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Pronsform Based Projection Method for Target
Tracking in Image Suquences
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ABSTRACT

This paper contains a Hough transform based projection method derived from Radon transform for tracking dim,
unresolved(sub pixel) moving targets that move along straight line parths across o time sequential mage data. In
contrast to several recently presented Hough transform methods using a compressed image referred to as the track
map, our proposed technique utilizing a set of projections taken along arbitrany orentations effectively increases the
chances of target detection, and creates a robust track estimation environment by incorporating all the available
knowledge obtained from the projections. Moreover, in order to quantitatively assess the estimation capability of the
projection-hased Hough transform algorithm, the analvtical bounds on the Hough space parameter errors introduced
by image space noise contamination are derived. The simulation vielded promising results of estimating the track
parameters even under low signal to noise ratios when our technique was tested against the time sequential sets

of real infrared imuge data referred to as the HiCamps.
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[. INTRODUCTION

In 1962, Houghll]l introduced a method for
detecting complex patterns of points in binary image
data by determining specific values of parameters
characterizing these patterns. Since then, the Hough
transform  has bheen extended to estimate the
parameters of straight lines and curves in gray scale
images[2][3] and to extract the primitive geometric
shapes[4][5].

One application area in  which the Hough
transform methodology has heen successfully applied
is the detection and estimation of point target tracks.

Cowart et all6] applied a traditional straight-line
finding Hough transform algorithm to detect non
maneuvering target trajectories. Later, Padgett at
al{7] extented the Cowart et al. 's method to allow
for the detection of maneuvering circular target
tracks. Alternativerly, Casasent et all8] developed a
technique using a modified Hough transform to
estimate the parameters of elliptical target trajec
tories. These techniques have a similaritv in that the
Hough transform was applied to a two-dimensional
compressed image data called a track map. Unfor
tunately, if the unresolve targets are dim and buried
in hackgroud clutter, the performance of aforemen
tioned Hough transform  algorithms  degrades  fast.
Even  when preprocessing i1s performed  to help
reduce the amount of clutter in the data. there is
still a limit to one’s ability to detect dim, unresolved
targets(target spatial extent less than a pixel) in
cluttered hackgrounds if the original data has heen
projected only along the temporal axis to obtain the
frack map.

The problem addressed in this paper is the robust
detection and estimation of non-maneuvenng target
track parameters using a three-dimensional volume
of data composed of the time-sequential set of image
frames. The three dimensions of the data include
two spatial dimensions and one temporal dimension,
The proposed solution uses a projection-hasecd
Hough transform method derived from Radon trans
form[9]. In the general case, the Radon transform

produces a set of (N-1)-dimensional projections from
an N-dimensional function. Computing the Radon
transform consists of computing the projections of
Image data along a particular pattermn, eg., a straight
line or plane. Although there is an increase in the
number of computations needed to compute a set of
projections, there is also an increase in abilitv o
distinguish tracks at various orentations.

For the rest of paper. the newly proposed genera
lized projection based Hough transform methhod s
described 10 Section 11 In Section I the anabviical
derivation for the estimated Hough parameter orrors
mtroduced by the inage space noise contamination i<
presented. The simulation results and the conclusions

are in Section IV and V| respectively.

[T. HOUGH TRANSFORM BASED PROJEC-
TION METHOD

In this section, a generalized  projection based
Hough transform method derived from Radon trans
form is presented. The Radon transform provides a
mean to obtain a set of 21 projections from a 3 1)
volume of mage data. By analvzing the 2 D multiple
views of the 3 D track volunme o robust set of track
parameters can he generated. even under noisy
conditions.

Computing  the  Radon  vanform consists of
computing  the projections of  an image  along  a

particular pattern, e.g., @ strzught hne. For the 2 D
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Figire 1. Geometry for the two-dimensional Radon
transform.
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Radon  transform, consider a two dimensional  func
tion GIxy) as shown in Fig 1.

The ntegral of Gixy) dong a projection rav 1s
called a rayv integral, and a set of ray integrals
forms a projection. The equation for the individual

ray s given hy
A= ycos ¢~ xsin ¢ h

whore Kois the papendicular distance of - the
projection vay from the ongin.
The integrad function of GExad aong the iy can

he expressed as {ollows!

k)= | | Gxwa

{(x- vcosd +xsin @)dxdy

where K¢ as a0 function of Kos the paralled
projection of  Gixy) for angle ¢ and § s the
convolving  kemel  defined by Eqel The whole
distnbution of projections forms the Radon transtorm
of Gy,

Faa2) can be extended to a three dimensional

Radon transform as tollows:

Pho.p =] [ [ Ttews
S5k -veosgp+xsing, ¢ 1) (3

- dxdydt

The  two dimensional  function Pk z,¢) 0 as o
fimction of « and ¢ is the surface integral of a
volurme TUx,v,0) over the projection plane for angle
¢, The whole three dimensional distmbution of the
paralled projections Torms @ three dimensional Radon
transform of T(x,v.t),

In the actual implementation, however, instead of
the convolution  along  the  projection  angle,  the
maxinum  value  finding  scheme 15 incorporatued,
10l the performimce of the optimal projection

nethod 1< compared 1o the maximum value
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projection and the summation projection method. It
was shown that the maximum value projection is as
nearly good as the optimal  projection and  requires
fewer  computations,  Hence,  our  generralized
projection based  transform method  modifyving  the

31D Radon transtorm can he defined as follows:

Mk, t,d) = Maximum[ (x, v, 1) k—ycos ¢
4
Fasing=0,(x,v.H7 T(x, vy, 0]

The visualization for taking a set of projections of
the 3D volume of  data composed  of  the
time sequential set of imageries using our  gener -
alized projection based transform method is - shown

in Mg 2

Pm(ke,T)

ky=ycos ¢ -xsin¢

X
Figure 2. Geometry of the modified three dimensional

Radon transform.

Furthermore. since the volume  Tixvt) can he
viewoed along  another  unique orlentation,  we  1may’

define another projection plane as follows!
[=tcosd — vsin ¢ (B

and by taking parallel projections using Fg.().
another unigque set of projections can be obtained as

follows:

ML x, ¢) = Maximum{ (x,v,1)
|
sl —teosd +ysin g (65)
=0, (x,y, e TNx, y, H]

Theoretically, incresaing the number of projections
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improve the performance of the estimation, but
increases the cost of computation.

Supposing the number of projections taken along
¢ orientation is four, then the projection frames
would be taken along which ¢ equals o, 30, 60, and
9 degrees increamenting the projection angle ¢ by
thirty degrees at each time.

Once two sets of projection frames are obtained
using Eq.(4) and (6), the target track parameters are
estimated through the straight-line finding 2-D
Hough transform as shown in Fig. 3.

y p
[ 4
¥2 A y2 |-
Po = x cos By +y sin Gy x)
Po
Py,
B0 8 .
Xy
@) ()

Figure 3. Mappaing in 2-D Hough transform @ Points
A and B are mapped to curves A and B in
Hough parameter space (p, 6). The line
in (a) maps to a point. (0, 6. in (b).

The estimated track parameters for two sets of
the paralled projection frames are denoted as

(o, 6 fori=12.Cland (o, 6, forj=
1, 2., CJ, respectively. Here, p, and 0,

represent the estimated normal distance between the
projected track and the origin of the kth projection
space, and the estimated angle between the normal
line and the xy-axis of the kth projection space,
respectively.

In order to reconstruct the estimated target track
back in the original 3-D image space, a
back-projection along its corresponding reverse
direction is performed as follows:

Tz, 9.8
= Q[ Gy, B | k= ycosphi+xsing

=0,(k.t, ) Tik t, $)]

C;
+ O][ (x,v,0) | {—tcosphi+ ysind (7

=0,(4x, ¢De TLx, ¢ D]

where 7(xyt) is the intersection of all those

feature points estimated and back-projected from
each set of projection spaces onto the original image

space and Tykt ¢) and T,(x ¢), respectively,

are the estimated 2-D target tracks for two sets of
projections using the inverse Hough transform as
follows:

Tiktd) . .
{1, for p ,—kcos 8 ;—tsin 6 ;=0

0, otherwise
®)

and

Tlxe) _ ©)
{1, for o ;,—Icos 8 ,—xsin 8 ;=0

0, otherwise

The convergence of the track estimation problem
is limited by the input image frame signal-to-noise
ratio and the dicretization errors in projections. The
projection error occurs when the data is recorded
discretely and when there is a projection onto a
plane that is not parallel to one of the spatial or
temporal  directions. As an  assessment for the
projection-hased Hough transform  algorithm, the
analytical error bounds on the estimated Hough
space parameters induced by the image space noise
contamination is derived in the next section.

. ANALYTICAL ERROR BOUNDS ON HOU-
GH PARAMETERS

In the projection-based transformation the system
is overdatermined by taking arbitrary number of
projections along the projection orientations defined
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by the hyperplanes k and 1. The target movement is
assumed to be non-maneuvering with the minimal
acceleration and deceleration for the time duration of
the problem investigation, and the target speed is set
to one pixel per frame. Hence, the traditional
straight-line finding 2-ID Hough transform is applied
to each one of the projection frames in order to
estimate the target track parameters pyx and Gy in
each one of the comresponding Hough parameter
spaces. These set of Hough parameters are used to
composed 2D tracks back in the projection spaces
using the inverse Hough transform; and those 2 D
tracks are back projected onto the original 3 1)
image space to reconstruct the target  trajectorv,
When the original 3-1) volume of the time sequential
image data is noiseless the tracking problem becom
es trvial, and the svstem produces the accurate set
of target track parameter estimates, o and 6.
These parameters  along  with  time  information
defines the directional motion of the target with a
speed of 1 pixel/frame. However, in noisy case, the
reconstruction through back projection is made of a
3D track volume due to estimation errors in the
Hough parameters resulted from image space noise
contamination.

In this section a derivation of analytical bounds
on the Hough space parameter errors that are
introduced hy image space noise contamination 1s
presented. This will provide a mechanism for quan
titatively assessing  track  estimation  performiance  of
the generalized projection based Hough  transform
algorithm.

Conmder that a 3-D volume of image data is
generated from a time sequence of 2 D image
frames. A set of 2 D projection data is  then
obtained from the 3-D volume as in eq. (4) and (6).
A straight-line target track in a 2 [D projection

space is modeled by
0 ;=x;co8 6 ;+y;ss1n 0 ; (10
where xi and y1 are the spatial coordinates for an

arbitrary 2-D projection space and po; and 6 and
2098
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the corresponding Hough space parameters. If the
data is notsy, there will be errors in the estimates of
the Hough space parameters. We are interested in
determining the bounds on the errors for the esti-
mated o, and 0,

An error in the estmate of the Hough space
parameters o; and 6; will result in an error in the
estimated target track. An estimated target track will
fali within some neighborhood (noise strip) of the
actual target track location as shown in Fig. 4. Here,
without the loss of generality the sampling gnd is
assumed 10 be rectangular in the projection: space
spatial plane with the pixed dimensions given by 4

xiand vt

Iy

K Ja:? + 8yPcosys)
) /KAyi
o,

KAx;

Figure 4. Geometry associated with determining ervor

hounds on p—z and 6 ; of the target track.

The costinate of an actual target point location
(xi,¥i) 18 given by
X, =x,+ ¢ an
vi=y,+tey (12
where ¢ and &2 are assumed to be an 1id

(independtly, 1dentically distributed) zero mean moise.

Suppose
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| e, <Kdx; (13)

| esl <Kdy; (14)

where K is a constant. For these cases, the
estimated track points could lie as far as
away from the actual track point. In general, the
amount of error will depend on the discretization
noises (quantization and sampling errors) and
location of the track.

1. Error Bounds on estimatess of o,
1.1 For0 < #; < n/2

A bound on the estimate of p; can be specified
as a function of 6, as follows:

(x;—KAX)cos 6 ;+(y;—KAdy)sin 6 < p;

o= (x;+Kdx)cos 6+ (v,+Kdy)sin g,
(15

where 7)7 is the estimate of o
Consider the problem geometry shown in Fig. 4.
Here,
el = upper bound of estimate
pd. = lower bound of estimate

The upper and lower hound on the estimate of pi
is derived as follows:

o w={(x;+Kdx;)cos 0 ;+(y;+KAy)sin 6 ;

(16)
oa=(x;—KAdx)cos 6 (+(yv,—Kdy;)sin g ;
(17N
and
Pas 0 iS0 (18)
where

o i=(x;+¢e)cos O ,+(y;+ & 4)sin 9, (19
Then,

ld0,.=10:—0; =\ €2+ escos | 0,45

(20)
and

[doil=lo~—pupul=10,—0ul
(21)
=K\ dxt+ dyicos | 6 ,—45" |

12 For n/2 < 6 < x

o= (x;—Kdx)cos 6 ;+(y;+Kdy)sin 6 ,
(22)
o un={(x;+Kdx)cos 8 ;+{v,—Kdy;)sin 4 ,
(23)
and

| do/| <kl dxi+dxicos | 6,~135 | 24

13, For3z/2 < 6, < 2n

o w=(x,+Kdx)cos 8 ;+(v;—Kdy)sin 6 ;,
(2D)
py=(x;—Kdx)cos § ;+ (v;+Kdy)sin 8 ;,
(26)
and
| do ) <K Ax+ dyicos | 0,—135 | 2D

If we assume dx = dyi = 1, then

| 4ol <KV2cos | 4| (28)
where,
6 ,—45"  for0= 6 ,< -ZE
A=16,-135" for-%( 6 <nx 29)
3z

7] 1"'3].5n for-7)—< 1 ,‘< or

For example, if the line track is detectable in the
noise strip and K = 05 and 0 < O = 7/2, the
worst case error in o is  (30)

| do;] <0.5¥2cos | 45" —45° | _¥2 (30)
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Thus, —p—, lies within a 11 pixel stop. For K -

1.0,

| Aol <V2 R

and o ; hes within a 12 pixel stnp.

It is to note that in this derivation the upper
left corner of the projection frame is treated as the
origin of the projection space  coordinate  svstem.
Hence, the third quadrant region is not consideroed
since the Hough parameters falling in this region

represent the target moverment backward in tine.

2. Error Bounds on estimates of O

Assuming the length of the actual target track 1s
L, we have derved the upper and lower estination
bounds on A Considering A defined as F .20, the

error bound for ¢ ; can he expressed as {ollows:

i

g6 ="'0,—- 68,

2L
\/s'“,’+effcos[ Al

T
|2 tan

(32

L StEL . EUBES

94 11 Vol.19 No.ll

Again for the case where Adxi = Jdyi = 1, then

cJde, = \gﬂtan l

(33)
2L o
K\Fﬂxf+ dyvicos | A })

L0, =1 Z—tan

- (34
V2L
[ Kcos | 4! 1

ft clearly shows that the longer the track length
(Le, more target images integrated along the  track
path), the higher the chinces of  retriving  more
accurate Hough parameter estimates of target tracks
provided  that most of the target signal points fall

o the hounded strip region.

V. SIMULATION RESULTS

Simulations e run to demonstrate the perfor
nunce of our projection based transform method for
estimating tracks of unresolved targets. The objec
tive ol the experiments 1s to study the behavior of
our projection based  tracking svstem as o function
of the number of projections. the signal to- noise

ratios, and the number of nage data frames.

Figure 5. The images taken from the HiCamp data Ieft) and H(right)
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Two 8-hit real infrared image sequences made of
the data called HiCamps shown in Fig. 5 were used.
Each sequence has a frame size of 32 x 32 pixels
and up to 46 frames in the temporal direction to
accomodate the longest possible track of a target
moving at a speed of one pixel per frame. Since an
image sequence with a real target was not available,
the target points meking the target trajectorv were
synthetically generated and embedded into a image
sequence under the assumption that a target has a
spatial extent less than a pixel(sub-pixel) as follows:

aC+(1—-a)B(x,v,H+N,

Vi{x,y, O Tx, v, b
lx,y,p="
B(x,y, .0 +N,

elsewhere

where  I(xy.t) is the 3D  volume of
time-sequential 1mage data to be processed as an
mput to the tracking system, B(xv.t) is the HiCamp
image background, C Is the target signal intensity, a
(0<a<1) is a coefficient controling the contribution
of target signal to the background pixel, N is a zero
mean, additive white Gaussian noise, and finally,
Tixyvt) is the target trajectory with a target speed
of one pixel perframe. Eq. (35) is one of the popular
infrared image model for adding the point target
along the target tracjectoy. Since each data frame
may contain one target point of a sup pixel size, it
is practically the most reasonable to set the value of
a such that the pixel location value containing the
target point is made of some combination of the
target and the background intensities, respectively.
Here, we haver set a 045 making the target
signal dim with respect to the HiCamp background.
For the simuation two test target tracks
representing  T(x,y,t) were prepared. These tarcks
are denoted as Track A and Track B with the
characterizing Hough parameters( o, 6) with respect
to xy-plane at (1, 1170) and (18, 450), respectively.
More extensive simulation results can be found in

{11}  Furthermore, as one of the measures for the
performance evaluation, the signal-to-noise ration is
defined as follows:

SNR

2;2[ I(x,y,t)—B(x,y,t)°
(Lo “))

=10 log lU[

Vi, v, e T(x, v.5

where [. is the total number of data frames (or
target points)and is the noise variance.

The goodness of etimation performance was also
meastred in terms of the Hough parameter estimate

error hounds as follows:
1. Good setimates: when the estimated 7 resides
whthin @ theree pixel strip containing the true

track and the estimated 0 ; is in the bound of
as large as eight degreestie K-+ 1.0)

2. Fair estinates: when the estimated o resides
within a five pixel strip containing the true
track and the etimated _(?_: 1s in the bound of
as large as twelve degree (e, LOCK=1.5)

3. Poor estimates: when the estimated o resid-
es whthin a seven pixel strip containing  the
trie track and the estimated _()—7 is in the
bound of as large as sixteen degrees(ie., 1.O<K
200

4 Non -trackable  estimates:  when  any of  the
estimated  parameters o and 7)_, are  not
contained in above three.

The ahove measure of the error bounds assessing
the performance of target tracking accuracy are
determined through many simulation runs given an
average of twenty data frames. Of course, the target
tracking accuracy can be improved by using more
data frames.

The simulation results are summarized it Tables
1 through 4 for the number of different signal-to
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noise ratuism orthectutbsm and image data frames

containing a target as follows:
Track A in HiCamp I (Table 10 The good
Track A Hough parameter estimates  were
obtained down to 36 dB given twenty or more
frames of image data with as many as nine
projection frames. The most of estimates were
the good or far where track parametes
estimetes /J-, and T were  obtained  with
error bounds  of {041 pixels and |20 1
degrees, respectively. The poor estimates were

apparent in the very low SNK runges:

Table 1. 2 D Hough parameter estimation of a target
track Track A with true parameters(l,117

) using IhL(xmp nmg< sequence 1.

[ e e A ———

‘ ‘ [ostimated 2 1) Hough I’tu(ulmcu

PR()] Iw(ml I

|
() /}‘ !

‘ T T :
| 13 ()dn ] .\R()dl% J ‘.Lmn ) 36013
f g R ) |
‘ 1 L7 (LR 03 )y 7
; ‘r ! .
3020 LaT O[T LS sy w‘
o -

1 | x5 4(1,117‘ VLT OIS 0 s )
| S janT )!(1.11(& EEIRRSENINRE A
; 6] W 3(1.117 ISR C I KR R T
25 AT LR )T s
P 137 (n7 )M,lm T o e |
I o { 20 en7olaan o ans o ans
| S ] Y )
LS T O[S I ) L

2 Track B in HiCamp T (Table 20 The good
Track B Hough parameter estimates  were
obtained down to 77 dB given twenty five
data frames with three or more  projection
frames. The good or far estimatess were
observed with error bounds of | 2, +4] pixels
and [ 9, +11] degrees, respectively. The poor
and nontrackable estimates began to show up
for low SNR values;

3. Track A in HiCamp I (Table 3): The good
Track A Hough parameter estimates  were
obtained down to 121 dB given twenty or

more data frames with six or more projection

2102

mwé!ﬁﬁﬁﬁ ‘W11 \/01 19 No]l

Talble 2. 2-D Hough parameter estimation of a target
track Track B with true parameters(1845
") using Hl(ﬂamp lmdge xequcnce I.

] ] 1 Iwnmatvd I) Hough ]d}‘dl’nﬁ‘ttf\ }

‘PR()IJ Frame | (() ) |

! j ) J niﬂsl mcu J ﬁ(}gﬂs 7GdBJ

‘ COIn R ) e3) lar ol azs |

Lo Do Tagas Mm % 728 )\ (267 1|
LB AR ) U85 )| (845 )] (84T )
DT s s s j 372 ] (87 |
)

B AR ) T Py

L maRE RS ;§

|l SARLLI |
15 (1858 ) 1687

9 1 RS T UEST iuu“)ss )L )

| m lasn | ass ), |

S S

]2
1845 )] (R )
)())‘ T()H" 8

frames. Most of good or far estimates were
observed in the medium SNR ranges with error
bounds of [0, 1] pixcls and | 1, 7] degrees,
respectively. Some non trackable estimates ap
prearedd in o the  same SNR O ranges  for  the

number of projections less than six;

Table 3. 2 D Hough parameter estimation of a target
track Track A with true parameters(1,117

ll\]n}., Hx(funp Image \t‘(lllPﬂ(t’ [I

Estumated _"l) Huug,h darameters

I
;l’l{()J/ Frame | o0.0) (

\‘ J 1301 J wku; '%"X)dﬁ r m(xus ‘
i- - S O N . S
| LD AN ) anR 3 hes3a ] G360
3 200 LI O O[S )| G367 ) |
1 l 5 ‘lu.na' IESRILANN (L8| (336 )
\' B S 1 S

15 FOLIS LIS (1342 )1 (367 )
PG ] 00 HANR N )[(1.116” LA
Ly T o o Tans e
H N S A e
| 5 anw oo e | e
o | w0 ‘(111}« yang lane ] aaer )
| 5 J‘u.nx‘ )1(1‘]18‘ VLB )] (1127 )

S S S

4 Track B in HiCamp II (Table 4): The good
Track B Hough parameter estimates  were
obtained down to D75 dB given twenty-five

frames with six projection frames or more. The
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good and fair estimates were obtained down to
7.35 dBs with error bounds of [-2, +2] pixels
and [0, +19] pixels, respectively. Some poor or
non-trackable estimates appeared in the adverse
SNR conditions with not enough data frames.

Talble 4. 2-1D Hough parameter estimation of a target
track Track B with true parameters(1845
) using HiCamp image sequence [I.s

N B
Estimated 2-D Hough Parameters

20
25 (18457 )] (18457 ) [ (1845

PROJ | Frame ey
13.2dB | 11.9dB | 895dB j 7.75dB
{ 15 | Q847 ) (U667 V| (167 >} (1728 )
(1845 ) | (1845° )| U1G65° )| (2267 )
)i ( )

15 |(A847 )| (2267 )| (267" )| (2267
6 20 {(18,45" )1 (1947 )| (1663 ) § (2267
5 (

)
(1845° ) | 1845 1 | (845" 1| (1769° )

)
| (1845 )| (I6A3 )S 226707 )
(1845" )| (1845" ) | 174%6° )

Y R NS

9 20 (1845

I
|
!7 15 [U845° )| (663" ) (2267 )| (22678

From the simulation results shown in the tables
the accuracy of estimating the point target track
parmaeters depends not only on the number or pro
jections but on the signal-to-noise ratios and the
number of time—sequential image data frames. Sig
nificantly, we could observe that there was not a
large amount of residual increase in tracking perfor
mance then the number of projection is greater than
six. For 2-1) Hough parameter estimation of target
tracks the proposed method could estimate the good

porameters even under high noisy condi- tions. For

some worst cases the good sets of track parameters
ard obtained for the signal-to noise ratios down to
36 dBs. Comparing the resulte to those of the
copressed tracj nao netgids [6)[7][8], our approach is
far up in the target trajeatory localization and
estimation ability. From the simulation ran for those
previously proposed methods the results show us
that the single track map techniques could hardly
detect and estimate target trajectory o arameters for

the SNRs helow 8 dBs, and the tracking perfor-
mance degrades fast given the moderately high noisy
data.

V. CONCLUSIONS

The focus of the paper has been on the track
parameter estimation of the small, dim, moving
tragets embedded in a sequence of digital infrared
images. The simulation results have shown us that
the performance of our genralized projection-based
Hough transform  algorithm  derived  fromv Radon
transform surpasses those of the traditional methods
using the track map. Advantageously, for most of
the cases the average of six projection frames was
sufficed, and  the tracking performance did not
increase significantly. when the number of projection
frames exceeds six. For most of cases, the average
of three projections taken along in parallel to three
coordinate  axes were adequate, but results  also
depended on the SNRs, the locations of the target
track, and the number of target frames. In sumn, our
projection—based  algorithm  has  performed  robustly
independent of mmiage backgrounds.

Although there 1s an increase in the mumber of
computation due to the mumber of projections taken,
however, we could effectively use those overde
termined information in detecting and estimating the
parameters of point target tracks much better than
those of the traditional track map methodsl6)[71[8].
Furthermore, the implementation  of the proposed
algorithm is under investigation using GAPP (Geo-
metric Arithmetic Parallel Processor, Martin Marietta
Co) and HPP( Hough transform processor, LSI
Logic  Co) by exploiting the computational
parallelism inherent in taking projections and the
Hough transform. In addition, with the advent of fast
and massive VLS technology and optical processing
methodology  the hardware issues concer- ning real
time processing become a trivial problem. Par
ticularly, for the proposed scheme, the system needs
on the average of S0Kbytes(32 X 32 X 50) of
memory  accomodating 50 data frames for the worst

2103

www.dbpia.co.kr



40

case design. In actuality, the tracking system needs
less than thirty frames, and it operates sequentially
at the frame rate after the svstemn initialization time
of fifteen to twenty frame time delay. The issues
concerning the real-time implementation is under
research, and the results will be presented in later
papars.

By far, the proposed generalized projection- based
Hough transform algorithm 1s a novel approach in
that the numher of computations can be significantly
reduced while processing the entrired 3 D volume of
data as a whole and creathing a rubust detection
and estimation entired ment even under highly noisy
conditions. This makes 3 D target tracking problem
be addressed at a real time possible. As a final
remark, the extension of the proposed algorithm to
the circular or the elliptical target trajectories is also

under consideration.
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