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A Discrete Time Priority Queueing Model
with Bursty Armvals

Mee Jeong Lee”  Regular Member

Abstract

A queueing model with two input streams of different service priorities is studied. Specifically,
IBP+BP/D/1 with head-of-line priority is analvzed. IBP and BP stand for Interrupted Bernoulli Process
and Bernoulh Process respectively. The BP-stream customers have the higher service priority over the
IBP- stream customers. An exact analyvsis of this priority queue is presented to derive the distributions of
the state of the system at steady state, the waiting time distributions for each class of customers, and
the interdeparture time distributions. The numerical results of the analysis are presented to show how the

various parameters of the low and high prionty arrival processes affect the performance of the system
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[ . Introduction

Mechanisms dealing with priorities among arrivals
to a queueing system have been studied in literature.
Generally, the priorities shown in the literature can
be classified into two categories, service priorities
and space priorities. In[1], Hebuterne and Gravey
analyzed the case where an arriving high priority
cell can take the place of a low priority cell already
in the buffer if it finds the buffer full Another
mechanism for space priority scheme known as
partial buffer sharing is studied in [2} by Garcia and
Casals. In this scheme, both high and low priority
packets share the buffer up to a threshold. After
that only high prority packets are admitted.
Comparison of the mechanisms reported in [1] and
[2] is performed by Komer in [3]. A discrete time
priority queueing system with a bursty arrival
stream has been analyzed in [4]. Both a space and a
service priorities are studied in that report. However,
they only consider one arrival stream, and assumes
that the amrival stream consists of two different
priority classes of packets.

In this paper, it is assumed that customers with
different service priorities come from separate input
streams, which may sinulate real situations more
accurately in certain cases. Specifically, [BP+BP/D/1
system with head-of-line priority is analvzed.
Bermoulli Process(BP)-stream custormers have service
priority over the Interrupted Bernoulli Process
(IBP)-stream customers. An exact analysis of this
priority queue is presented to derive the distributions
of the state of the system at steady state and the
waiting time distibutions for each class of
customers. The interdeparture time distributions of
the departure processes are also obtained. The
departure processes of queues are of special interest
in the analysis of queueing networks because it can
be the armrival processes to other queues.
Interdeparture time distributions are useful informa-
tion in characterizing the departure process [5].

This queueing system may readily find out its
applications  in  communication  systems. At the
transport layer, for example, there are two traffic
streams joining' the new packets from an application
and the packets requested to be retransmitted. For a
high speed network, a queueing network modeling a
communication system to analyze the end-to-end
delay achieved by the system nwst include a
queueing system simulating the transport layver since
the transport protocol processing overhead affects the
performance of the system significantly [6-10).

IBP which captures the burstiness of a process is
appropriate to model the packet ammivals from the
applications of a high speed network [11]. Generally,
there is certain randomness in the way that the
transport layer retransmits lost or damaged packets,
and thus BP may model the stream of packets to be
retransmitted {12]. At the transport layer retrans-
mission requests are usually taken care of imme-
diately for the efficiency of the protocol processing.
In our queueing model, this may be reflected hy the
head-of-line priority scheme. The analysis shown in
this paper can be combined with the analysis of the
intermediate queues in the queueing network to
determine the end-to-end delay of a communication

system

In section II, the queueing model is defined, and
the distbutions of the state of the system at
arbitrary time is obtained by deriving the z-trans-
form of the distributions. Queuve length distributions
at IBP-stream customer arrival instances, from
which mean waiting time of IBP-stream customers
are readidly derived, is obtained in section I In
section IV, the departure processes of the system are
analyzed. Some numerical examples are presented in
section V. Finally, conclusions are given in section
VL
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II. IBP+BP/D/1 at Arbitrary Time

The BP is defined over a slotted (discrete) time
axis. The number of arrivals at each discrete time
slot is 1 with the probahility S and 0 with the
probahility 1 8. that is, the interarrival times are
independent with the same geometric distribution {12].

The TBP is also defined over a discrete time axis
and it comprises two states, an active state and an
idle state, which alternate. “The transitions  between
states are governed by the two-state Markov chain
as shown in Figure 1. Given that the process is in
the active statetor the idle state) at slot ¢ it will
renzin in the same state in the next slot 7 - 1 with
probahility p for  g) or will change to the idie
statelor the active state) with probability 1T p Gor
1 —¢). During the active state. amvals oceur i a
Bernoulli  fashion  with  the probability that a0 sl
contains an armival to he e, No amivad oceurs i the
process is in the idle state. The "burstiness” of an
arfival process 1s quantified by the squared coeffi
cient of variations of inter -arrival timest C7) which
is equal to the variance over the mean square of the
inter arrival times. Equations for the = transtorm of
the probability distribution of the interarmval umes,
the mean interarrival time, and C* of an IBP are
obtained in terms of the IBP paranmeters. p. g, and

e, in {11].
Figure |

The service prority is head of line with no
preemption. The time required for a custoner to
pass through the server is equal to one slot Irois
assumed that the slot length of each source of
armivals is the same as that of the server. In a slot,
the IBP state change, an arrival from the [BP
stream, an arrival from the BP-stream and/or a
departure may occur. The order of these events in a
slot is shown in Figure 2. A customer that amves
at an idle system in the middle of a slot 15 not
served until the beginning of the next slot.

2016

Figure 2

In order to obtain the steady state distribution of
the state of the svstem, we observe the system at
the slot houndaries. The state of the system is
represented by (S, N), where S and N rt*pfesent. the
state of the IBP and the number of customers in the
svatem respectively. Sis equal to Oor 1, representing
the idle or active state. 7,(#)is defined to be the
probahility density function (p.df) of the state of the

svstem, that is. 1,(n) = Probl S=s,N=n] . and
m(n)=my(n) +m(n). The state transition diag

ram of the svstem is shown e Figure 3.
Figure 3

The Global Balance  Fquations  (GBEs) may be
writtenn down by applyving low conservation  inspe
ction method to the state transition diagram (131
lrom those GBEs, we denve /140 2) and [0 2) | the
= trmslorms tor 2.0 00 and 710 n) respectively. 11.(n)

and ¢y are, then, obtiined by inverting 7(2)

and /1 z). The GBEs and the derivation of 1.4 2)

and /10 z) are given in the appendix.

M. Queue Length Distribution Observed at the Arrival
Instances of Low Priority customers

In this section., we obtain the queue length
distribution  observed by the arrivals  from  the
IBP stream [14]. This analysis will enable us to
derive the mean waiting time of the IBP-stream

customer.

We define a random variable L ,(2"). the number of
customers in the system immediately before the
potential arrival point in the kth slot following the
mth IBP-stream armival given that the (n+1)st
[BP stream armival does not occur in the preceding
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(k-1) slots. Let L™ be the random variable denot

ing the number of customers in the system seen by
the nth [BP-stream arrival. In the nth IBP-stream

customer arriving slot, there are 1+B arrivals and a
departure if L{” is greater than 0. If L{" is equal
to 0, there is no departure. B is the random variable
representing the number of amvals from the

BP-stream. Hence, Li" is given by

o (L+B if LY > 0

L =\B+1 if Li" =0

Correspondingly, the number of customers in the
kth slot following the IBP-stream arrival is given by

o [Lo"+B+1 A L7, k=2,3,-

o
Li"=ip if LM @

If the steady state exists for L.” and L.".

then
limL{” = L, and lim L{"=1L, 3)
n =~ oo n - 00

Let ly(n) and L(n) be the pdfs of the random
variables I, and L. respectively. An IBP-stream
customer will arrive in the kth slot after the last
IBP-stream arrival with probability a( &) (=Prob
[interarrival time of IBP-stream= k]) and find the
queue length distribution /,( #). Hence, the pdf. b

(n) can be written as a function of the p.df. kn) as
follows

I(n) = g}la(k)l,,( n). @

Let L2 and Li«(z) be the z-transforms for Iy
and Li accordingly. Taking z-transform for the
random variables described in relations (2) and (3)
gives

k
L =2+ U=E) 1 ()
+e-D g+ 122)

4
+2a-D(a+ L2 ) 0, k=23, )

where 8 is the probability of an BP-stream arrival
in a slot.
From (4), L.{z) can be written as a function of

Lz as follows

Lz = ga(k)L,xz) ®)

By substituting (5) into (6) one obtains
L2 =2Ly A8+ LT )+ (a—1)

) f,(“ﬂf&) S a(Bl1(0) @)

k=i+1

+2z(z—1) Zﬁla(k)lo(O) (ﬂ+ _&;_@.)k

where A(z) is the z-transform of the pdf of the
interarrival times for the IBP~~strea1'r_L

Obviously the term Eﬂa(k)lk_l(O)can be
=1

rewritten as gx a(k+1,0).

Let us define the sequence x( ¢) as

() = gla(kﬂ)lk(O), =1 )

and the X(z) as the z-transform of the sequence
x(1).

2017

www.dbpia.co.kr



‘M[}W;ﬂfu‘“.mw il 9410 Vol.19 No.10

X(2) = i:l W)z ) Now, let us define several functions as follow
E(z):ﬁ+i%&, (14)
Then, equation (7) can be written as
P(2)=a(E(2) +a,(E(2), (o
Ln(z>=zL(,(z)A(3+i—1—z"—@l) o) =1~ w E(2)(1 —w. (), {6
X*(2) = x3( E(2))" +x1E(2). (19

+(z—1)X(,6’+—L;@l) (e

From 13 (17 1t 1s given that

+z(z—1)lo(0)A(/3+ il—;&>

z‘(</5’+'-(1—;ﬁ‘)—)* X(F(z))*—‘}*,(%zl and (I8

From (10) one finally obtains

A(;ﬁ ¥ Q—;“i)); ACE(2)) = %—Z)l . )
(2D (x(8+ *-_P’l)h/,‘ A H )
Lylz - (W )) S
By substituting (18 and (19) into (113, one can
obtain
th
It rematins to deterneine the unknown function L,(2)= (2= DX (2 + Z["(O)P(Z)) R

1 (2) —z2P(2)
X(/5’+£1—g&)and b0). We follow the procedure

. . _ . , . The denominator of right hand side of the above
described in [15] to obtain those. The reguirement 8 -

. . . . . cqguation  has whenever  the  condition  for  the
for this method to be used is that A(z) is 4 rational !

L extstence of a stochastic equilibrium s fulfilled
function in z.

. . . . . . exactly three zeros inside  the unit disc of  the
The =z transformi of interarrival time pdf. of :

( : complex plane, one of which 1s equal to wty, This
[BP-stream, A(2), can be written as ! Plé e 3

can be shown by Rouche's theorem {13 Since foio)

Is the = transform of a padf. Lotz muast be bounded

5
a2 taz . . . .
Alz) = = R (12 in the ringe = - 1 Therefore, the two zeros of the
L G W (T I e = o
denomimator inside the unit dise must also be the
zoroes of the numerator i Jo(2), This provides two
where 1Y @w; and 1/ ws are the zeroes of the linear equations with three unknowns, W(0), x] and

denominator of the =z transform of interarmival tine
p.df. for IBP.
Furthermore, .X(2) can also he written in a similar

form. unknowns, and hence X([)’ + LI—Z—&)

X The nomulizing  condition,  LAD=1,  together

with these two oquations are used to determine the

)
x52” +x)2

X(2)= ‘The waiting tine is defined as the time since «
customer amves  to the queue until the time the

2018
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customer departs the system Having determined the
queue length distribution upon an IBP- stream arrival,
it is now possible to calculate the mean waiting time
of an IBP-stream customer. The waiting time of a
high priority customer (BP-stream customer) is
simply 1 since the server is deterministic with

service time of one slot.

Let w; be the random variable denoting the

[BP-stream customer waiting time given that the
quete length seen at the given IBP-stream arrival
instance is one. Whether that one customer is an
BP-stream customer or [BP-stream customer does
not affect the waiting time of the given IBP-stream
customer. Similarly, when there are more than one
customer in the queue at thd IBP-stream customer
armival instance, only the total number of customers
seen by the IBP-stream arrival needs to  he
considered. The number of IBP stream or BP-stream
customers among those customers in the queue does
not affect the waiting time of the amiving

IBP-stream customer.

For simplicity, we assume that all the customers
in the queue are low prority customers, the
IBP-stream customers, at the IBP-stream arrival
instance. First, let's define di as the time interval
between the service start times of the consecutive
customers{kth and (k+1)st customers) in the system
at the [BP-stream arrival instance. If the number of
customers in the system at an [BP-stream arrival
instance is equal to m, dy is the time interval
between the service start time of the amriving
IBP-strearmn custormer and the last customer in the
system at its arrival instance. ww is defined as the
random variable denoting the waiting time given that
there are m customers in the system at the arrival
instance of the IBP-stream customer. Then

wy=d=1+: withprob.
B —pB), k0 and

Wa= 23 dy )

Iet w,(n) be the pdf of the IBP stream

customer waiting time given that the queue length
seen at the arrival instance is m, and W,(2) be the

z-transform of  w,(2z). Then, from (21) and (%)

one can obtain

1_3
1—-8z"
u’,,,(n) = dl®d‘g®...®dm: Wy, ]( n)®%’1(7l) y (24)

Wol2)= (W ()" =( ZL=8)" a2 o

Wi(2)=2z (23)

Hence, the mean waiting time of an IBP-stream
customer given that the queue length seen by the
IBP- stream arrival is  m(=2), Wy(m), is given
by

Wa(m) = dVI:;;(Z) = 1——BB

+m, m=22. (%)
Since we assumed that a customer that amives at
an idle system in the middle of a slot is not served
until the beginning of the next slot.  Wi0) is equal
to  Wall). Now, we obtain m the mean waiting
time of as IBP-stream custormer, by removing the
condition using {,(m), the p.d.f. of the queue length

at IBP-stream arrival instances.

W= 30 1,0m) Wi(m). (2

Vl. The Departure Process of IBP+BP/D/1

The objective of this section is to obtain the p.d.f.
of the interdeparture time distribution. Let us define
S(s,n) as the pdf. of the state of the system
immediately after a departure. S(s,n) can be obtained

2019
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using s (n), the pdf. of the state of the system at Then, we have
arbitrary time, as follows

1  with prob. 1—5(0,0)—S(1,0)
(D g(1 =R +m (1) (1—p)(1H)

5(0,0) = =70 (D L (B D=|D, with prob. S(0,0) B
S(1.0) = D, with prob. S(1,0)
() (1=¢) (1—a) (1 =B +x (1) (1l —a) (I—B)
1—m¢(0) —z (1) The time intervals Ih and I are given as
follows
(29
1 with prob. g8+ (1—g) -
S00.1)= (m(DgB+m () (L—=pB+m(2a(l—H+ (I-(1-a)(1-3)
2(2) (1 =p) (1 =B /(1= 7,(0) —2,(1) Dv=114D, with prob. g(1—48)
S, D)= (D (1—g) (a1 =B+ (1—-a)B) 1+D, with prob. (1 -g@)(1—a)(1—p4)
+n(DHa(1-+ 0 —-a)p) .
+7, (2 (-1 -a)(1 -3 (31
+a(2)p(1 —a)(1 —B))
1 with prob. (1—p B8+
/'(1—m,(0)4m(1)). [)(17(1”‘0’)(1_3))
D= .
S0, 7 =(m(wah+m(n)(1-p)B P11+ D, with prob. (1—-p)(1-8)
+a(n+1)q(1—4) 1 +D, with prob. p(1—a)(1—5)
+ (D (L=p (1= B) ) "
(36)
/(1_7({)(0)A7T1(1))
let DXz) and I)fz) be the z transform of Db
SA.my= (m(n=DU~@af+r(n-1)pas and 1)y respectively, From (35) and (36), we have
+”11(7’l>(1_q)(a(1*/3)+(]"(1)3)
+rimplall =B+~ B Dy(2) = (2(1-¢) (1= (1 =a)(1—8)) +ab)
153
Frdn+)(1—g@) (1—a)(1-3) + 2801 -1 -1 —p—q)
N 37
+r(n+p(l—a)(1-3) /(172(1_8)(0*"0(1“0')

(1‘”11(0)'”](1)) 9 P
+2(ptg— (1 —a)1—5)")

where n=2.

Di(2)= (2(p(1-(1—aX1—=8)+(1—pB)
+ 25 (1= (1 =)A= A1 =81 —p—
[ (1=2(1-p) (g+p(1—a)

in state i until the instant when a departure occurs. +22(p+a-1D1—a)1—p)%)

Let D be the interdeparture time between two
successive customers, and D;, 7= (0or 1,be the

time interval from the moment when the IBP is
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Define DXz) as the z-transform of the interde
parture time. From (28) it is given that

Dz) = 2(1—5(0,0)—s(1,0)
+ZS(O, O)DU(Z) (39)

+25(1,00D,(2) .

By inverting IXz), we obtain the interdeparture
time distribution.

V. Numerical Results

In this section, numerical examples are presented
by employing the analytical approach presented
above. Figures 4 and 5 show numerical results of
the queuve length distributions for the IBP+BP/D/1
system at arhitrary points in time and at the low
priority  customer (IBP-stream customer)  arrival
instances respectively. The value of @ is set to 0.9,
and the (¢ and the p(average arrival rate) of the
IBP are equal to 10 and 0.4 respectively. The arrival
rate of the BP(B) varies from 001 to 04 It is
observed that the queue length distributions at the
low priorty customer arrival instances are affected
by the amount of the BP-stream traffic more

sensitively.
[igure 4, 5

Nummerical results of the mean waiting time of the
low priority (IBP-stream) customers are shown in
Figures 6(a) and 6(b). In both figures, 2 varies
from 0.01 to 0.4. In Figure 6(a), two different values,
0.7 and 09. are used for . The (* and o of the
[BP are equal to 10 and 04 respectively. We observe
that the waiting times are longer when ¢ is larger
(=09 while 8 is small. After 3 reaches a certain
value, however, the waiting times of the low priority
customers for smaller « grow faster as # inc
reases. @ is set to 09 and two different values (10
and 20) of (¢ are used in Figure 6(b). The value of

the ¢ used in this figure is alse 04 As oxpectedd,
the waiting times of the low prionty custoners

grow faster when (% is largert(* = 200,
Figure 6(a), 6(b)

Figures 7ta) and 7(b) show numerical results of
the interdeparture time  distributions  for  the
IBP+-BP/T)/1 svstem. In Figure 7(a), the viauves of «
and 8 are set to 09 and 0.1, and the (¢ and the p
(average arrival rate) of the IBP are equal to 10 and
04 respectively. 4 varies from 0.1 to 0.4 in Figure
7. It shows  how the interdeparture  time
distributions  change as the amount of the high

prionty customer stream (BP stream) increases.

Figure 7(a), 7(h)

VI. Conclusions

In this paper, we have presented an  exact
analvsis on IBP+BP/IY1 system with head-of-line
prioritv. The queue length distributions at arbitrary
points i time and at IBP stream customer armival
instances are analvzed. From the analysis on the
queue length distributions at  IBP-stream  customer
arrival  instances, mean waiting time  of the
IBP -stream  customers s obtained. The  departure
process of the svstem is also studied to obtain the

interdeparture time distributions.

The numerical result of the analysis are presented
to show how various parameters of the low and
high priority amval processes affect the performance
of the systern. It is shown that the queue length
distributions at the low priority customer arrival
Instances are affected more sensitively than  the
queue length distributions at arbitrary point in time
by the amount of the input from high priority
strearn. (¥ and the amount of the input from the
high and low priority stream have different effect on
the mean waiting time of the low priority customers.
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The amount of the input from the high prionty
stream affects the characteristics of the interdepar

ture time distributions.

APPENDIX

By inspecting the Markov chain shown in Figure
3. we obtain the GBEs for the IBP-BP1T as

follows:

ol (1 BN=zol Dl 3 (AD
GO pid B
A DD el

ol g7y s - Tolgtl 3 (A
O] g S T e
TN p)D g,

ol g3 a3t B 220 3 AR
P31 il i3)

O plh @)l g =zolOl gl @ CALD
(-8B ol DL gl el 2
WDptl @l 3,

I ptal- gl @)@
oL el g1 wlid)
ol el g @) )
TN @l ) TAD)
CadOpleaett gyl @)
T2l @ X 7,

t

T2 plal-gil w)dN
ok l-gra 3+ 7oL @ u s
a2 e (1 B3Il @) 3) (AH)
vl @l By mWOpa B
cadDpa 8rm(3pll- )l 3,

molm)1 g 3)=zoln+ gl - 3 mitritl p) g3
*7[] ne (- [) 1'15’). (A7)

2022

ot pla(l g1 a)lp)=
Toln WXL e B
o ot et Sl oay (AR
Cxotne DL gl a il @)
cxoln Dpa gy adnel).
ptlow 3,

where no2 0.
lrom  (AD (AL we  derive  expressions for

Tt x aa0n xth mi) and 103 in

terms of poge s 740 and 20, as follows

OV A e Nz, CAD
D AT A T CATD)
A2V A T AL T (ATD
P RARE W S (IR A0 R (AL
T3 Nom O ot D AT
T A O A, (ALD

Theres A A A A AL A A AL N A Ay

and L\ are defined as follows:

R ey

go— U8 p -l =a)
- 1T-p :

- U= (1va)(1-p’))(1 - ¢(1-3))
(I=pL =3

— (1= L=,

A=A p=a) (1= 8)g(l=g)
o (1--pX1—53)

—a)(1 =81 =),

4 —pag~a—B(1-g) — (1~ a)fpg
i (1-a)1-8p+qg—1)

(1— a/)(l “'/3)(/)1‘ /“1)

U =ppa(B~1) +1)
(I=aX1-8(p+rqg—1)
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Ay = (=1 —=pRaeB—a—B)(1—q@
~(l—a)Bpg+p(1—a))
H{{0—a)(1=8)(p+q—1))

(1—ppal—p) 4
—a)(1=B(ptq-1

T

A =ppa(B-1) 1) 4
(1—a)(1=B(p+aq—-1) "

ag(1 —q)

A G 1 —

L 1=—a)Bptre-D+U=Bapg 4
(1-a)(1=-31-p—a

L U=a)fptq-D+ (U -Bapg—q 4
Q-0 -HU-p— 4

A=z =g) + (1 ~Bag(l —q)
8 -a)1-p—q)

- A=aBptg=D+(1=Bapq 4
(A-a)(1-p(1-p—gq)

4 Q-8 p+qg-—1)+ - Rapg—q A
(1=a)(1=3(—-p—0q) "

A= (1—pafd—q)
"= T -

(I-a)1=8)p+q—1

) (Al +A;;)

L o1 =a)(Bg =)+ =p)1 ~g)(2aB—a—f) A-
1-a(1-8(1-p—q)

LU= -pp+ (U =p)l—=platB=2aB) A-,

(1-a(1-5(1~p—q)

(L-pap(l—q)
(1-a)(1-8)Xp+a—1)

Aw:

+ p( ”‘D)Q’B
A—a(1-8(pte—1)

(A‘_Z +A;)

20 =a)(Bg=1) + (1 —p)1-g)Zaf—a—f) ,.
(-1 -1-p—q 6

y =) —ppt+ (1 -p) —p(atB—2a8)
-0 -1-p—q

A= aBg(l —q)
7 (1-a)(1 =81~

Ag,

aBpg
T -1 g (i T4

w2Bglg =D +qa—1~ aq)‘*lmafA»
‘ (1-a)X1—=8X1—p—¢q) >

LB @ p=1) —adg(l+p) -l - B—aq)
(I=a)1 -/ -p-0)

Az,

A aBg(l —q)
Eo=a(1=(l—p—q)
‘ afpy
4 = (A, +AYD

(I=aX1-p)X1—p

Bl 1) tqRa—1—aq) +1 —a
(1-a)1—=8(1—p—q)

Ag,

o Bl =) —aBe( 40 —g(1=B=ap) 4
(1=aX1=BX1-p—q) .

We nmultiply the equations given in (A7) and
(AR) by 2 and then sum over all applicable n. This

vields

() By + 22 ) =112 By, 22

2

BUB
<

+7r(.(0)(B(.1+ )+m.(1)(31-,1z+3.)3)

B,
+7T1|(2)B(,32+7[1(0) (Bllii + _fl)

+7T](1)(B();(Z+B[)4) +7f1(2)B(HZ, (ALLD)

Hl(z)<BnZ+Blg . —%—‘-)

=~ I1(2) Bz + By + 22 )
+ m,(0) (31.12+Bls + % )
+ (1) ( Byyz* + Bisz + Biy)
+11,(2) (Bj;2° " By2)

+7[()(3)B]622+7T'1(0) <B112+[312+ %)
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+m(1) (B, 2°+ Bz +Byy),
+7l'1(2) (BHZ: +BMZ) +7T1(3)B};;Z:' (A16)

There, By and By, i1 to 4 and j-1 to 6, are
defined as follows:

Bo-1-qB3

Byp=-q(1- 3),

By= (1-p) 3,

Boy= (1-p)(1 - 3),

Bu=-pa g,

Bio=1-pla(l g1 «)3),
Bi=p(l aXl g),

B l-g)a .

Bi= (1 g¥all 2l a)p),
Bi= (1 gl a)l g

By substituting (A9 to (A1 into (A1D) and

(AL16), one can obtain

x (21 (2) + 3 (2 I1)(2)
= fi(2) my(0) + g () 7, (1), (AID

x( DT (2) +3( 2 TT(2)
= f,(2) 7y(0) +gu() my(1), EAR)

Where xi(z), vi(z), filz) and giz) (-1 and 2, are
defined as follows

By

x(2)= By, + o

By

vi(2)= Bu:;“LT,

fl(Z) :x1(3)+y1(Z)A1

+Z(yl<Z)A;g +BU3A3 +BU4A7)'

g(2)=zax (2)+y (2 A,
+2(y1(2) Ay + BpAg+ BuAz).

2024

B
X‘_)(Z)Z ZB]1+13]3+""Z'1’2 N

B,
y‘l(Z):ZB“ +Bw+‘7”",

fol2)= xg(Z) +VV13(Z)A1
+2(y(2) Ay + (B + By)As + (B + By Az,
'+Z:( B“,‘A\J + [)’13/1”)

g:(2) = zxy(2) +y.(2) A,y
WLZ(_)"Z( Z)A | + ( BI_', +131(;)A(; + (B]g +BI;;)A3).
127 (B Ay +BuA)

From GA17) and (A18), TT.(2),7=0. 70 and 1,

are derived as follows

IT.(2)=((/, (D yv:(2) ~ L2y (2) 1, (D)
+ (g (Dy(2)~g (2 v, (D) m(1)) (AlD

/ (x (D) va(2) —x(2)v(2),

[M,(2)=((f;(Dx:2) = fol 2) x,(2)) my(0)
t{g (2xl2) —g(Dx ()7 (1)) (AID

[ (xy(2)n(2) ~x(2)y(2)),

Since [T(2) =TT14(2) +11,(2). hy substituting
(AT and (A200 into [Ty(2) and TI,(2). TI(2)

15 obtamed as

[T(2) = ((f;(2) (¥ (2)—x(2))
—f2(2) (v, (2) —x,(2)))7y(0)
(g () (v (2) —xa(2))
—g. () (¥ (2 —x (N7, (1))
[ (x, () vy 2) —x,(2) v (2)) {A2D

To obtain [1(2), TTy(2)and II,(2). it remains

to determine two unknowns, zol® and xo(l). For
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that, we need two linear equations with those two
unknowns. Since [I is the z-transfom a pdf,
IT(z)must be bounded in the range |lz| < 1.
Therefore, a zero of the denominator inside the unit
disc must also be a zero of the numerator in [1(z2).
This provides on linear equation with those two
unknowns. The normalizing condition, TI(1)=1,
together with that equation are used to determine
the unknowns, and thus [1(2), I1,(2) and I1,(2).
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