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Codes from Some Subfields of the Hermitian Function Field:Abundant Case
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ABSTRACT

Geometric Goppa codes (or algebraic geometric codes) are classified into two types according to the injectivity of the evalua-
tion map: non-abundant or abundant codes. Some subfields of the Hermitian function field are considered in this paper, which are
defined by y+y=x over GF(¢") where s divides g+1. These subfields are also maximal like the Hermitian function field since they
have the maximum number of places of degree one permissible by the Hasse-Weil bound. Abundant codes arising from these

subfields are studied and their dimension and minimum distance are exactly and completely presented in this paper.
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[ . Introduction

Originally, Goppa constructed algebraic geometric
codes using differentials of a function field and the
residue map, which are now well-known to be the
duals of algebraic geometric codes using funtions of
a function field and the evaluation map. The pre-
sentation here will adopt the function/evauation
viewpoint. See (4], (6], {10] for more details.

Let F/K be an algebraic function field of genus
g over a finite constant field K (see (1), (6], (10}
for example). Let {P,li=1,2,--- n) be a set of places
of degree one in F/K. Let G and D be divisors of
F/K such that D=P,+P,+-+P, and supp(G)N
supp(D)=¢, where supp(G) and supp(D) denote the
supports of G and D, respectively. Define the vec-
tor space L(G) as follows:

L(G):={fEF| f=0 or (N=2-G} 1)

where (f) is the principal divisor of f. For a divisor
A of F/K, denote by dim A and deg A the dimen-
sion of L(A) over K and the degree of A, respec-

tively. Now consider the K-linear evaluation map ¢

given by
$: L& - K @
f - (f(P1). f(Pz). .f(Pn))

Then the geometric Goppa code (or algebraic geo-
metric code) associated with two divisors D and G
is defined by

C(D, G = Image of ¢ = ¢(L(D) (3)

The basic parameters of C.(D @) are well-known
in the following proposition (4], (10).

Proposition 1 (Goppa) C.(D.@) is an {(n,k.d) code
with parameters

k=dim G-dim(G-D) and d > n-deg G.
Furthermore, if 2g-2(deg G{n, then k=deg G-g+1

Geometric Goppa codes may be classified into
two types according to the injectivity of ¢ in (2): If
¢ is not one-to-one, then dim(G-D)) 0 and the code
is called abundant: otherwise, dim(G-D)=0 and
the code is said to be non-abundant. The number
a'=dim(G-D) is called the abundance of the code.
Abundant codes have been studied by Pellikaan
(7], but note that he has defined deg(G-D) to be
the abundance of the code.

A particularly interesting class of geometric
Goppa codes are codes arising from the Hermitian
function field. The large length of these codes in
comparison with their alphabet size makes them
attractive over conventional Reed-Solomon codes
having the same alphabet. These codes are called
Hermitian codes and their true minimum distances
have been determined by Stichtenoth (8], Yang
and Kumar (11].

Another interesting class of of geometric Goppa
codes are codes arising from some subfields of the
Hermitian function field. Like the Hermitian func-
tion field, these subfields defined by y*-+y=x" over
GF(¢") where s divides g+1 are also maximal.
having the maximum number of places of degree
one permissible by the Hasse-Weil bound. The
dimension and minmum distance of these codes in
the non-abundant case are known in (13).

In this paper we are interested in the abundant
codes arising from some subfields of the Hermitian
function field. We provide complete results on the

dimension and minimum distance of these codes.

[ . Some Subfields of Hermitian Function
Fields

Let K be a finite field K=GF(¢")(q=a power of
some prime p) and F=K(x,y) be the function field
defined by

F=Kl(x,y) with y+y=x" where slq+1 4)
(see (2}, (3), (8), (10)). If s=q+1, then F/K is
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called the Hermitian function field over K. If g+
1. then F/K is isomorphic to a subfield of the
Hermitian function field and we shall therefore
refer to it as a subfield of the Hermitian function
field. The genus g of the function field F/K is
given by g=(g-1){s-1)/2 and the divisor of the dif-

ferential dx can be shown to be
(dx) = (26-2) @ (5)

where Q. is the common pole of x and y.

The places of degree one of F/K are given as fol-
lows: The place Q- is one of them. Let e=K. Note
that T°+7T=¢ has a root in K if and only if ¢&
GF(q). For any a with #€GF(q), there are exactly
g distinct solutions in K of T* + T=¢. Let U be
the subgroup of order (g-1)s of the multiplicative
group K and let U:=Uu{0}. Then for e€K, <
GF(¢q) if and only if e« U. Hence the number N of

places of degree one in F/K is
N=gq-|U+1=q(l+{ghs)+1 (6)

Since N=1+¢'+2gq =1+¢'+qlg-1)(s-1), F/K
achieves the Hasse-Weil bound and is therefore a
maximal function field.

We define P.; to be the common zero of x« and
y-# whenever e€ U and f€K are such that f3+p=¢"
Then the divisors of x« and y-8 are as follows:

Z Pu,ﬂ _quv
B €K, .
(x —a) = {pt4p=at €0 M

R.-9Qw, if « €K\U,

where R, is a divisor of degree g in F/K depending
on @ whose support does not contain any place of

degree one and

SPO.ﬁ - SQO); if ﬁq+B:01
(y -8) = 2 P50, if pP+B=0,(8)
a EK,
a*=p7+p
1064

For each integer m >0, the set B(m) given by
B(m) ={xy|0<i, 0<<q-1, igtjs<m} (9

is a basis of L{m@.) over K.
Let st :=q+1. From here on, we will assume
that

G:= QO a.nd

G:= 3 2 P, (O
aElU BEK
B¥+p=a’
Consider the geometric Goppa code C. (D, G) associ-
ated with two divisors D and G. Then C/(D,G) is a
linear code of length n:=q(1+(g-1)s)). To simplify

notation, let
Cp = C, (D. mQs) (11)

Let d(C,) denote the minimum distance of the
code C,. Note that C, is a linear code of length
n=q(1+(q-1)s)) and that if m<m,, then CyyECpn
and therefore d{(Cpy) 2d(Cp,).

Consider the function u defined by u'=1II(x-).

Then we have

(W=DnQ
and
u = x n(x-a) - x(x(Q*l)l_l)
« EYU°
x1+(q~l): - x

Let @ :=dx/u. Then we get
(@) = (dx)-(u) = (n+2g-2) Gu-D (12)

This implies that vp{w)=-1 for any place P&
supp(D) where vp( - ) denotes the discrete valuation
of F/K at P. For any linear code C of length n
over K and any n-tuple a:=(g,. *.a,) where 0#a
€K for all i, let

a-C={(aq, .ac)llc, . € C (13)

Then we have the following proposition by apply-

ing Theorem 2.5 in (9] to our code Ci,.
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Proposition 2 ((9), Theorem 2.5) For any integer
m, the codes C, and a‘ Cpropam are dual to each
other, where a = (resp®, -, resp®) and resp is

the residue of @ at P.

Remark 3 (a) The differential 7 :=du/u has
v =-1 and resg?=1 for any PSsupp(D). If s=1
mod p. then we have du = -dx and ()=(nt+2g-
2)Q.~D. Hence, C, and C,ypp2n are dual to each
other in this case.

(b) The condition s=1 mod p holds for p=2 since
s and g are relatively prime. It also holds for the
Hermitian function field since s=q+1.

An integer i>0 is called a gap number of Q. if
there is no function f&€F such that f& L(1Q.)\L((}-
1) Q. ). Otherwise, ] is called a pole number of Q.
Let S be the set of all gap numbers of @.. From
the above basis of L{mQ.) given in (9), it is easy
to check that

S =84S (14)
where

S ={ag+cs+bl0<a<s2, 0<c<t-2, a+1<bss 1}
and

S={aqt(t-1)s+bl0<a<s3, at+1<b<s-2}.

This gap sequence plays a central role in determin-
ing the dimension and minimum distance of the
code C,, as in the Hermitian case (8], (11].

Remark 4 (a) If t=1@.e., s=q+1) then F/K is the
Hermitian function field and S={aq+bl0<a<q-2,
a+1<b<ql}. In particular, the length n of the
code C, is n=¢ in this case.

(b) If t=q+1(i.e., s=1) then F/K is a rational
function field since F=K(x, y)=K(y). In this case,

Q. does not have a gap number and n=¢’.

The dimension of the code C, is easily deter-

mined from the above gap sequence given in (14).
Let

Ilm):={l1<mll=ig+js, i=20. 0< K q1. (15)

Any integer m can be uniquely expressed as fol-
lows:
m=aq+cs+b with a>0, 0<c¢<¢t-2, and 0<b<s-1
(16)
or

m=aq+(t-1)s+b with} 220, and 0<b<s2 (1T)

Using this expression and the basis of L(m@.) in
(9), it is easy to calculate |I(m)|, that is,

Aaz_"'l)__f + c(a+1) + min {a,b}
H(m)| =

+1, for 0<m<2g-2 (18)

m+l-g, for m>2g-2.

Proposition 5 Assume that 0<m<n+2g-2=gs-s-1.
Then the dimension of C,, is given by

I(m)| for 0sm<2g-2,

dimCp =
n-|I(m")} for n<m<n+2¢-2
where m™:=n+2g-2-m=¢-s-1-m. For 2g-2{m{n,

we have

[

dimCa m+l-g

m+ 1 - { ‘1%(3—1)_

Proof: For 0<m{n, we have dimC,=dimL(mQ..)=
{lm)|. For n<m<n+2g-2, we have by Proposition
2

dimCy, = n- dimC,
= n~ dimg- Chavzg-2-m
= n- dimcm-Zg—Z'm =n - |I(ml)|
where m =n+2g-2-m<2g-2(n. o

In order to determine the minimum distance of
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the code C,. we focus on the case that 1{s(g+1
(equivalently, 1{#{g+1 because st=g+1). By the

Goppa bound, we have
d(Cn)>n-m

For any nonnegative integer m, let m be the
largest pole number of Q. with m<m. Then it is
clear that L{mQ.)=L(m@.). so we may assume in
what follows that m is a pole number of Q..

In the nonabundant case (0<m{n), we can
divide our problem into two cases:

* n-m is a pole number of Q..

* n-m is not a pole number of Q..
From the gap sequence given in (14). it is easily
checked that if n-m is not a pole number of Q.

we have either
m=n-aqg-cstb with 0<a<s2, 1sc<t], 1<b<sl-a

or

m=n-aq-ts+b with 0<a<s-3, and 2<b<s-l-a.

Based on this expression on m, the minimum
distance of C, in the non-abundant case is deter-

mined in the following proposition (13).

Proposition 6 (Non-abundant Case) Assume that 0
<m¢n and m is a pole number of Q..
(a) If n-m is a pole number of Q.. then
d(C,)=n-m.
(b) If m=n-aqg-cs+b with 0<a<s2 1<c<t-1.
and 1<b<s1-a, then
d(C,)=n-m+b =aq+cs
(¢) If m=n-aq-ts+b with 0<a<s-3 and 2<b<s-
1-a, then
d(Cp)=n-m+b-1=aq+ts-1=(a+1)gq.

I. The Minimum Distance of Abundant
Codes:m=n

In this range. L (mQ. - D) is not always {0}

since m-n=0. Also, Goppa’s lower bound d(C,)=n-

1066

degG=n-m is not useful any more. To simplify
notation, let

m =n+2g-2-m=q"-s-1-m.

By Proposition 2, the dual C,;* of C,, is

X

Cn=a Gy
. resp®) and e=dx/u in (12). If

H is a generator matrix for C, . then a parity

where a=(respw, -

check matrix H' for C,, may be written as follows:

a; 0 0

0 an 0
H’' = H

0 0 an

Thus C, and the dual code of C,have the same
dimension, the same minimum distance and the
same weight distribution (5]. Therefore, we can
determine the minimum distance of C, by investi-
gating the generator matrix H of C.

If myn+2g-2, then m<0. so L(m @.)={0} and
C,=10}. As a result, G, =K and d(C,}=1. We
can therefore restrict our attention to nSm<n+
2¢-2. Then we have 0<m’ <2g-2=(s-2)q+(g1-s).

Hence m’ can be uniquely expressed as
m =aq+b with 0<a<s2 and0<b<g-l a9

The set Bun") in (9) can be chosen as basis of L(m"
Q.). As a first step, we would like to construct a
generator matrix H for C,- and show that any a+1
columns of H are linearly independent over K.
Consider a submatrix A of H obtained by choosing
a+1 distinct columns from H arbitrarily. Since each
column of H corresponds to a place P.s of degree
one, we can rearrange the columns of A in the fol-

lowing order based on # without loss of generality:

Puu.Dx PaLz.Bn PUL»..Bx

www.dbpia.co.kr
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Pﬂu.ﬂz Pau.h Pﬂz.n,.h
(20)

Pa..x.l' Pa,.z.ﬂ. P«.,.,u.

where ;s are pairwise distinct and b+by+-+b=
a+1 with b=h>---=h>1. Clearly, we have b<
a+2-j Consider the element x"y" with 0<i<brl
and 1< v Note that

—vo.(x"y ™Yy = g+ (G-1)s
< (by-1)g+ (j-1)s
< (a+1l-j)g + (j-1)s

= (j-Dls-q) + aq.
Since ts=g+1 and £)1. we get (g and -vg.(x’y")

<aq<m . Hence we have the following lemma.

Lemma 7 Assume that m =aq+b with 0<a<s2
and 0<b<q-l. Let b;. -, b, be positive integers
such that by+b,+--+b,=a+1 and by=2b=>---=h,21.
Then

'yl e Lim* Qo)

for any integer i; and jwith 0<i<b;l and IS E v.

Now rewrite these elements in the following

order:
1, X, xb‘-l
Y, xy, xly
(21)
)’v—l, X}’v_l, Jcb'"lyv'1

Then we can choose an (a+1)X(a+1) submatrix B
of A as follows: (i) Bach row corresponds to a
function in the order as given in (21). (ii) Each
column corresponds to a place of degree one in the
order as given in (20). (iii) Each entry of B is
obtained by evaluation. That is,

B=(B;}). ij=1.2, . v (22)

where B;; is a (b;Xb) matrix whose (k,D-th entry
is B, e,

B;; =A'D; 23
with
r 1 1 1
@41 Az v ags,
D= a1’ age? - a T (24)
NS a2 b1 ais, Bi-l |

Using the Gaussian elimination method and induc-

tion, we get
det(B) = 1T det()un)
i:l (25)
= T A" det(Dy))
where

i-1
Mii=1 and A;:= ﬂl(Bz—Bu),
we

i=223-,v.

Lemma 8 Assume that nSm<n+2g-2 and write
m =aq+b where 0<a<s-2 and 0<b<g-1. Then any
a+1 columns of the generator matrix H for C,-
described as above are linearly independent over K.

Proof: Construct a generator matrix H for C,+ as
described before and consider any a+1 distinct
columns of H. Rearrange these columns according
to B of P.; and construct matrices A and B, etc.,
as described above. It suffices to show that the
columns of A are linearly independent over K.
Since A's are pairwise distinet for i with 1<i<s,
we have A=0 for any i with 1<i<v. Since &;,’s are
pairwise distinct for # with 1<#<b; and a given i,
we get det(D, )#0(Note that D,; is a Vandermonde
matrix of order b;.) Thus det(B)*0 by Equation
(25). This means that a+1=rank (B)<rank(A)<
a+1=the number of columns in A, and therefore
we have rank (A)=a+1. Hence the columns of A

are linearly independent over K. o
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Note that if n<m<n+2g-2 then any m can be
uniquely expressed as

m=n-s+aq+b with 0<a<s-2 and 0<b<qg-1.
Using this expression, the minimum distance of Cp
in the abundant case is determined in the follow-

ing theorem.

Theorem 9 Assume that n<m<n+2g-2 and write
m=n-staq+b where 0<a<s2 and 0<b<g-1. Then
we have d(C,)=s-a.

Proof: Let V:=lac€Ule+1} and let 7= (xa).
Choose s and #s such that «’=fj+8~=1 for any i
and jwith 1<i<s and 1<j<q. Let z2i=i117(y—ﬂ,~) and
let 23121:5()(-03). Then h:=zz,L((n-s)Q.) has n=s
distinct zeros in supp(D) and f:=z2,2;&L{(n-s+aq)
@.) has n-sta distinct zeros in supp(D). Thus
d(C,) <n~(n-s+a)=s-a.

Let m :=n+2g-2-m=(s-2-a)q+(g-1-b) and let H
be the generator matrix for C, described before.
Since any s-a-1 columns of H are linearly indepen-
dent over K by Lemma 8, the minimum distance
of the dual code of C,- is at least s-a. Note that
C,, and the dual code of C,+ have the same weight
distribution. Thus we have d(C,) >s-a. o

V. Conclusion

An interesting family of geometric Goppa codes
are studied here, which arise from some subfields
of the Hermitian function field over GF(¢) defined
by y* +y=x" where s divides q+1. These codes have
the large length n=q(1+(g-1)s) compared with
their fixed alphabet size ¢*. so they may be more
attractive than the conventional Reed-Solomon
codes. Their dimension and and minimum distance
are explicitly are given in the abundant case:m)n
where m is the parameter that governs both

dimension and minimum distance of the code.
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