DEri=

s 95-2-2-8

EYAUE A S o] 8% e 2349 "AE A2A27]

F&HE B & F* reR kR B B

An Efficient 2-D Digital Signal Processor Based Upon The Block State Space Representation

Jae Gil Jeong*, Jong Whan Jang** Regular Members

L3 #

TS 239 TIR YA HEfe) 2219 FIR YElS] H&AQ 78 WS Absidich, 244 Lejo] St
5 0|83 computational primitive® #E3t1, FE¥ computational primitived Z 4149} arithmetic
unite] FE Aoz F83Q 22 OXg A3 AARle] 28-S JleA dlglen], 23 ORAg Az
o] AAIZF e & AAT A7t rhed EERAM FE At B, B)] mE 7 Z2AA9]
throughput® £&& B8k, F43) PAse VLSIIEE Q8 ol JA=E Ao T T83ly] A vk
< AAJct

ABSTRACT

This paper presents an efficient implementation of the spatial domain 2-D IIR and FIR filters. We derived computational primi-
tives based upon a block state space representation. The computational primitive can be implemented as an arithmetic unit for a
programmable processor, which can be used for the efficient implementation of a 2-D digital signal processing system. We pre-
sent a nﬁultiprocessor implementation for a real-time or near real-time 2-D digital filter. We compared several implementations
based upon the block processing with various block sizes for analyzing the throughput and efficiency for each processor. This
analysis provides the information which can be used to improve the utilization of the available silicon area provided by the

advanced VLSI iechnologies.

WA et m A RFeta
Dept. of Physics, Pai Chai University
ol A hetn AR gANF gt
Dept. of Infor. and Comm. Eng.. Pai Chai University
WOCHER 0 94239
BEAT 19944 95 58

362

www.dbpia.co.kr

WX/EYH R FIAE o) AEAY 241Y AR AEN7)

[. INTRODUCTION

Real-time processing of the very large two-
dimensional (2-D) data with the use of the
high order filter requires a tremendous speed
for the computations. During recent years, a
number of approaches have been considered to
achieve real-time digital filtering. Among
them, Kim and Alexander (1) presented an
architecture based upon a computational prim-
itive. They derived the computational primi-
tive from the state space representation of 2-D
IIR filter. Their system does not implement
the state space equation itself; rather they use
the state space equation to decompose the
algorithm to implement a modular architec-
ture with a low number of regular data trans-
fers. Zhang and Steenaart (2) presented a
high speed architecture for recursive filters
based upon block processing and local and
global speed-up. Their architecture actually
implements the state space equation for the 2-
D recursive filter. Therefore, this architecture
can provide the advantages of the block state
space implementation such as minimum
round-off error, absence of overflow oscilla-
tions, and low coefficient sensitivity (3).
However, it requires local data broadcasting
which is undesirable for the VLS] implemen-
tation, especially for high order filters.

It is straightforward to exploit the concurrency
of nonrecursive filters. Thus, they can be effi-
ciently implemented with high parallelism.
However, recursive filters can only be imple-
mented in a sequential manner. This obviously
imposes an upper limit the effective use of a
large number of processing elements (4.

Lu, Lee. and Messerschmitt (5] proposed sever-
al systolic architectures for block implemented 2-
D FIR and IIR digital filters which offer consid-
erably higher sampling and throughput rates as

compared with the single processing element.
However, in order to utilize such advantages the
state matrix in the block state-space equation
should be transformed to a triangular or a quasi-
triangular form using unitary or orthogonal simi-
larity transformations. Parhi and Messerschmitt
[6) introduced a look-ahead computation scheme
for parallel implementation of the block state
space equation. Azimi-Sadjadi and Rostampour
(4] proposed parallel and pipelined architectures
for 2-D recursive and nonrecursive block digital
filters. Their architectures achieve high through-
put with a large number of processing elements,
which is proportional to the block size. However,
these architectures require relatively complex cus-
tom designed processing elements and require a
large number of block data transfers between the
processing elements. Therefore, the effectiveness
of these implementations depends upon the high
speed communications between the processing ele-
ments. Thus, the performance of the communi-
cation channel may limit the overall system per-
formance rather than the performance of the
processing element itself.

In this paper, we present the extension of the
implementation of 2-D IIR filter as presented by
Kim and Alexander (1). We present a real-time
2-D IR and FIR filter implementation based
upon the computational primitive which is
derived from the block state space representation
of the 2-D spatial domain digital filter.

I. COMPUTATIONAL PRIMITIVE

A 2-D digital filter can be modeled as a dis-
crete linear shift invariant (DLSI) system and
can be implemented efficiently using the state
space approach. A general order 2-D DLSI sys-
tem with a quarter plane support can be repre-
sented by the finite difference equation as given
by:

www.dbpia.co.kr

RS AECE 195-2 Vol 20 No.2

M N
gm, m)= 2 _“a(i,j)f(m—z', n-—jp—

=0 i=

u N .))]
by _‘éub(l.ﬂg(niﬂ,n—/)

iTU')U

The parameters a(i,j) and b(i,)) are coefficients
which determine the characteristics of the sys-
tem. If all of the b(i,)) are equal to zero. then
we have an FIR filter. Otherwise, Eq.(1) repre-
sents an IIR filter. By taking the z-transform of
Eq.(1), we can write the relationship between
the transform of the input sequence. F(z,z2) and
the transform of the output sequence, G(z1,z) as
follows:

Gz, z5) = a0,0)F(2, 2,) + ‘ZZ:U[)ﬂ‘_.“[a({2y, 2;)

i=

v 0

—b(i, NGz, 2))z) ']22‘1] 2)

y(m.n)

\/Cra C,

g(m,n)

v .
.“ ° TN

A VRN Adq.()

Fig. 1. A block diagram for the general order 2-D DLSI
system

From this equation, we can obtain a block dia-
gram for the 2-D DLSI system shown in figure
1. In this figure. there are two kinds of delay
elements. z| is the pixel delay and 7 is the line

364

delay. We assigned the horizontal state variable r
as the input to each z} delay and the vertical
state variable q as the input to each z; delay.
From this diagram, we can obtain the following
state space equations (7):

&lm, n)=cofm, n)+y(m, »n) (3)

rilm, n)y=c, Rm,n)+d, y(m,n)
+7p(m—1,n)

)

alm, m)=c, fm, n)+d , (m, n)+ (5)
¥aner-nalm—1,m) g, (m n-1)
where
¢,=al0,0)
¢, x=a(M-i,)-a(0,0) X b(MH,) d, =-b(M, J
for 0<i<M-1, 0<KN, and k=i+M
cx=a(0.N-j)-a(0,0) b0, N-j):d, ,=-b(0,N-j)
for 1<ji<N and k=]
y{m, n)=ry, (m-1,n)+qy,(m,n-1)
1, (m, n)=0 for k(0. m<0. or n{0
g (m.n)=0 for k<0, m¢0 or n<0

The modified coefficients ¢’s and d's are
obtained from the a’s and b’s. and y is a tempo-
rary variable defined for simplification. If we use
blocks of length L in the horizontal direction, we
can obtain the block state space equations as fol-
lowings:

Since the system is discrete linear shift invari-
ant, we can obtain following equations from
HEq.(4).

T (-1, n)=¢, ., f (1. n)+d, oy (m-1)+ (m-2,n)
Tea(m-2.0) =, 1 of (M2, 1) +d, Ly (M2, 0) + 15 (m-3, 1)

Yiein (m"L"’l) 0kt f (m'L+1 \ n) + d,‘k.]_,ly (m_L+1 N n)
+r(mL.n)

Then, recursively substitute r;(m-1,n) through
N (m-L+1.n) to the above scalar state space
equations until all the equations are expressed
with r(m-L.n). With this, we can obtain the fol-
lowing block state space equations.

www.dbpia.co.kr

WO/ EE TR o) 88 AEAQ 234 A" AN

R (m,n)=AF(m,n)+BY(m.n)+ R (m-L,n) (6
G(m,n)=c¢,F(m,n)+Y(m,n) (N
r(m.n)=CF(m,n)+D,Y(m,n)+r.(mLn) (8
Q.(m,n)=C,F(m,n)+D,Y(m,n)
+ RunraomL.n)+Qum,n-1) 9

Where
Y (m,n)=C,F(m,n)+D,Y(m,n)

+ Ry (m L, n)+Qy, (m,n-1) (10
and
F(m,n)=[f(m,n) f(m-1.n)--f(m-L+1,n)]",
G(m,n)=[g(m.n) g(m-1.n)--g(mL+1,n)]",
Re(m,n)=[r,(m.n) r,(m-1.n)-r(m-L+1,n)]",
R.m.n)=[r(m,n) remn) rw.mn)"
Qm.n)={g(m,n) g(m-1.n)-q(mL+1n)]"
Y(m,n)=[y(m.n) y(o-1,n)-ym-L+1n)]"

Crik Crik-1 """ Crk-L+1
A=| 9 Crr v Cri-reef

0 0 - Crk

drp dypp-1 v dpp-Lo1
B= 0 f/_r.k - dr.k_AL+2

0 0 N dhk
cr':[cr,k Crk-1 *" cr.k~L+1]-
D,=[d,, d, ey dypr-r1]s

0 ¢ry-1 " Cru-L41
C,= 0 0 - crm-reof

0 0 son 0

0 dry-1 = dru-Ln
D=0 0 dlia)

0 0 0

Cok CrMN+1-H-1 """ CrMN+1-B~L+1
c,=| 0 Cak " CrmN+1-B-Lia|

0 0 Cak

dq.k dr..w(/v-+—x-k)~1 dr.M(N+1—k)~L+1
Du= 0 g4] rMNFL -0 - L+2 .

O O e da.k

Note that Eq.(10) is computable since all of the
diagonal elements of D, are equal to zeros. The
equations, Eq.(7) to Eq.(9), are used to design
the system. Among them, the computation of
vertical state variable in Eq.(9) is the most com-
plex. If we build a processor which can compute
vertical state variable in a single cycle, we can
compute each output or state variable from
Eq.(7) to Eq.(9) in a single cycle. Therefore, we
define this as a computational primitive for the
processor. It requires 2L multiplications and 2L+
1 additions.

For the 2-D FIR filter. b(i,j) in Eq.(1) and
Eq.(2) are zeros. Therefore, the equations for 2-

D FIR filters are given by:
G(m,n)=cF(m,n)+ Ry (m-L,n)+Qg; (m.n-1)(11)
ri(m,n)=CF(m n)+r.(m-L.n) (12)
Q(m.n)=C,F(m,n)}+ Ryp+ 110 (m-L.n)
+Qu(m,n-1) (13)

As you can see from the above equations, we
can define a computational primitive for the 2-D
FIR filter with a block size of L that requires L
multiplications and L+1 additions. Thus, a 2-D
FIR filter with a block size of 2L and a 2-D IIR
filter with a block size of L have the same com-
putational primitive. Therefore, both 2-D FIR
and IIR filter can be implemented efficiently
with the same computational primitive.

If we implement a processor based on one spe-
cific computational primitive, the other algo-
rithm, which has a different computational
requirement, can not be implemented efficiently
with this processor. We can achieve higher effi-
ciency by finding a common computational primi-
tive for both 2-D IIR and FIR filters.

We derived a common computational primitive
from a block state space representation for the 2-
D DLSI system. This approach has many bene-
fits such as reducing the number of computation-
al cycles required for each algorithm and reduc-

365

www.dbpia.co.kr

HMEHIT SRR '95-2 Vol 20 No.2

ing the number of processors required for a real-
time implementation. However, it increases the
complexity of the processor. Today’s VLSI imple-
mentation and design technology are developing
very rapidly. In a near future, we can imple-
ment more complex circuits in a single DSP chip.

. IMPLEMENTATION

The overall multiprocessor implementation is
shown in figure 2. In this implementation. we
define one row of data as one data block: we
assigﬁ the first row of data to the first processor,
the second row of data to the second processor,
and so on. Generally. the number of processors is
much smaller than the number of rows. If the
number of processors is four, then we assign the
fifth row of data to the first processor, the sixth
row of data to the second processor, and so on.
With this implementation scheme, horizontal
state variables are not required to be transferred
and vertical state variables are required to be
transferred to the nearest neighbors. Therefore,
the amounts of data transfers are reduced and
only local data transfers are required.

Input Control Block

' b t

qr—t—a L —q
[—i PE 1 H PE 2 }‘ﬁ{lfl’n_h
|

i }

[
Output Control Block

Fig. 2. A block diagram of the multiprocessor implemen-
tation

The use of this scheme permits us to achieve
real-time throughput with a given number of
processors. Each processor, as shown in figure 2,
processes one row of data. The timing diagram
shown in figure 3 explains how we can achieve
real-time throughput with multiple processors
with this implementation scheme. This figure

366

was based on the assumption that the input data
interval is 127 nsec. This rate is equivalent to
the 30 frames per second of 512x512 video. We
also assume that the processor can compute one
computational primitive in 100 nsec, and that
four equations need to be computed.

Input Data [Tow] [row 2 [rows]rowd rowdrow6[row7[row8]

- 2004 usec -

-~ 20 8usee
Processor | [Tow | 1 [" rows
Processor 2 - TOWD 1 [rowé
Processor 3 r* row3 [row7.
Processor 4 rowd |

Fig. 3. The timing diagram for the example

As you can see in the figure, processor 1 starts
processing as soon as the first row of data is
available. During the processing, the processor
computes the vertical state variables. q. They
will be used for the processing of the next row of
data. When the second row of data is available,
processor 2 can start the processing immediately
because the required vertical state variables are
already available. Processor 1 starts the process-
ing of fifth row of data as soon as the input
data is available because the resource (processor)
and all the required data (input data and verti-
cal state variables) are available. After processor
4 starts the processing. every processor is simul-
taneously computing as long as input data is
available. Therefore, we can achieve real-time
processing with four processors.

All the processors are connected in a linear
array with data communications only with the
input control block, the output control block, and
nearest neighbors. Data communications between
the processors are always first-in first-out and
buffered. If data is available, the processor oper-
ates at its full speed. Since the processors operate
asynchronously, speedup is essentially linear as

www.dbpia.co.kr

WX/ EHAHFTAE o) 8% HEHY 2349 A g VEA)

we add additional processors.

For the general MXN-th order system based on
the state space implementation with a block size
of one, we need (M~+1)(N+1) computations for
each input data. Therefore, we can achieve real-
time throughput with (M+1)(N+1) processors if
each processor can compute one computational
primitive in a single cycle. The number of proces-
sors can be greatly reduced by using the block
state space implementation. If we use the block
size of two, the required number of processors for
the MXxXN-th order system becomes (M+2)(N-+
1)/2. Thus, the number of processors is reduced
by almost one half for the high order system.

For the analysis, let T be the number of cycles
to compute Eq.(1) with a single processor that
can compute one multiplication or one addition in
a single cycle. Direct implementation of the Mx
N-th order 2-D IR filter requires 2(0M-+1)(N+1)-
1 multiplications and 2(M+1)(N+1)-2 additions.
Thus. T, is equal to 4(M+1)(N+1)-3 for the
direct implementation. Let P be the number of
these processors used in a multiprocessor system
and let T, be the cycles required to process one
pixel with a single processor that can compute the
computational primitive in a single cycle. Note
that T, is also the number of state equations to
be computed per pixel plus one (for computing
the output). For the MXN-th order 2-D IIR and
FIR filter with a block size of L, the numbers of
equations to be implemented for each pixel are as
follows : L for the outputs, M(N+1) for the hori-
zontal state variables, and LN for the vertical
state variables. Thus, a total M+L)(N+1) equa-
tions have to be computed to obtain L outputs.
Therefore, T,=(M+L)N+1)/L.. The maximum
possible speedup and efficiency can be defined as
S,=T/T, and E,=S,/P, respectively. Table 1 and
Table 2 give the comparisons of the performance
of NxN-th order 2-D IIR and FIR filters for vari-
ous block sizes, respectively. As you can see from

these tables, the higher efficiency can be obtained
with a larger block size for the high order filter.

Table 1. Performance of 2-D [IR filters for various block sizes

Block size 1 2 4 8

P 5 9 17 33
Order2 T, 9 6 45 3.75
T=33 S, 3.67 5.50 7.33 8.80
E 0.73 0.61 0.43 0.27

Order8 T, 81 45 27 18
T,=321 S5, 3.96 7.13 11.89 17.83
E, 0.79 0.79 0.70 0.54

Order=32 T 1089 561 297 165
T=4353 S, 4.00 7.76 14.66 26.38
E 0.80 0.86 0.89 0.80
Order=128 | T, 16641 8385 4257 2193
T=66561 5, 4.00 794 15.64 30.35
E, 0.80 0.88 0.92 0.91
Ordersb12 | T, | 263196 | 131841 | 66177 | 33345
T=1052673 | S, 4.00 7.98 15.91 31.57
E, 0.80 0.89 0.94 0.96

Table 2. Performance of 2-D FIR filters for various block sizes

Block size 1 2 4 8

P 3 5 9 17
Order=2 Ty 9 6 4.5 3.75
T=17 S 1.89 2.83 3.78 4.53
E, 0.63 0.57 0.54 0.27

Order=8 Te 81 45 27 18
T=161 S, 1.9 3.58 5.96 8.94
E, 0.66 0.72 0.66 0.53

Order=32 Te 1089 561 297 165
T=2177 S, 2.00 3.88 7.33 13.19
B 0.87 0.78 0.81 0.78

Orderr128 | T, 16641 8385 4257 2193
T=33281 S, 2.00 3.97 7.82 15.18
E, 0.87 0.79 0.87 0.89
Ordersb12 | T, | 263196 | 131841 | 66177 | 33345
T=526337 S, 2.00 3.99 7.95 15.78
B, 0.87 0.80 0.88 0.93

V. COMPARISON

We consider speedup and efficiency to be appro-

367

www.dbpia.co.kr

BEAE SRR '95-2 Vol.20 No. 2

priate measures for the performance of a multi~
processor system. With a given multiprocessor
architecture, we can achieve an almost linear
speedup as the number of processors increases.
Therefore, the combination of the hardware com-
plexity for each processing element and the
throughput provided by a single processing ele-
ment can determine the performance of the over-
all multiprocessor system. There are two ways to
utilize VLSI technology to improve the perfor-
mance of a multiprocessor system. One method is
to implement many simple processing elements on
a single VLSI chip. The other method is to imple-
ment a smaller number of more complex process-
ing elements on a single VLSI chip. The maxi-
mum-number of processing elements that can be
placed on a single VLSI chip is determined by the
hardware complexity for each processing element
and the available VLS] technology.

In order to evaluate the tradeoffs between
hardware complexity, algorithm complexity and
throughput, we selected four computational
primitives as shown in figure 4 for comparison.
These are as follows:

CP-1 One multiplication with an accumulation
that is a generic primitive for the 1-D FIR
filter and is used widely for commercial,
programmable DSPs,

CP-2 One multiplication with two additions that
is a primitive for the 2-D FIR filter with a
block size of one.

CP-3 Two multiplications and three additions
that is a primitive for the 2-D 1IR filter

- with a block size of one or a primitive for
the 2-D FIR filter with a block size of
two. This primitive was suggested by Kim
and Alexander(1), and

CP-4 Four multiplications and five additions that
is a primitive for the 2-D IIR filter with a
block size of two or a primitive for the 2-

D FIR filter with a block size of four.

CP-1 Cp-2

cPa

Fig. 4. Computational primitives for the implementation
of 2-D digital filter (A : Adder, M : Multiplier)

The throughput comparisons between the
implementations with various block sizes and
various computational primitives are shown in
table 3 and table 4. As you can see from these
tables, the maximum throughput for the 2-D IR
filter can be obtained from CP-4 with block pro-
cessing with a block size of 2 and the maximum
throughput for the 2-D FIR filter can be
obtained from CP-4 with block processing with a
block size of 4. We can conclude that the maxi-
mum throughput can be obtained with block pro-
cessing with a matching block size when a
processor based on the computational primitive
derived from the largest block size is used. That
is, the suggested implementation can provide
higher throughput than the implementation sug-
gested by Kim and Alexander (1) and the imple-
mentation based upon CP-1 such as commercial
DSPs. However, the maximum implementable
size for the computational primitive is limited
because of the available VLSI technology and
other constraints such as design cost and time.

In order to obtain a performance measure for
the efficiency, we defined the hardware complex-
ity for computational primitives as follows : 1 for
CP-1 and CP-2, 2 for CP-3, and 4 for CP4. We
based these definitions on the number of multi-
pliers required for each primitive because multi-

www.dbpia.co.kr

BX/BYAHTIAE o/ 48 BE&AHU 244 Y VM)

Table 3. Throughput for the NxN-th order 2-D IIR filter

Table 4. Throughput for the NxN-th order 2-D FIR filter

Block Size=l Block Siz=2 Block Size-2 Block Size=l Block Size=2 Block Size=2

1 2 4 1 2 4

CPL | BN TN+ D+ | GNH BN | ON+IIN+2() CPL o +aN+ 3+ | BN TN+ D6+ | BN+t 1)
1 1 1 1 2 2

P2 N aN+I6) | NN 1Y | @P TN+) CP2 N+ DY) | AN | NN+
1 2 2 1 2 2

O3 [et D+ | ONENFIG 2 | ONHTNAEI 612 O3 | NN+ D2 | NN+ 22 | (NN 2
1 2 2 1 2 4

O eraN+ DG+ | P HINHDG) | PN+) CP4 I 0P taN+D, 4, | NHINI2G) | ONHN+A,+4)

pliers occupy significantly larger silicon area than
adders. We can use the hardware complexity and
the throughput to compare the efficiency of the
implementations. We define the efficiency as the
ratio of the throughput and the hardware com-~
plexity. When we use twice the hardware, we
expect to achieve twice the throughput for the
same efficiency. When we consider the hardware
complexity for the computational primitive, the
most efficient implementation is obtained with
the use of scalar processing with a processor
based on CP-3 for the 2-D IIR filter and with
scalar processing with a processor based on CP-2
for the 2-D FIR filter.

Another important measure of the hardware
complexity is the amount of memory required for
each processor to implement a given application.
The required buffer sizes for the I/O buffer are
the same for all implementations according to our
implementation scheme that requires one row of
data to be stored in this buffer. Also, the
required buffer sizes for horizontal state variables
are the same for all implementations. That is,
each processor requires N(N+1) words for the N
X N-th order filter. The required buffer size for
the vertical state variables is LXNXW words
where L is the block size and W is the number
of pixels per row. The required buffer sizes for
the coefficients are different for various imple-

mentations. They are shown in table 5 and 6 for
the different block sizes and different computa-
tional primitives. The total buffer size require-
ment for each processor is as follows : (LN+1) X
W+N(N+1)+a words where N is the order of a
filter, L is the block size, W is the number of
pixels per row, and @ is the required buffer size
for coefficients. As a result, the required buffer
sizes for all implementations based upon the four
computational primitives are not significantly dif-
ferent. The required buffer size depends on the
order of the system and the block size rather
than on which computational primitive is used.

Table 5. Coefficient buffer requirements for the NXN-th
order 2-D IIR filter

Block Size=1 Block Size=2 Block Size=2
CP-1 3N*+7N+3 5N’+ 15N +8 N*+37N +24
CP-2 2N*+4N+1 4N*+10N+4 8N*+28N+16
CP-3 IN*+4N+2 AN*+ 10N +6 8N*+28N +20
CP-4 4AN*+8N+4 4N'+12N+8 8N'+32N+24

Table 6. Coefficient buffer requirements for the NXN-th
order 2-D FIR filter

Block Size=l Block Size=2 Block Size=2
CP-1 2N*+5N+3 IN*4+10N+T 5N*+23N+18
CP-2 N'+2N+1 IN*+ 5N+3 AN*+14N+10
CP-3 N*+4N+2 IN*+ 6N+4 4N*+16N+12
CP-4 4N*+8N+4 4N*+12N+8 4N*+20N+16

When we consider these storage requirements,

369

www.dbpia.co.kr

HBIBEP AR '95-2 Vol . 20 No. 2

hardware complexity of the computational primi-
tive, and throughput, we can determine which
implementation is the most efficient in terms of
silicon area and throughput. The most efficient
implementation for the 2-D FIR filter is obtained
from the block processing with a block size of
four with a processor based upon CP-4 and the
most efficient implementation for the 2-D IIR fil-
ter is obtained from the block processing with a
block size of two with a processor based upon
CP4.

Therefore. we can conclude that the highest
efficiency can be obtained from the block process-
ing with a matching block size when the proces-
sor, which is based on the computational primi-
tive derived from the largest possible block size,
is used.

This conclusion means that the suggested
implementation based upon the block state space
representation can provide higher efficiency than
the implementation presented by Kim and
Alexander (1]. Also the processor based upon the
computational primitive, which is obtained from
the block state space equation, can provide better
efficiency in terms of throughput and hardware
complexity than many other DSPs those are
based on CP-1.

V. CONCLUSION

In this paper. we presented an efficient proces-
sor structure for spatial domain 2-D IIR and FIR
filters. This structure is based upon the compu-
tational primitive that is derived by using the
block processing concept. We presented a multi-
processor system with data partitioning (8] to
achieve real-time operation. With this system,
we can achieve almost linear speedup as we add
additional processors until we reach real-time
operation.

As we described in this paper, we can achieve

370

high efficiency with a moderate hardware com-
plexity by using the processor based upon the
computational primitive derived from the block
state space representation with a matching block
size. An attractive {eature of the approach pre-
sented in this paper is that it can be easily
extended to higher order system or higher dimen-
sional algorithms.

REFERENCES

1. J. H Kim and W. E. Alexander, “A multi-
processor architecture for 2-D digital filter,”
[EEE Trans. Computer, vol. C-36, no. 7,
pp. 876-884. 1987,

2. 7. Y. Zhang and W. Steenaart. “High speed
architectures for two-dimensional state-space
recursive filtering,” IEEE Trans. Circuits
Syst.., vol. CAS-37. no. 6. pp. 831-836,
1990.

3. C. J. Juand W. E. Alexander. “Block real-
ization of multidimensional IIR digital filters
and its finite word effects.” IEEE Trans.
Circuits Syst., vol. CAS-34, no. 9. pp. 1030~
1044. 1987.

4. M. R. Azimi-Sadjadi and A. R. Rostampour,
“Parallel and pipeline architectures for 2-D
block processing,” IEEE Trans. Circuits
Syst., vol. CAS-36, no. 3, pp. 443-448, 1989.

. H. Lu, E. A. Lee, and D. G. Messerschmitt,
“Fast recursive filtering with multiple slow

[$2]

processing elements,” [EEE Trans. Circuits
Syst., vol. CAS-32, no. 11, pp. 1119-1129,
1985.

6. K. K. Parhi and D. G. Messerschmitt,
“Block digital filtering via incremental
block-state structure,” in Proc. IEEE Int.
Symp. on Circuits Syst., pp. 645-648,
Philadelphia, PA, May 1987.

7. S. M. Park et al., "A novel VLSI architec-
ture for the real-time implementation of 2-D

www.dbpia.co.kr

BX/EYAYFANE o] 48 BEXY 234 g NE a7

signal processing systems,” Proc. IEEE Int.
Conf. Comp. Design : VLS in computers and
Processors, Oct. 1988.

8. J. G. Jeong and J. W. Jang, “A multi~

B £ H(ae Gil Jeong) 354

1980 24 : fUgn Fu AAF
g £9 (A

19873 54 :ul= North Carolina
State University A
71 ¥ AR &
o (FHHAh

19913 84 : v North Carolina State University #7)
2 AFE 2 FY (FD

1979 129 ~1985d 64 : AL d7d

19919 89~19929 89 : FIAAZUATL Y74

19929 99 ~¥A : viAdgm AAFEA} 205

processor implementation of the real time
digital filter,” KITE Journal of Electronics
Engineering, vol. 4. no. 1A, Jul. 1993.

% $8 HJong Whan Jang) 324

19794 2% : @odigtn 3o AA%
AFE G (FA

198614 59 : W)= North Carolina
State University &
7l 2 ArdEey &
o (FEAAL

19901 124¥ : 9= North Carolina State University &
71 R AFEFY Y (FHEYAD

1990 5¢~@A : iAo HHENFNY 2ap

1991 39 ~¥A : WA gn ARALY

3N

www.dbpia.co.kr

