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Multichannel Lattice Adaptive Array Processor with Reduced Signal Cancellation
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ABSTRACT

An adaptive array processor which is implemented with a tapped delay line (TDL) filter suffers from a slow convergence rate
due to a large eigenvalue spread ratio of input autocorrelation matrix. It is proposed that the lattice filter structure in which the
backward prediction errors are uncorrelated between stages is employed in a composite adaptive array processor. It is shown that
the covergence rate of the proposed array processor is faster than that of the conventional one due to the orthogonalization proper-
ty of the lattice filter structure. Since the composite array processor shows no signal cancellation in an ideal sense, the proposed
array processor yields a reduced signal cancellation as well as a faster convergence. The performance of the proposed array
processor is compared with the TDL counterpart and a generalized sidelobe canceller.
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1. Introduction

An adaptive array processor consists of an array
of antenna elements followed by an adaptive multi-
channel filter. The array of elements are steered
electronically by delaying the element outputs by a
proper amount to yield a maximum gain in a look
direction (i.e.. the direction of a desired signal)
while the filter coefficients are updated recursively
such that appropriate nulls are created at the non-
look directions (i.e., the directions of interference
signals). Adaptive array processing techniques have
been widely investigated in the literature (1-7). The
application area includes radar (5], sonar (6], and
seismology (7). etc.

In the linearly constrained adaptive array proces-
sor proposed by Frost (1], the filter coefficients are
updated by a constrained LMS (least mean square)
algorithm. The processor responds to a signal com-
ing from a look direction with a preset frequency
response while discriminating against the interfer-
ence signals coming from the nonlook directions. An
alternative way of realizing the constrained array
processor, referred to as ‘generalized sidelobe can-
celler was proposed by Griffiths and Jim (2). In
this scheme, the constrained array processor is
implemented using an unconstrained LMS algo-
rithm. The main advantage of this approach is that
a variety of currently available adaptive multi-
channl techniques can be easily used.

It was shown (3) that the constrained array
processor/generalized sidelobe canceller has the prob-
lem of signal cancellation due to interaction between
the desired and interference signals during adaptive
procesé. The master-slave type composite array
processor introduced by Duvall successfully prevent-
ed the signal cancellation phenomenon by eliminat-
ing the desired signal in adaptive process using a
subtractive preprocessing [(3).

The adaptive array processors discussed above use
a TDL filter structure and update the filter coeffi-
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cients using the LMS algorithm. It is well known
(8) that the LMS algorithm in the TDL filter
results in a slow convergence which depends on the
eigenvalue spread ratio of input autocorrelation
matrix. One way of decreasing the eigenvalue
spread ratio is to reduce the dimension of the auto-
correlation matrix by orthogonalizing the input sig-
nals. In this respect, the lattice filter structure is
appropriate for use due to its Gram Schmidt orthog-
onality property between stages.

In this paper, it is proposed to employ a lattice
filter structure in the composite array processor to
improve the convergence rate with reduced signal
cancellation. To this end, the composite array
processor is realized in an unconstrained way with a
lattice filter strucure instead of the TDL one. Due
to the orthogonalization property of the lattice
structure, the proposed realization converges faster
and yields a smaller estimation error than its TDL
counterpart. Also. the signal cancellation is rarely

observed in the proposed realization.
I. Unconstrained Composite Array Processor

The composite array processor is a master—slave type
array processor which prevents the signal cancellation
phenomenon inherent in the constrained array proces-
sor. It is proposed that the composite array processor
which employes the constrained LMS algorithm be
implemented in an unconstrained way as shown in
Fig. 1. It consists of a master and slave processors
each of which is identical to the generalized sidelobe
canceller structure. In the figure, D, 1<i<N repre-
sents the time delay sample corresponding to the ith
element. It is assumed that the antenna elements are
equally spaced with half the wavelength. If a desired
and interference signals, s(k) and n(k), are coming
from 0, and 6, from the array axis, the input signal
to the ith element can be represented by

x;(k)=stk+rg)+n(k+r;), 1<Ii<N, (1)

where
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r,=(i-1)ricosf,, 2) given by
r=(i-1)ricast,, 3 g, = 1 — A .,
T O BGED F U-A R @
r; is a propagation delay in terms of sample 0< B8<1.

between neighbering elements, and k is a discrete
time index. Now, the outputs of antenna elements
are delayed by r; samples to steer the array of ele-
ments to the look direction such that the desired
signals are in phase in the delayed element outputs
which are given by

x;(k)=s(k)+n(k+r,r;), 1<i<N. 4)

In the master processor, the desired signal compo-
nents are eliminated by a subtractive preprocessing
between neighbering element outputs. The filter
coefficients in the master processor are updated
using a general adaptive multichannel noise cancel-
lation approach (9] in which the y.(k) and u;k), 1
<J<N-2 are used as the primary and reference
inputs respectively. y.(k) is the output of the spec-
tral constraint filter via a delay-and-sum array
which is formed by the sample delay elements and
weights ¢, 1<i<N-1. The spectral constraint filter
passes the input signal within the bandwidth of the
desired signal with a gain of one. The outputs of
the matrix processor u;(k), 1<I<N-2 are processed
through a multichannel TDL filter whose coeffi-
cients are updated by the unconstrained LMS algo-
rithm' (4] which is given by

Aik+])=A,(k)+4 Ky®KUKk), 0<I<L-], (5)
where

Atk)=(a, (k) az(k)-anq (k)] (6)
Ulk-1)={u;(k-1) uplk-1)--up.o(k-1)J. "N

a; (k) is the ith row coefficient at the Ith tap in
the multichannel TDL filter, u;(k-l) is the input to
the Ith tap of the ith TDL filter and consists of
subtractive interference signals, y(k) is the output
of the master processor, 4(k) is an (N-2)X(N-2)
diagonal matrix, in which the ith diagonal element

represents a time-varying convergence parameter

In (8), a simple one-pole lowpass filter is used to
compute v;(k), which is an estimate of the variance
of u;(k). Also, the smoothing parameter £ controls
the time constant of the one-pole lowpass filter.
Since only the interference signals are involved in
adaptive process as shown in (5), the filter coeffi-
cients in the master processor is updated with no
interaction between the signal and interference. The
updated coefficients are copied to the slave processor
and processed with the interference signals with no
subtractive preprocessing to produce the final array
output. The purpose of the matrix processor is to
eliminate the desired signal using (N-2)x(N-1)
transformation matrix where each row is indepen-
dent of others and the row elements sum to be zero.
One way of satisfying these conditions is to use
Walsh-ordered Walsh-hadamard matrices (10). If the
desired signal is not eliminated perfectly, the estima~
tion performance will be degraded due to the leakage
of the desired signal into the multichannel TDL fil-
ter. It is to be noted that the interference signals
out of the subtractive preprocessor in the master
processor have the same phase relationship as those
in the delayed element output signals in the slave
processor, Thus the copied coefficients in the slave
processor produce appropriate nulls at the locations
of the incoming interference signals. It was shown
that the signal cancellation phenomenon was
remarkably reduced in the composite array processor
(3).

Even though the unconstrained LMS algorithm
has been successfully applied to update the multi-
channel TDL filter coefficients, it suffers from a
slow convergence rate due to the eigenvalue spread
ratio of input autocorrelation matrix. To overcome
this shortcoming, the multichannel lattice filter
structure has been developed (11]. It is well known
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that the convergence rate of the adaptive multi-
channel lattice filter which uses the LMS algorithm
is partially independent of the eigenvalue spread
ratio o_f the autocorrelation matrix due to its Gram
Schmidt orthogonalization property. To realize a fast
convergence adaptive array processor with reduced
signal cancellation, we apply the multichannel lat-

tice structure to the composite array processor.

I. Composite Array Processor with
Lattice Structure

To realize a composite array processor with a lat-
tice structure, we substitute the L-1 stages of a
multichanne] lattice structure as shown in Fig. 2
into the TDL counterpart in the master and slave
processors in the composite array procesor. The
resulting composite array processor with lattice
structure is shown in Fig. 3. In Fig. 2, Fi(k) and
B;i(k), 1<i<L-1 denote the (N-2)x] forward and
backward prediction error vectors in the ith stage,
and Wi(k) and Wi(k), 1<i<L-l1 are (N-2)x(N-2)
forward and backward coefficient matrices. They
are reéursively updated using the unconstrained
LMS algorithm to minimize the mean squared
norms of Fi(k) and Bi(k), 1<i<L-l. respectively.
Also, Gi(k). 0<i<L-1 are (N-2)x1 coefficient vec-
tors which are also updated iteratively using the
LMS approach to minimize the mean squared value
of the ith stage error signal e(k). which is the dif-
ference between the (i-I)th stage error signal e.,(k)
and the weighted backward prediction error vector
Bi(k). Here, e.,(k) corresponds to the y(k) in Fig.

1. The relevant recurrence relationships are as fol-

lows.
Foy=By(k)=U(k), 9
F.=F,,(k)-Wj(k)B;,(k-1), (10}
B,:B,_I(k'l)”m(k)ﬂ.j(k), ISISL'I, (11)
eo(k) =y (k)-Gy(k)By(k). (12)
ei(k)=e,;(k)-G](k)B;(k), 1<i<L-1, (13
80C

where

Bj (k) = [bl 1 (k) b,g(k) " bl N-2 (k)T. (14)
Fi(k)=(f; (k) f;2(k)F; np (k)T (15)
G,(k) =[g,; 1 (k) g,-,z(k)" 'g,"N-g(k)JT, (16)

and I is the stage index. The mth row and nth
column component of Wi(k) is the ith stage forward
coefficient which predicts the mth forward predic-
tion error using the nth one-sample delayed back-
ward prediction error of the (i-I)th stage; The mth
row and nth column component of Wi(k) is the ith
stage backward coefficient which predicts the mth
backward prediction error using the nth forward
prediction error of the (i-I)th stage. It has been
shown (12) that the backward prediction errors are

mutually orthogonal, i.e.,

{0 for i+
| Zifor i =5

1 <45 < L-1

EL B, B () an

where 0 denotes an (N-2) X (N-2) null matrix.
From (17), it is shown that each stage error is
uncorrelated with other stage errors. The LMS algo-
rithm updating the coefficient vectors/matrices is as
follows.

G k+D)=G,(R)+ A (k) e;(k) Bi(k). a8
0< i< L-1

W/ G n=w" "G+ A (G (19)
Bo (k1) F, ()

W' kD)= W 0+ AR Fi (B g
B (B, 1<i<L-1

where 4¢ 4] A4} are (N-2)x(N-2) diagonal
matrices at the ith stage in which the jth diagonal

element is given by
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wit ()= v,-_,+‘(/e~1)1 y (f—ﬁ) 570 & Ri= W 0
w/ ()= -y (22 R'= R "- w P’ 3D

Bu/(k=1) + (1=8) by (k=1) o
B = ey @  Ri=W.2=i<L-land -

Br; *(k=1) + (1-8) fi) f (B 1<j<i-1
and vi%(k), v;i(k). and v;’(k) are the estimates for Al = G, 33

the variances of by;(k). by jtk-1). and fiy;(k), respec-
tively. Since the successive orthogonalization makes A, T - A . T G-, T R, . -1 (34)
each stage independent of others, the convergence
rate does not depend on the eigenvalue spread of the and
L(N-2) x L(N-2) autocorrelation matrix, which is ;
given by A, =Gy, 2< ! <L and

. (35)

o= EL vk V(K] 24)
where

VIR=[URUE-1)Uk-L+1) 1 7 ©5)

UCk—D=lu (k=D u;(k—5)--
uN—z(k“f) ]T
but only on the eigenvalue spread of the (N-2)x

(N-2) autocorrelation matrix of Fi(k) or B;(k). 0<i
<L-1, i.e.. Z; in (17). This property provides a

(26)

faster convergence rate which can not be achieved
with the corresponding multichannel TDL structure,
since the latter’s convergence rate depends on the
eigenvalue spread of LV in (24).

It can be shown that the multichannel TDL struc-
ture coefficients are equivalent to the coefficients of
the multichannel lattice structure via the following
recurrence relationships in which the time index k

" is omitted for covenience.

P'= w @n
ij - P,' -1 W;/ R "_ii'fl 28)
rPl= w (29)

l€sm< [—1

where Pj and R; represent the th forward and
reverse prediction coefficient matrices: i past and
future input vector signals are used to predict the
current input vector: and A, is the corresponding
TDL coefficient vector following the signal vector
U(k-m+1). The above recurrence equations was used
to find the beam patterns of the lattice realization
of the composite array processor. It can be shown
that the total number of coefficients for the (L-1)-
stage multichannel lattice filter is (N-2)L+2(N-
2P(L-1) while that for the corresponding TDL filter
is (N-2)L. The final output signal for the lattice
realization, “é,,(k) is equivalent to ¥(k) in Fig. 1.
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Fig. 1. Unconstrained composite array processor.
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V. Simulation Results

To observe the performances of the TDL and lattice
realizations of the composite array processor, a
desired and a interference signals, which are uncorre-
lated each other. are generated by processing two
independent Gaussian random sequences through a
8th order Butterworth bandpass filter with a sam-
pling frequency of 400Hz. The lower and upper cut-
off frequencies for the desired signal are 40Hz and
60Hz and those for the interference are 48Hz and
52Hz. respectively. The power spectra for the desied
and interference signals are shown in Fig. 4. A 4-ele-
ment linear array with 5 taps per element was simu-
lated. Thus the corresponding multichannel lattice
filter has 4 stages. The element spacing is assumed to
be half the wave length corresponding to 50Hz. The
desired signal is incident at the direction perpendicu-
lar to the array axis and an interference signal
arrives at 41.4° from the array axis. d=0.25 1<i<4
are used for the weights of the delay-and-sum array.
A 3x4 Walsh-ordered Walsh-Hadamard matrix is
used for the matrix processor which is given by

11 -1 -1
l 1 -1-11 (36)
1 -1 1 =1
€ 4.q (K) e, (k)

Fi-y (k) Fik)

Fig. 2. The ith stage of an adaptive muitichannel lat-
tice filter.
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Since no interference signal is coming from the
look direction, an all-pass filter was employed for
the spectral constraint filter (i.e., the coefficients
are (100 00)) and 0.99 was used for the smooth-
ing parameter. The beam patterns and frequency
responses for the lattice realization of the composite
array processor were plotted by using the equivalent
TDL filter coefficients calculated by the relation-
ships in (27)-(35). The error signals which are the
difference between the desired signal and the array
output are shown in Fig. 5 for the TDL and lattice
realization for 3100<k<3600. Beam patterns at
50Hz and frequency responses at 41.4° for k=3151
are displayed in Figs. 6 and 7. It is observed that
the lattice realization converges faster and yields
deeper nulls around the interference direction and
frequency than the TDL counterpart. To see the
signal cancellation phenomenon, the power spectra
of the desired signal and array output for the TDL
and lattice realizations are displayed in Fig. 8. It is
shown that signal cancellation is rarely observed in
the power spectra for both realizations. For compar-
ision, the correponding plots for the generalized
sidelobe canceller are displayed. The error signals
for the TDL and lattice realizations of the general-
ized sidelobe canceller are displayed in Fig. 9. The
beam patterns at 50Hz and frequency responses at

0
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Fig. 3. Lattice realization of composite array processor.
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41.4° for k=3151 are displayed in Figs. 10 and 11.
The power spectra are shown in Fig. 12. Comparing " i . _ _
the results of the composite array processor with £ _mf*‘\\,/ ‘\ ]
those of the generalized sidelobe canceller, the for- :g b ' , ] fe)
mer shows a faster convergence and more powerful 1% : . . . : : . . ]
nulling of the interference signal in the space and o onglce (éeg‘r?es) e
frequency domains. Also, it is observed that signal e
cancellation phenomenon is significantly reduced in ;% -‘o’:" —‘W/ "
the composite array processor compared with that of ] -Bot
the generalized sidelobe canceller. B e I T e yrenar e
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Fig. 4. Power spectra (a) desired and (b) interference sig-
nals,
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V. Conclusions

To realize a fast convergence adaptive array
processor with reduced signal cancellation, it was
proposed to use a multichannel lattice filterstructure
in the unconstrained realization of compsoite array
processor. The partial orthogonalization o” the input
signals by the lattice filter structure provides a fast
convergence rate than the TDL structure. It was
observed that the proposed realization performs bet-

ter than the TDL counterpart in terms of conver-
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Fig.12. Power spectra: (a) desired signal: (b) TDL, and
(c) lattice realizations for generalized sidelobe can-
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genced rate and elimination of the interference sig-
nal in space and frequency domains. Also, almost
no signal cancellation phenomenon was observed in
the proposed array processor. The performance of
the composite array processor were compared with
that of generalized sidelobe canceller. It is recom-
mended that the TDL as well as lattice realizations
of the composite array processor be used in practical
array systems in estimating/detecting a desired sig-

nal.
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