
e . Lo 0.000 1.000 2.000 3.000
B cosay) T sinf( AAL - cosa, )+ sin*(AAL - cosa) 84l
sin(lwat) (16)
6 . )
16 Fig. 13. Comparison of the phase and the group ve
locity errars at the propagation angle (457) for
where SF 1s the stability factor and ax, @., and «, various values of the stahility factor.
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are the wave propagation angles with respect to
the coordinates x, y, and z respectively.

In Fig. 11, the numerical group velocity charac-
teristic at propagation angles (07 or 90° (along the
mesh) versus gal(radian) is shown for different
values of the stability factor. This characteristic
again suggests the use of a value close to the up-
per limit of the stability inequality. Another point
1s that the group velocity will be zero at gol ==
which corresponds to a wavelength 24/ in axial
direction. This is directly related to the Nyquist
sampling criterion for the minimum case.

In Fig. 12, the group velocity characteristic at
a propagation angle 45", (diagonal in the mesh) as
a function of fol(radian) is illustrated for four
different values of the stability factor. This fig-
ure shows that the group velocity s faster for a
propagation angle of 457 than that at % of 90", In
particular, o group velocity error occurs at the
upper limit of the stability inequality. This again
comfirms that the local FD-TD wave propagates
in the discretized computational domain along a
direction determined by vectorial sum of the values
along the unit cell as mentioned in the previous
section,

In Fig. 13."a comparison between the group and
the phase velocity characteristics at a propagat
ion angle of 45° (diagonal), with respect to gA/
is illustrated of three different values of the stabi-
lity factor. It shows that no velocity error(for
both the group and the phase velocities) occurs
at the upper limit of the stability inequality. This
comparison also illustrates that the group vel-
ocity 1s always slower than the phase velocity, As
a result, both of the velocity error increase as the
value of the stability factor decreases,

Vl. Observations

In this section, a qualitative view of how a nu-
merical wave propagates in a standard rectang-
ular waveguide is presented. TE,;, mode propaga-
tion has been simulated for both CW and pulse ca-
ses. Four different simulations of numerical wave

i :,;
R
XN
y ’l,’l,:t:»:\*x\
LR l,'o';“ N
0"1,","'

Fig. 14. The numerical wave propagation in a standard
homogeneous rectangular waveguide at iter-
ation numbers (a) 100, (b) 200, (c) 400.
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Fig. 14. The numerical wave propagation in a standard
homogeneous rectangular waveguide at iter
ation numbers (d) 500, (e) 800, () 1700.
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Fig. 15. The numerical wave propagation below cutoft
in a standard homogeneous rectangular wave
guide at iteration numbers (a) 1886, (h) 1891,
(c) 1896, (d) 1901, and (e) 1906.

propagation have been examined :1) without dis
continuity, 11) with discontinuity, iii) below cutoff
frequency, (these three use CW excitation), and
iv) pulse excitation without any discontinuity,
For all four cases, a matched boundary condition
was placed at the left and right ends of the rec
tangular waveguide. and an clectric wall hounda
ry condition is placed at the top and bottom of
the domain,

Ey components were sampled and plotted in a
3-D graphical mode for each case. The CW case is
llustrated first. [ts excitation was of the form
EVi, k, n-2t)=coslw-n- ot sinn—(\[%w)

(17

1606

Fig. 15. The numerical wave propagation below cutoff

n a1 ostandard homogeneous rectangular wave-
guide at iteration numbers (£) 1911, (g) 1916,
1921 () 1926, and (3) 1431,

where NX and (i, k) are respectively. the number
of segments A/ node points in x and z directions
in the waveguide, and n is the number of time
step. The size of the computational domain was
2040 m the z divection and 34047 in the k direc
tion, The input signal was applied at z— 10 for
cach CW case.

The numerical wave propagation in an homo-
geneous rectangular waveguide was observed at 6
different iteration munbers 0 100, 200, 400, 500,
800, and 1700. The snapshots at those iteration
numbers are shown in Figs, 14(a)-(f). We ob
serve that the wave propagates from the right to
the left hand side. The forerunners to the wave

front of the propagating wave have much smaller

www.dbpia.co.kr
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Fig. 16. The numerical wave propagation 1n a standard
homogeneous rectangular waveguide with an

obstacle at iteration numbers (a) 100, (b) 500,
() 800,
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Fig. 16. The numerical wave propagation in a standard
homogeneous rectangular waveguide with an
obstacle at iteration numbers (d) 1000, {e) 1200,
() 1900.

amplitudes than the wavefront as can be seen in
Figs. 14 (a), (b), (¢), and (d). In Fig. 14(f), we
can see that a steady state condition has been
reached.

A numerical simulation below cutoff can be ob-
served 1n the snapshots of the E field plotted in
Figs. 156(a)-()). The WR-28 waveguide was excited
with a signal of frequency 16 GHz. Observations
were made for the iteration numbers 1886, 1891,
1896, 1901, 1906, 1911, 1916, 1921, 1926, and 1931.
The figures clearly show that no propagation
exists below cutoff. However, there was a very
small amount of the energy propagated in the
form of numerical wave., We believe that the high
frequency components which propagated are intro-
duced by the discrete excitation,

We also simulated wave propagation in the pre-
sence of a discontinuity. A thin inductive metal
strip was placed at the center of the waveguide
WR-28. The wave propagation was observed at
iteration numbers 100, 500, 800, 1000, 1200, and
1900, and the results are shown in Figs. 16(a)-(f),
respectively. Due to the reflections from the dis-
continuity, we can see from Fig. 16 that it takes
longer for the field to reach a steady state con
dition, than in the case without the discontinuity.
Figures 16(a)-(f) illustrate the transmitted field
distribution on the left hand side of the disconti-
nuity and the total field distribution (the incident
and reflected fields) on the right hand side of the
discontinuity. Note that the SWR and S-param-
eters can be easily calculated from these field
distributions.

We can ohserve pulse propgation phenomena in
standard rectangular waveguide as well. A Gaus-

sian pulse,

W

Lo N (A

Edi, k) =e SIH(T ), (18)
1s applied in the middle of the waveguide at time
t =), where v 1s the pulse width as shown in Fig.
17¢a). As described in Section 2, we can see Fig.
17(b) that the incident pulse immediately splits
into two pulses as illustrated in Fig. 17(c)-(g),
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Fig. 17. The numerical puise wave propagation phenom
ena 1 A standard homogeneous  rectangalar
waveguide at lieration nuntbers (oo, (b3,
and (C) 20 Excitation of a Gaussem pulse at

the center of the waveguide.

the two pulses continue to propagate in opposite
directions. This observation confirms that Max

well's eguations describe two solutions propagat

ing in two opposite directions, Note that the pulse
width broadens as the wave propagates, since the
waveguide is dispersive. Figs, 170h) and (1) use 4
different scale, since almost all the energy has
been absorbed hy the matching howtdanes at the
right and left ends of the wavegude, Both the
higher frequercy and lower frequency componen

ts helaw cutoff remain trapped o the computad

ional domain. which 18 especially obvions w Fig.
17{h?! at iteration number 503, where we used an
amplitude scale one fourth of the scale i Fig, 17
(a}, At teration number 2500, (Fig. 1700, all the

higher f{requency components have disappeared

1608
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Fig. 17. The numerncal pulse wive propagat.on phenom
I i

eng in a standard  homogeneous  rectangular

waveguide at teration numbers (di 5, fer [,

and {220

since the lugher frequency components provagate
slower than the lower {requency vomponents tdis
persive nature), Only the components below cut
off rematn stationary. For this case, 2500 itera-
tions were saffwcent to obtain an accurate fre
guency donnn response through the Fourter tra
nsfornn Hfoa smaller number of ateratons has
been used, we would have abserved Gibbs phen
Nenaon,

Engineering parameters can be extracted from
the simulation of WM wave propagation phenom-
: has heen done by caleulating reflection
(S axd transmission coefficient with the FD

era, 1t

TD method. Following two examples shows the
accuracy of the FD T method. Reflection prop

ortv of inductive irses o the WR 90 rectangula
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Fig. 17. The numerical pulse wave propagation phenom-
ena in a standard homogeneous rectangular
waveguide at (h) 500, 1)
2500.

iteration numbers

waveguide is shown in Fig, 18. The FD-TD result
is compared with TLM(Transmission Line Matrix)
and a theoretical calculation, and shows good ag-
reement with the other methods. The second
example is shown in Fig. 19. Reflection and trans-
mission properties are compared with well proven
mode matching technique, Even though thereis a
little discrepencies in amplitude, there shows a
good agreement in frequency characteristics.

M. Conclusions

The numerical simulation properties of the FD-
TD approach for EM wave propagation have been
lustrated by using the analogy between the nu-
merical and the analytical (continuous) charac-
teristics of Maxwell's two time-dependent curl
equations, This simulation method has been trea-
ted as a physical model, with which EM wave

09+ %
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074

06 *——— TLM result

0.5 4

11

Theoreticel calculation ——p

0.4
0.3 FOTD result —

0.2

0.1

Fig. 18. S1) of symmetrical inductive irisee in WR-90.
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Fig. 19. One resonator E-plane filter characteristics in
WR-28.
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propagation processes can be seen in a sequence
of discrete events. The stability factor affecting
the numerical wave propagation process has also
been described in terms of the numerical wave
velocity error (dispersion) which is directly related

to the accuracy and economy of computation.

The qualitative and quantitative observations of

the numerical wave propagation in a rectangular
waveguide 1llustrate the descriptive modeling ca
pability of the FID-TD method., Thus, any experi
mental work can be done with this numerical model
without disturbing the field distribution through
probing (sampling) of field quantities, and with great
freedom in the selection of boundary conditions.
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