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EFFICIENT IMPLEMENTATION
OF GRAYSCALE MORPHOLOGICAL OPERATORS
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Abstract

This paper presents efficient real time software implementation methods for the grayscale morphological
composite function processing (FP) system. The proposed method is based on a matrix representation of the
composite FP system using a basis matrix composed of structuring elements. We propose a procedure to
derive the basis matrix for composite FP systems with any gravscale structuring element (GSE). It is shown
that composite FP operations including morphological opening and closing are more efficiently accomplished
by a local matrix operation with the basis matrix rather than cascade operations, eliminating delays and
requiring less memory storage. In the second part of this paper, a VLS] implementation architecture for
grayscale morphological operators is presented. The proposed implementation architecture employs a bit-serial
approach which allows grayscale morphological operations to be decormposed into bit-level binary operation
unit for the p-bit grayscale singnal. It is shown that this realization is simple and modular in structure
and thus is suitable for VLSI implementation.
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I. INTRODUCTION

Mathematical morphology 1s a powerful tool for
image analysis and computer vision. Morphological
image analysis systems have been successfully used
in many applications including object rocognitiorn,
image enhancement, texture analysis, and industrial
inspection. The basic morphological operations are
erosion and dilation. Based on these operations,
several composite operations including closing and
opening are defined Many theoretical results
concerning the operations of mathematical morpho-
logy can be found in [1]-[4].

The morphological operations can he classified
into three types of operations: 1) The most general
morphological operation, the function-processing (FP)
operation, uses the grayscale structuring element
(GSE) and accepts as inputs multilevel signals and
produces as outputs nultilevel signals. i) The
second type of the morphological operation is the
set-processing  (SP) operation using the binarv SE
whose both inputs and outputs are binarv signals.
1ii) The last one, the subclass of the FI operation, i<
the function and set processing (I'SP) operation.
This operation uses the hinarv SE and produces a
binary signal whenever the input is binarv signal. A
variety of implementation algorithms  developed for
the order statistic and stack filters can be utilized
for implementation of morphological FSP and SP
operations. However, these algorithms can not be
directly applied to FP operations using the GSE
which do not obeyv the threshold decomposition.
Moreover, FP opening/closing using the cascade
representatin(erosion / dilation followed by dilation /
erosion) requires memory storage for the first

o] VILSI 3o glold Agksl ol 7159 Threshold
< B}

e introduced.

In this xgper, we st et
software wnplementation algorithm o the giae - o
morphological TP operations. The proposed il
based on a mutix representation of the composit
FP system using a basis matrix which s an
extension of the basis furu:tim‘ e PrOPOSe.
procedure to derive the basis natrix for FP svetene
from any GSE. It is shown that opening and closing
are acconplished by a local matrix operation with
the basis nutrix rather than cascade operations,
elimnating  delays and requiring  less  memory
storage. In order to improve the computational
efficiency of the proposed software implementation
method, we utlize o 1eerasive algonthm based on
the ohservation of the basis matrix  and  input
matrices. The analvsis of the hbasis matrix  shows
that the basis matix is skew symmetric and has
many redundant entries. It is also shown that most
cntries i the successive  input  matrices  at two
adjacent time indices  are identical. By eliminating
these redundancies, a fast recursive formula for the
proposed matnx operation can be obtained which can
significantly  reduce  the required computation. To
evaluate the computational efficiency of the proposed
scheme, the required number of operations for each
morphological  operators including  opening  and
closing i1s calculated. It is shown that, with the
proposed scheme, both opening and closing can be
obtained by 2N-2 additions and 2N-2 comparisons
when the size of the GSE is equal to N.

A VLSI implementation architecture of the stack
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filter using the threshold decomposition was first
proposed by Wendt et. @', and Shih and Mitchet!™
modified this architecture for the implementation of
the morphological operations. In the second part of
this  paper, we propose a  VLSI  implementation
architecture  for  gravscale  morphological  FI?
operations based on the bit serial up[)machw B e
bit serial architecture has  heen utilized for  the
implementation of the order statistic and stack filters.
This technique, however, has never been applied to
P composite operators since these operators do not
obev  the supemposition  principle.  The  proposed
hit-serial technique allows  gravscale morphological
operations  to be  decomposed  into bit level binary
operations by a  bit modification  algorithm. - The
hardware  complexity of  this  realization  grows
linearly with the number of bits, as compemed with
the  exponentially  increasing  complexity of - ihe
threshold decomposition method ™ Farthemore. (o
increase data throughput rates. a bt level pipelined
architecture is presented.  which  can  significantiy

reduce the delay time.

The organization of this paper is as follows: In
Section  II, gravscale morphological operations  are
defined, and the local matrix operations for opening
and closing are explained. The fast implementation
algorthms for the composite morphological  operators
using  the matrix  representation  are proposed  in
Section L and the VLS implementation algorithm
and architecture are presented in Section [V, Finally,

the concluding remarks are presented in Section V.

II. GRAYSCALE MORPHOLOGICAL
FUNCTION PROCESSING

In this section, we first review grayscale mor
phological FP systems [1]-]4] and point out that
composite  FP morphological — operation can - be
accomplished by a local operation of neighborhood

input samples.

The hasic morphological operations of a grayvscale
signal £ by a GSE k with size N are defined as
follows T 1et the domain of { be denoted by [ and

the donain of k by A

Dilation: The  gravscale  dilation of f hv k is

denoted by g, and is defined by

gl = fDkN =T f(n-D k(2] D

<

where the maximum is selected from the set of
sums over all ze K and n—ze F
Frosion: The gravscale erosion of £ hy k is

denoted by g and is defined by

2= ="" Ayt -KD] .2

Z

where the minimum 1= taken from the set of

differences over all ze K and n+zeF.

Opening is dilation of & eroded signal, and closing
s crosion of a dilated signal. These  composite

morphological operations are defined as follows:

Opening = 'The gravscale opening of by ks

denoted by gy, and 1s defined by

gm)=(f Rn)=[ (fSEYDE] (n).

Uosing  The  grayscale closing of f by k is

denoted by g, and is defined by

glw)=(f-k)(nw=[ (fOROk] (n). ¢

Next we develop a max-min/min-max represen
tation for gravscale morphological opening/closing
The opening and closing in (3) and (4) can be

represented as follows:

Proposition 1:The FP opening and closing of f

by k are equivalent to
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and

gdn)= mzin { rr?x [ An+tz—2")—b(z, 2)] }.(Sb)

where b(z,2' )= k(2) —k2),2e K and 2 €K

Proof : From the definition of grayscale opening,
gm)=1 (fORDE] (n)
=(g.Dk)Nn)

= msx [ (g.{n—2)+k2)]

= M Szt )~ K] K]

< <

since min[ ,8] +c=min[ a+c, b+c] ,g

can be represented as

g (m= "2 [ (24 2)

+6(z,2)] }
g.(n) can be derived similarly.

This property is also a direct consequence of the
morphological  representation  theory (Theorem 3 in
[6D. the max-min/min-max representations using
this property for grayscale morphological opening /
closing, although more complex, are faster than the

cascade representations(erosion / dilation followed by

dilation / erosion). For example, consider a GSE k==

{R(0), R(1),K(2)}.
The outputs of opening and closing, respectively,
are given by

go(n)=max{min[ Axn), An+1)+

+5(0,1), An+2)+560,2)] ,
min[ An—1)+5(1,0), An), An+l)

+5(1,2)] ,
min[ An—2)+b(2,0),An—1)+
+86(2,1), An)] },

and closing

gdnm)y=min{max[ An), An—1)
=60,D, An—2)—-50,2)] ,
max[ An+1)—5(1,0), An), An—1)
~b(1,2)] ,
max|[ An+2)—62,0), An+1)
=b(2,1), An)] 1V,

Next, we propose a fast implementation method
for the local matrix operation of opening and closing

using matrix notation,

Proposition 1 can be expressed in a matrix form
using the input matrix, denoted by F(#n), and the
basis matrix, denoted by B, as follows: The NxN
input matrix  F(xn) contains 2N—1 input sanple,
{f(n=N+1), -, f(n+N-1)}, and defined by

An) An+l) = An+N-1)
Fon) = f(n:--l) f(:n) ﬂn+N—2) )

An=N+1) An—N+2) = fin)
6)

The NXN hasis matrix B, whose elements
consist of {b(i, N}, is defined by

b0, N—1)
b(1, N—1)

5(0,0) b(0,1)

p=| LD ALD - . _
BN=1,0) 6(N—1,1) - B(N—1.N—1)

[}

It is interesting to observe several properties of
this basis matrix. First, each row represents a basis
function as defined by [BlI6]. Second, since
b(i, /)= k(i) —k(j),b(i,i) =0 and
b(7,7) =—5(7,1), the basis matrix can be written
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as
S0 50.1) - 60, N-1)
p_| —b(1.0) 0 - B N-1)
WO N=1) —b1.N-1) - 0
R

Note that the basis matrix is skew symmetric, that
is, BT=—B. where B’ is the transpose of 3. This
matrix also implies that the total number of distinct
elements can be reduced from N7 down to (N~ N)/2.

The output of opening, g,(n)., can he obtained
by finding the maximum of the minima of each rows
from the matrix Fn)+B The output of closing,

gln), 1s the minimum of the maxima of each

columns of the matrix F(n)+B. This imple
mentation of the opening and closing  operations
using the matrix operators requires less delays and
memory storage than the straightforward two -stage

cascade combinations of erosion and dilation.

. FAST IMPLEMENTATION OF LOCAL
MATRiIX OPERATORS

In this section, a fast implementation method
based on the proposed local operation is presented fo

composite FP morphological operations.

As described in the previous section, the outputs
of opening and closing, respectively, are determined
by using the row- wise minima and the colunin wise
maxima of the matrix Fm+B  Expressing the
opening and closing operations in terms of the
row-wise min and column-wise max  operations

gives

gm)=max{ Ry(n), R(n). - Ry (n)] , (Ga)
g{n)=min[ Cy(n), C,(n), -, Cy1 ()] , (9b)

where R/ (n) and C{n), respectively, denote the

.. -th : th
minimum of the % row and the maximum of the /'

1864

column of the matrix F(xn) +B,z.e.,

R.(n)= m}“[ An—i+tH+6(i )] . (10)

C,(n)= mj.‘x[ fln—j+d+bG, D] . b

where je K and JEK. It can be easily shown that
the opening and closing operations in (9,
respectively, require N 2~ N additions and N°—1
COmpAarnsons.

The proposition stated below indicates that the
outputs of the opening and closing operators at time

n can be recursively obtained from the previous

operation results

{R{n—1),0<i<N-2},{C{n—1),1=j<N—-1},

Sy th . ..
Proposition 2 The " row-wise minimum, R »),
h

and the 7™ column wise maximum, Cin), of

F(n)+ B can be obtained using the following

recursive formula:

R(w=R; | (n—1)+6b(i,i-1),

=1,2,,N—-1, (Ha
Cn)=C; . (n—=D+b(j,j+1),
i=0,1-,N—2. (11

proof. For i=1,2,-- N—1,

R(n)=min[ An—0+b00, fF(n—i+1)
+b6(5, 1), -, An+N—i—1) +bli, N—1)]
=min[ An—2a+b(z~1,0)+8(ii—1),
An—i+1)+b(i—1,1)
+o(i, =1, f(n+N—i—1)+
bli, N—1)+b(i,i—1)]

=min[ An—)+b(i—1,0), An—i+1)
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+8:, 1), . f(n+N—i=1)+bi, N—1)]
+5(i,i—1)
=R, (n—1)+b(z,i—1) (12)

In the similar way, Ci{(#) can be obtained using

Cj1{n—1) recursively.

Using this proposition, the opening and closing
operations can be redefined as

gn)y=max[ Ry(n), Ry(n—1)+b1,0),
“, Ryo{n—1)+b(N~1,N-2)] , (3
glm)=min[ C\(n—1)+560,1), -,
L Cya(n=1D +HN—-2,N-1),
*Cyv-1(m] . (13b)

These equations represent a fast implementation
method of the opening and closing operations. The
calculation of Ry(#n) requires N—1 additions and

N—1 comparisons. The calculation of {R(n—1)+

b(7,i~1),0<i<N—2} requires N—1 comparison.
The total number of operations required to determine
opening and closing at each point is equal to
2N—2 additions and 2N—2 comparisons. Therefore,
the opening and closing operations using Proposition
2 is computationally more efficient than the
operations without using Proposition 2(N? —N) add-

itions and N? —1 comparisons).

To illustrate the computational efficiency of the
proposed fast implementation method, two schematic
diagrams for opening with the GSE of size three are
presented in Fig. 1. The signal flow graph of the
local matrix operator in (9a) is presented in Fig
1(a), and the graph of the proposed recursive
opening operator in (13a) is shown in Fig. 1(b).
These two diagrams show that the proposed
recursive structure has significantly less compu-~

tations. For the software realization high-level
language descriptions of the proposed fast opening
and closing are given in Algorithm 1 and Algorithm
2 respectively.

Algorithm 1:The fast recursive algorithm for
opening can be realized using the high-level
language as follows:

begin (* main routine of opening*)

(* initialization*)

for 7 =0 to N-1 do (* N:the size of GSE *)
R(D)= fmin (i, N—i—1);

out(0) = Rmax( );

(* recursive structure *)
for i = 1 to L-2N+1 do (* Lthe length of f *)
for ji = 0 to N-2 do
RG) = Ry+1+bIN-j~1, N-j-2);
RIN-1) = fmin(i+N-1,0);
out(r) = Rmax( );
end
function fmin(;, /) (* find the minimum of N
input samples at time i *)
begin
min = fD+b(j, O)
for k:=1to N-1do
if (Ri+k)+b{j.k)<emin) then min=fi+k)+b{j k);
return
end

function Rmax( )
(x find the maximum of R;, 0<i<N—1%)
begin
max = R(0);
for /:=1to N-1do
it (R(7)> max) then max = R(i)
return max;
end
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Algorithm 2 The fast recursive closing can he
realized as follows:
begin (* main routine of closing *)
(e initialization *)
for /: =0 to N—1 do
C(2)~ fmax (7, 1);
out(0) = Cmin ( )

(* recursive structure )
for 2 =1 to L—2N+1 do (xLthelengthof f=*)
for j:=0to N—2 do
C(HR=CG+1)+bG,j+1)
C(N—1)~ fmax ({+N~-1, N—1);
out( 7} Cmin( ).

end

function fmax (/, /)
(* find the maximum of NV input samples at time 7 *)
begin
max = A2 +6(N—1,/)
for 2: =1 to N—1 do
if (fi+R +b(N—k—1,7)>max)
then max = f(i+k) +bHN—k~1,/):
return max ;

end

function Cmin( )
(* find the minimum of C,, O<{<N—]%)
begin
min = C(0);
for :=1to N—1 do
if (C(/)<min) then min = C(J);
return min;

end

Similarly, the fast implementation algorthm for

closing can be easily obtained.

V. A VLS!I IMPLEMENTATION ALGORITHM
FOR GRAYSCALE MORPHOLOGY

Suppose that both the input f and the GSE k
with size N are p bitt? level) nonnegative signals
and that the output of the FP system is also a p-hit
non negative signal. To simplifv notation, we denote

v W={A, A, .. A, |} the set of sums or
differences for and FP operation.

The outpur g of  a  gravscale  morphological
operitor with the GSE of size N can he expressed
v

g= OLA AL A, ), '

where @ is a4 min/max operator  representing
aither o single  operation (min or - max),  ora
combined operation of nun and max (min of  meaxin
or max o of minine), and LN for erosion  and
dilation, and L-N for opening  and - closing. For
exarmple, the outputs of the gravscale opening and
closing with the GSE of size N repectively, are

given by

g,o=max{min[ A, . A~y ] .
Apne Ao 1] s
A v Ay 1} '

minf

min [

g =min{max[ A, Ay ]
max[ Ay, LA ],

max{ A, v .41 ),

Irom (1) (), the A, in the set W for each

L= L—1, is given by

www.dbpia.co.kr



&/ WS Gelel a3k T okl Be A

An—1)+k), for dilation,
An+1)—&0), for erosion,
An+i—(N+D LN,

A= +H li/nl, (15

i—(N+1)Li/N!|), foropening,

An—i+(N+1) LN/,
—b( Li/ni i
—(N+1) 1 i/NJ), forclosing,

where | Z/NV/| represents the integer part of
I/ N. In order to ensure that the output is limited to
the range [ 0, 2p—1] , it is assumed that the
set of data in the window is clipped in such a way
that A,=0 if A,<0 and A;=2""' if Az2,-1.

The output of FP operators can be obtained by
either the threshold decomposition method [7],[13].[14]
or the bit-serial method [9)-[12] in conjunction with
the circuit that generates the A, inputs. In the
threshold decomposition method, a p-bit grayscale
input signal is decomposed into 2°—1 binary
signals, {#,#,,#"""}, and each binary signal
are processed in parallel, and finally outputs of each
binary operation are summed to reconstruct a
grayscale output. Since the min/max operator has
the threshold decomposition property, it can be
implemented as shown in Fig. 2. Obviously, the
Boolean AND/OR circuits for binary operations can
be applied to this realization. method consider, an
example for erosion with the GSE of size three.
Suppose that the input to the min/max operator is

given by {A;, A, Ay} =(1,3,2}. Thresholding
this input at level 1, 2, and 3 generates three binary
signals {3, £, £} =10,1,01,{£, 4, 8}=  (0,1,1},
{té‘t%'t;lg}={l,1,l}. Each binary signals are proce-

ssed in parallel through the binary erosion operators
which can be implemented simply by using a

three-input Boolean AND operator. Finally, adding all
the outputs of each binary operators gives the output
of erosion. Next we shall show that FP operators
can be implemented by the hit-serial method incor-
porating the binary morphological operators.

Let the p-bit code words (radix-2 binary repre-

sentation)  of A, and g respectivelv, be
N .
(a},di,~-.al), and (b',0% - ,b") where 4

and b' are the most significant bits (MSB). In the
bit~senal realization, the output of each bit is
obtaned sequentially, starting with the MSB. At
each bit-level, with the exception of the MSB, the
binary input values at the level are modified before
being applied to the binary morphological operator.
This modification depends upon the outputs of the
more significant bits as follows:

Proposition 3:In an FP operation, the output of
the binary morphological operator at the j”’ hit level

is given hy

d:,+ Li1+’+ {iNfl, fordilation,

Qo Q1 Ay, for erosion,
(a, ay- )+

( ay-- C{2N71)+

w4+ ( @p_y ap.,), foropening,
(a,++ ay.y)

- ( d\1V+"'+ 62‘21\/—1)

(@ ytet a ), for closing,

(16a)

where addition and muitiplication represent the
Boolean OR and AND operations, respectively, and

cflz. =a11. for all 7,0<¢<L—1, and for each j,
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]
i
i a;, if a7=06"form=1,2,,r—1
and for some »,r<<j—1,u|*b’

a’, ifa’=b"for m=1,2,;-1

(16h!

This  property  can bhe proved by o slight
modification of the proof of Theorem 3 in {111 In
essence, this algorithm replaces A, with o coertain
value which 1s greater (smaller) than A, onee it
hecomes evident that A, is greater (smaller) than
the output g, Fig. 3. shows the logic network which
produces the outputs of the hinarv  morphological

operators when N=12.

The following example illustrates the bit serial

implementation of an FP opening using Proposition 3.

Example . Consider an FP opening  operation of
by k given by A£(0)=1 and £(1)=2. Suppose
that the input samples are given by f(n—1)= 10,
fn)=6, and f(n+1)=4. Using (15, the set of
inputs to the min/max operator for P opening is

obtained: W={A,, A;. A, A} ={6.3,11.6} This

set of data can be represented by the 4 bhit binary
codes:
Ag=t=(0110)

A |=3=(001D)
A,=11=0101D)
A4=6=0110)

The process of opening using Proposition 3 is
summarized in Table 1. Note that the correct output
value (0110)=6 is obtained, and A, =(0011)-3, which

is smaller than the output g=(0110)=6, is replaced
with (0000) while A,=11, which is greater than the

output, 1s replaced with (1111)=15.

In Fig. 4, the output & in (16a) is calculated

1868

using the hit serial realization in conjunction with
the hinary morphological operators. In this figure, the
hinarv morphological  operators are  implemented by
using the logic network presented in Fig. 3. And the
it modification  logics can he  implermented by
realizing the modification formula of (16b} in terms

of o Boolean equation as follows:

/ !

a'= a M+ o M (N

- .
Where M= @) " ®Y '+ M for

V22 and M } 0. Here we represent the exclusive OR

operation by and the complement operation by
(<. Fg 5 shows the logic network realizing the

Boolean Tfunction in (17),

The main criteria for the evaluation of anyv VILSI
implementation  algorithm  are  delay  time and  the
hardware complexity. The implementation based on
the threshold decomposition property requires a logic
network decomposing @ p bit input signal to 27 —1
binary  signals,  and 281 hinary - morphological
operdtors, and 2 logic network regenerating  the
grayscale output signal from each outputs of the
hinary operators. ‘Thus, the hardware complexity of
the implementation  based  on  the  threshold
decomposition property grows exponentially with the
number of bits of the input signal. On the other
hand, the implementation based on  the bit serial
approach requires one binary morphological operator,
and 1. hit modification logic networks, and thus the
hardware complexity grows linearly with the number
of hits. Thus, the hardware of the bit serial
architecture is simpler in structrue than that of the
threshold  decomposition based  architecture. In the
sense of the delay time, the threshold decomposition
hased implementation has the delay of

T, 7, t 1, wherer; denotes the decomposition

delay, 7, the bhinary operation delay, and r, the
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regeneration delay. The delay of bit-serial approach
is pr,+(p—1)r,, where 7, denotes the bit

modification delay. Thus, the threshold decomposition
based implementation is faster than the bit-serial
approach. However, parallel use of the logic unit in
Fig. b can speed up the computation of the bit-serial
approach. The bit-level pipelined architecture for the
bit -serial implementation is shown in Fig. 6. The
delay experienced by data propagating through this

architecture  becomes 7,+1,.  Therefore,  the

hit-level pipelined architecture for the implementation
of the FP operations can provide greatly increased
data throughput rate.

V. CONCLUSION

Efficient real time software inplementation me
thods for the composite FP morphological operators
were presented using the recursive structure based
on the redundancv of the basis matrix and input
matrices, If was shown that the composite
morphological  operators  including  opening  and
closing can be accomplished by a local matrix
operation. It was also shown that, with the proposed
fast algorithm, both opening and closing can be
determined by 2N-2 additions and 2N-2 comparisons
when the size of the GSE B equal to N. This fast
implementation method can be directly extended to
the implementation of composite operations such as
the close-opening and open-closing operations. In the
second part of this paper, a VLSI implementation
architecture for grayscale morphological operators
was  presented.  The proposed implementation
architecture employed a bit-serial approach which
decompose grayscale morphological operations into
bit-level binary operation unit for the p-bit grayscale
signal. It was shown that the bit-level pipelined
architecture for the proposed scheme can greatly
increase the data throughput rate.
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Table 1. Original input bits, modified input hits, and
output bits for the exadmple in Section T
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