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A Solution Procedure for Round Disk Capacitor by using Annular Patch Subdomains
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ABSTRACT

A numerical method is presented for determining the static charge distribution and capacitance of a round disk capacitor. Based
on equivalent surface charge distributions, an integral equation subject to the boundary conditions is transformed into an algebraic
equation by using method of moment. In the employed numerical scheme, annular patch subdomains are introduced not only to
completely eliminate the discretizing errors often encountered in other triangular or rectangular techniques but also to improve the
accuracy of solutions and to reduce the matrix size of resultant equation. By solving the transformed algebraic equation the total
charge density consisting of free and bound charge density is numerically calculated, thereby the equipotential lines around a
round disk capacitor are obtained.

To show the usefulness of this method the employed scheme is applied to a single round disk with an exact solution and to the
dielectric filled capacitor partially covered by plates. The numerical results are examined and discussions are also made to support
the validity of the presented scheme.
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[. Introduction

Evaluation of a capacitance for a round disk
capacitor has been studied by many authors"™”
who were willing to take into account the fring-
ing field effects. For this most of all used the
numerical method in which the surfaces are
divided into triangular or rectangular patches
depending on the geometry. and on these patch-~
es the charge densities assumed to be

&9 However, either of these methods

uniform
may yield too big matrix size or poor accuracy if
they are applied to a round disk capacitor due
to their discretizing scheme taken. To a good
approximation. choosing a well matched patch
shapes suitable to the given geometry makes a
sense because the resultant matrix size or solu-
tion accuracy will be greatly dependent on the
patch shapes taken.

In this paper, a capacitance and an equipo-
tential line are numerically calculated. For the
capacitance of a round disk capacitor filled with
a finite dielectric slab the equivalent surface
charges are put on the top and bottom plates as
of free charges and on the dielectric boundary
as of bound charges, thereby the integral equa-
tion to be solved can be represented by a free
space Green's function. As prescribed boundary
conditions two potentials on the top and bottom
plates and the continuity of electric flux density
across the dielectric layer were incorporated into
the free space integral equation. To determine
the equivalent surface charge densities lying on
two plates and dielectric layer this integral
equation is solved by the moment methods.

In an application of moment methods the
plates are subdivided into annular patches, and
the dielectric layer into rings on which the
charge densities are assumed to be constant.
Expansion functions for the charge densities are
taken as annular pulses whereas testing func-
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tions are chosen as tubes with zero thickness
width going around the center of the divided
patches, which eventually reaches to a point
matching technique. By introducing these
annular patch subdomain the discretizing errors
arson in divided round surfaces could be com-
pletely removed, which was often encountered
in other shapes including a triangular or rectan-
gular patch etc. Hence by employing this
scheme not only the accuracy of numerical solu-
tions but also the matrix size of a resultant
algebraic equations are greatly reduced com-
pared to those of the rectangular or triangular
subsections.

Once determining the equivalent surface
charge densities the capacitance and the equipo-
tential lines could be numerically computed. By
superposing the potential contributions by the
annular patch subsections the equipotential lines
are drawn around a capacitor. The accuracy of
a numerical solutions is confirmed by comparing
them to the known exact solution for a single
disk capacitor and to the reported solution for a
round disk capacitor.

1. Formulation of the Problem

Fig. 1 shows a round disk capacitor filled
with a homogeneous dielectric medium of dielec-
tric constant €, and the top and bottom plate
keep to maintain the potential difference V,
and V, respectively. In here a denotes a radius
of a round disk capacitor, W the dielectric slab
width, and h the height between top and bot-
tom conductors. The solution procedure is based
on the method of replacing all the conducting
surfaces and dielectric layers with equivalent
layers of unknown charge densities in free
spaces”. With this replacement, the potential
and electric flux density of a round disk capaci-
tor are given by
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where S is the surface of the round disk capaci-
tor, and V the potential by the charges and D
the electric flux density vector. And also o;(k)
represents the total charge density composed of
free charge lying on the plates and bound
charge on the dielectric to dielectric interface. €
and & are the permittivity of a material and a
vacuum respectively.

h Er -0
dielectric slab

conductor

Fig. 1. Cross section of a round disk capacitor with dielec-
tric slab.

Applying the potential boundary conditions to
the top and bottom plates the potential in
eqn. (1) reduces to V; for i=1 and 2. To evalu-
ate eqn.(2) along the medium interface this
equation is decomposed into two parts, one with
the self term and the other with the mutual
contribution term.

D* - 7= Dz(sel) + D, (PV) 31

where

N 0‘7- .
+ . .
D2 (self) = & —75? for exterior region

—€ 2% for interior region (3-2)

L oK £)dS

D, (PV)= - PV ff(lr—

4

(3-3)

In here PVJ/ denotes the principal value of
the integration. The superscripts(+) and (-)
represent the exterior and interior region of the
medium, 7 is an outward normal vector directed
to the exterior region. When eqn. (3) is applied
to a zero thickness conductor the free charge
density o; and the total charge density ¢; are
related by

4D =(D"- D) %

=Di(PV-Di(P + S50 (g

=dy .

For a dielectric to dielectric boundary with no
conductor present 4D becomes zero.

Once determining the total surface charge
density the free charge density can be calculat-
ed by eqn.(4). By applying eqn.(4) to a dielec-
tric to dielectric interface the bound charge den-
sity ¢, lying on that boundary is given by

0=-S52 o5, 5)

The total surface charge density o; is numeri-

cally obtained by the method of moments. A set

of expansion functions {f,{r);n=12-- M} is

chosen and the charge density on surface is

expanded in terms of the chosen expansion
functions

or=2 07, /(D 6

where f,(r) has a unit height on the nth annu-
lar patch subdomains and zero otherwise. s
are the expansion coefficients of the charge den-
sities to be determined. A number M=N,+Nj is
the total number of subsections, in which N,
means the number of subdomains on the plates
and N for the number on the dielectric to dielec-
tric interface. The total M equation is needed to
solve for oy, for which N, equations are obtained
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by applying the potential boundary conditions on
the plates, and the remaining Ny equations by
applying the continuity of normal components
of the electric flux density on the dielectric
interface. Substituting eqn.(6) into (1) and (4)
on which the potentials were set to V; and the
free charge density ¢; set to zero, and testing
the resulting equation with each thin tube
weighting functions we obtain

om( n) Vi
o [ O I (7-1)
4D,(f.) 0
where
1 ds
0n(f)= 47e, fde. [ 7.— 2l (7-2)
for m=1,2,-* N, and n=1,2,--- M, and
ap, () =) | .
— Y. 7 7-3
f ( Zm— 24)* 7y 4S
157 | za— 2zl

for m=N,+1,-- M and n=1,2,-- M. 485,
denotes the annular subsection, and the homo-
geneous dielectric medium was assumed in the
derivation. The matrix elements @ ,(f)) in
eqn. (7-2) may be regarded as a potential at the
testing point due to a uniform surface charge
density 4 W, over the nth annular ring with
radius £,.

Once determining the total surface charge
density by the matrix inversion on eqn.(7) the
free charge densities on either plates can be
specified by using eqn.(4). Hence from the total
free charge @ and the potential difference V
between the plates the capacitance of a round
capacitor can be found to be

Q|1 &
C= v VZ_VI 210'/,,.45,,

n=

48,

1 %
= a
' VoV SR
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where the superscript ¢ in N. means top plate.
In eqn.(8) the numerator of third term repre-
sents the total free charge on top plate whereas
the fourth term indicates the total free charge
on bottom plate.

. Evaluation of Matrix Elements

Fig. 2 shows the coordinates for evaluating
matrix elements in egn.(7). By taking into
account a symmetry of the geometry a testing
point is chosen to lie on the xz plane for compu-
tational convenience. In those case we recognize
that the distant vector r,, and r,, are

i

L’l —i‘:opln+ .‘iﬂhm - 9_1
Xp0,c08¢ + Yop.sing’ t+ Zoha ©-1)

=
I

n

where ¢’ is an angle between the x axis and
radial distance #,. The distance |r, - z,| from a
testing point r, to source point r;, is

| 2= r.f=

(9-2)

Vom+0i+ U, —h,) —20,0,c08¢ .

(£ 0. )
7

O oo~
//’// é B !
////
- ~
N -

Fig. 2. The coordinates for evaluating the matrix elements.

We evaluate the integral in eqn.(7-2) by sub-
stituting (9-2)
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0,(f.) =
0.4 W, f * d¢’
2mey N | prtont (ha—hn)' —20a0,c08¢°
f
= £ 0 Kl )
10-1)
where
N [ d
K(x) _fo V1—xsin’é (10-2)
Ag’"" = (p’l+p")2 +(h"l—11")2 (10_3)
2 4- min
Ropn = —%‘3:%‘ (1. (10-4)

4W, represents the width of each annular
patch with a surface 4S5, as shown in Fig. 2.
In the derivation of eqn.(10) a new integral
variable $=(r -$')/2 was introduced. K(x) in
eqn. (10-2) is a complete elliptic integral of the
first kind.

For nonoverlapped pulse portions (m#n) the
argument x in K(x) lies between 0 and 1 as
described in eqn.(10-4), hence eqn.(10) can be
computed by a numerical integral technique
without a difficulty. For the coincident pulse
portion (m=n) the integral is evaluated analyti-
cally. For this the nth annular section is divided
into two parts, on including a singular point and
the other not. The integral contributed by a sin-
gular point will be performed over an approxi-
mate square area 4 W.. In other words by tak-
ing the angle =4 W,/p, which yields an approx-
imate square area around a singular point, the
integral along the annular ring is separated into
one ranging from -6/2 to 6/2 and the other from
0/2 to 2v6/2. After setting £,=f, in eqn.(9-2)
and substituting this result into eqn. (7-2) shows

2W./2 a4WJ2

_ 1 dxd
0.(f,) = dne, f_aw_/zf—d“’./ﬁ sz +y
AVV, k=612 dé’ 11
Y Ire Jon VN 1-cosF v

i‘f In(1+/2) + g n(cot(/8)),

TEy

In here the first term is a contribution by a
singular point and the second term by the
remaining parts, and In denotes the natural
logarithm.

4D, (f,,) in eqn. (7-3) has to be evaluated over
the plates and over the dielectric interfaces.
We'll denote the former by 4D, (f,), and the
latter by 4D, (f,), since the unit testing point
vector fim directs toward +3, direction over the
plates and %, direction over the dielectric inter-
faces when the testing point lies in the xz
plane. € and ¢ will be replaced by ¢ and &g,
respectively, and the relation #=0-¢")/2 will
be used for computational purpose. To evaluate
4D, (f,), for the mutual term (m#n) incorpo-
rating (1) * % =hn-h, and egn. (9-2) into (7-
3) shows

4D, (fu): =

(1—¢e)o,(h,—h,)dW, f./z dé
7A>,, b (1=K, sin ) 2

(A—e)olhu—h)AW, E(k,.)
A3, 1=K,

(12-1)
where

E(x)= fo 7 —xj’sin 74 dg. (12-2)

E(x) is a complete elliptic integral of the second
kind. For the self term (m=n), the subsection is
divided into two parts including a singular point
and the remaining parts, as done for obtaining
eqn.(11), and the integral is carried out for each
part. Then 4D, (f,), simply becomes

4D, 1), =12 (12:3)

since the vector (r,-z,) and i, are orthogonal to
each other in eqn. (7-3). Therefore the contribu-
tion is only the part including the singular point
for this case.
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To calculate 4D,,(f,), for the mutual term
substituting the relation (r,, 1) * £) =P, Puncos $
and eqn. (9-2) into (7-3) yields

1__57 ERIAY)
AD,1) e ===t [ eude
j‘?” Om—0,C08 ¢ a¢
o [ ontel+(hn—h,) ~20,0,c084)

_ Q=e)ofon,to)aW,
zA°

mn

%2 d
e

— k50 °6h)

201~ ) d W, sin?¢
S el M cp L
(A —e)dia W, Ow 2
- ”Aamn [ (1 - On kzmn

E(k ,.,) 2
=%, " #, K“”")]

K(x) and E(x) were defined in eqn.(10-2) and
(12-2) respectively. For the self term, similar
procedure is carried out to evaluate 4D, (f,), as
done for obtaining eqn.(12-3). For this case the
contribution of the remaining parts is evaluated
analytically, since the (r,r,) and £, over this
section is not orthogonal to each other. Hence the
expression on 4D, (f,), for a self term becomes

- AW,
AD,(f). =j1_.6_1>§___~
x—-0/2 pm(l“ COS¢') , 1+E'
Jur oo Tesg? 4 (13-2)
- (1=e)d W,
=T TIme,  n(eot(8/8)F
1+e,
2

By putting the matrix elements given by
eqn. (10}, (11), (12), and (13) into eqn.(7) the
charge densityoy, can be determined.

Once determining the total charge distribu-
tions by using eqn. (7) the electric potential V(r)
at the field point r can be computed by super-
posing the potential contributions in terms of
segment charges lying on the annular patches,
which is written as

D=2 ¢z z) (14)
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where, #°(r'r,) is a potential due to the nth
annular subsection with charge density or,.
From eqn.(14) the equipotential lines can be
drawn around the capacitor.

V. Numerical Examples

To show the validity and usefulness of our
numerical scheme we applied this method to a
single round disk with radius a which was
charged to a constant potential V,. The accu-
rate charge density distribution on this disk is

8)

given by

.
127 (15)
-—p0

oo) =

where p is the distance from the center of the
disk. The capacitance of the disk is 8¢a. For a
numerical solution, the disk is divided into M
equidistant annular patch subsections and on
each subsections the constant charge density
distribution was assumed. Fig. 3 shows an
excellent agreement between the exact and com-
puted charge density distribution for M=30.
This graph shows a singular behavior at the
disk edge as expected in eqn. (15). The comput-
ed solution is getting convergent to the exact
solution by increasing the number of annular
subsections. In Table I numerically calculated
capacitance of a single round disk with respect
to the number of employed subsections are pre-
sented for comparison between the annular and
triangular subsections®. The data in Table I is
the normalized capacitance C/a. The relative
errors are less than 1% for a matrix size 20 and
0.5% for 40 respectively. As shown in this table
results by annular patch subsections show much
smaller errors than those of triangular patches
for the same matrix size.

The round disk capacitor we wish to consid-
er was shown in Fig. 1. Fig. 4 shows the

www.dbpia.co.kr
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80.0¢ exact 9

o o o computed

60.0

CHARGE DENSITY [pC/m?}

40.0+

20.0+

A 0 A
NODES ALONG THE BOUNDARY
Fig. 3. Exact and computed charge density distributions
of a single round disk (a=1, Vi=1V).

Table |. Normalized capacitance of a single round

disk(pF/m).

Annuiar patch Triangular patch®
M C/a | %error M Ga | %error
10 69.57 1.76 18 59.80 | 15.57
15 70.01 1.16 30 61.10 | 13.74
20 70.22 0.86 42 61.80 | 12.75
25 70.35 0.68 54 62.24 | 12.13
30 70.43 0.56 60 66.03 | 6.78
40 70.55 0.41 % 66.72 5.72

exact | 70.83

charge distribution of a round disk capacitor
for W=0 in Fig. 1. In this figure we set the
radius a and height h to be unity, and volt-
ages to be V;=-V,=1[V]. The value by dotted
white (¢ © °) represents the total charge densi-
ty distribution for &,=1 and the other graphs
show the distribution for €=3.0. The ratio
between the total charge to free charge was
about 2.2 for €,=3.0. For small h/a ratio, the
ratio of total to free charge is nearly unity
and eventually the fringing field has little sig-
nificance. Along the boundary AB, the posi-
tive free charge density and negative bound

charge density due to the induced polarization
charges were appeared as expected since the
potential of a upper plate is higher than a
lower plate. The discontinuity of a bound
charge at the corner of a capacitor, marked B
in Fig.4, is due to the free positive charge on
the top plate and positive bound charge lying
on the boundary BC. The bound charges lying
along BCD are responsible for the fringing
field effects. So they cause to bend the
equipotential lines across the dielectric inter-
faces.

o o o TQTAL CHiRGE DENSITY ON CONDUCTCA
FOR €5 = 1.0
———— TOTAL CHARGE DENSITY ON CONDUCTOR
~+-~ FREE CHARGE DENSITY CH CONDUCTOR
o B BCUND CHARGE DENSITY
™ A
S 200 L ON DIELECTRIC INTERFACE
>~
=
@ 150
o
[=]
[*9]
& 100 4+
-
€T
(&)
50 1+
C 0
0 e }
‘\
-50 4
=100 +

NODES ALONG THE BOUNDARY
Fig. 4. Charge density distribution of a round disk capacitor.

Fig. 5 shows the equipotential lines on the xz
plane. The lines are nearly parallel to each
other in the interior region, but somewhat bent
at the corner due to the fringing field effect.
At the corner the lines for €,=3.0 are more par-
allel than those for €=1.0. This happens since
the fringing field becomes smaller for bigger ¢,.
However, the equipotential lines for €=3.0
show sharp bending at the boundary(x=1)
because the electric flux is discontinuous at a
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dielectric to dielectric interface due to the bound
charges in there.

Fig. 5. Equipotential lines of a round disk capacitor.

Fig. 6 represents the capacitance of a round
disk capacitor as a function of h/a for €=1.0
and 3.0 respectively, and together with results
by Shen’s formula®

. &xd ] 2k ([ ma
C= e~ [ 1+ RE'a{ln( 2h)+1.7726}] (16

Shen's formula is well suited only for h/a 1
since it was obtained under the first order

approximation.

10 | ——— computed

— — Shen's fermula

o 3]
&0 1.0
S 4 3.0
£ 3
-2
(&}

2

h/a

Fig. 6. Normalized capacitance vs parameter h/a.
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Fig.7 represents the normalized capacitance
for a round disk capacitor by changing parame-
ter W for €,=3.0. W is the dielectricslab width
shown in Fig.1. In this figure as the uncovered
dielectric slab width W is increasing the corre-
sponding capacitance is slightly increased, there-
by the fringing field effect becomes somewhat
more evident.

10 | - — =~ Shen’'s formula
a: (W=1.0
o B b: (W =0.58) a
€ 5 F C oo AN
& 4l c: (4=0.0. b
=)
‘;\3 .
< 3
O 2

h/a

Fig. 7. Normalized capacitance vs parameter h/a by
changing parameter W(e=3.0).

V. Conclusion

A solution procedure to analyze a round disk
capacitor was introduced by using annular
patch subdomains. Based on this technique the
discretizing errors on the capacitor surfaces
could be completely removed, which lead us to
have more accurate numerical results together
with saving on computation time and memory
as well. For numerical calculation pulses on the
annular patches were taken as the expansion
functions and zero thickness thin tubes were
chosen as the testing functions, which eventual-
ly led to a point matching.

To show the effectiveness on the proposed
scheme this technique was applied to a single
round disk and a capacitor filled with a dielec-
tric slab covered by the partial plates. The cal-
culated capacitance’s for these structures
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showed good agreement with known solutions.
By drawing the equipotential lines around the
capacitor discussions were also made on the
resultant fringing field effects related to the
bound charge densities lying on the dielectric
interfaces.
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