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compression techniques is segmentation-based
image compression (3,10-12). In segmenta-
tion-based image compression, the image to
be compressed is segmented, i.e. the pixels in
the image are separated into mutually exclu-
sive spatial regions based on some criteria.
Properties of the HVS can also be incorporat-
ed into the criteria to obtain a reconstructed
image with a small visual loss. Once the
image has been segmented, information is
extracted describing the boundaries (shapes)
and textures (interiors) of the image seg-
ments, and compression is achieved by effi-
ciently encoding this information.
Unfortunately, there are limitations with
existing segmentation-based image compres-
sion techniques. The main limitation is due to
the fact that the image data have been seg-
mented into regions of constant intensity
(3,11-12). In highly textured areas, a good
representation of the texture requires many
small segments. However. in order to get low
bit rates, the number of segments must be
limited and thus the quality is degraded.

We overcome the texture representation
problem in this paper by proposing a method-
ology for segmenting an image into texturally
homogeneous regions with respect to the
degree of roughness as perceived by the HVS.
The fractal dimension, the expected value,
and the just noticeable difference (JND) are
the measures used to characterize the texture
information. The measured quantities are
incorporated into a centroid-linkage region
growing algorithm (7) which is used to seg-
ment each image into three texture classes:
perceived constant intensity. smooth texture,
and rough texture. The region growing algo-
rithm is directed by the texture feature dis-
tance between image blocks. After segmenta-

tion. the image can be viewed as being com-

posed of region boundaries and texturally
homogeneous regions. As image coding system
with high compression and good image quality
is achieved by developing an efficient coding
technique for the region boundaries and the
three textural classes. The proposed algorithm
is applied to two different types of imagery.
The first is a head and shoulder image with
little texture variation. This image is typical
of video teleconferencing applications and one
which the previously proposed segmentation-
based compression techniques are best suited.
The second is a natural outdoor image with
highly textured areas. The existing segmenta-
tion-based compression techniques (3,10,12)
do not work well for the second image.
However, the proposed texture-based image
compression technique works well not only for
the first but also the second type of image.

In section 2, we describe the texture seg-
mentation-based image compression system
and its major components. In section 3, the
coder performanc is evaluated using computer
simulated data of actual images. Finally,

conclusions are provided in section 4.

2. A Texture Segmentation-Based
Image Coder

The goal of the image segmentation process
is to decompose an image into texturally
homogeneous regions with respect to the
degree of roughness as perceived by the HVS.
Textural regions are classified into three
classes: perceived constant intensity, smooth
texture, and rough texture. The segmentation
algorithm we employ is based on a centroid
linkage region growing method. It was chosen
because it produces disjoint segments with
closed boundaries and can be implemented

with a sequential algorithm. The texture fea-
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tures used are the mean, the JND, and the
fractal dimension of an image block. The
class type is determined by thresholding the
fractal dimension. If a block has a fractal
dimension less than D, it is assigned to class
I (perceived constant intensity). If a block
has fractal dimension greater than or equal
to D; and less than D,. it is assigned to class
I (smooth texture). If a block has fractal
dimension greater than or equal to D, it is
assigned to class I (rough texture). The pro-
posed texture segmentation-based image cod-
ing system is given in figure 1. The block
diagram of the transmitter for our texture-

based segmentation image coder is shown in

figure 1(a). It includes three main stages:
the preprocessor. the segmenter. and the
mixed encoder. The block diagram of the
receiver is shown in figure 1(b). It includes
two main stages: the mixed decoder and the
postprocessing.

To better appreciate the proposed image
compression technique, the relevant properties
of the HVS are first covered in subsection
2.1. In subsection 2.2, fractal models in tex-
ture analysis are described. including the use
of the fractal dimension. In subsection 2.3
and 2.4, an efficient method to estimate
visual threshold for regions belonging to class

I and a texture-based segmentation image

Input Image
+ Mhied Decoder
PN * From Channel
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(a) The block diagram of the transmitter.

(b) The block diagram of the receiver.

Figure 1. The proposed texture segmentation-based image coding system.
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codec are described respectively. A complete
description of the proposed texture-based seg-
mentation algorithm is then given in subsec-
tion 2.5.

2.1. The Human Visual System (HVS)

One property of the HVS we use is contrast
sensitivity. Contrast sensitivity is a measure
of the HVS’s ability to distinguish two adja-
cent intensity patches. To obtain the contrast
sensitivity, a subject is shown a test pattern,
for example, two adjacent squares. The lumi-
nance of one square is varied until it is just
noticeably different in luminance than the
adjacent square. The JND between the two
luminance values is used to calculate the con-
trast, see (5) for details. It has been shown
that the HVS has greatly reduced contrast
sensitivity in very bright or very dark inten-
sity regions of an image. Here the contrast
sensitivity is used in defining the threshold
for the split-merge condition for regions
belonging to the perceived constant intensity
in the proposed texture segmentation-based
compression technique.

A second property of the HVS is the modu-
lation transfer function (MTF), a measure of

the spatial sensitivity of the HVS. The
MTF is obtained by showing an observer two
sine wave grating transparencies, a reference
grating of constant and spatial frequency,
and a variable-contrast test grating whose
spatial frequency is set at some value differ-
ent from that of the reference. The contrast
of the test grating is varied until the bright-
ness of the bright and dark regions of the
two transparencies appear identical. The
shape of the MTF curve is similar to a band-
pass filter and suggests that the HVS is more
sensitive to middle spatial frequencies and
less sensitive to low and high spatial frequen-

cies. This property is used in conjunction with
fractal dimension to determine to which class

each texture region is assigned.

2.2. Texture Analysis

Among the various characteristic of an
image, texture has been recognized as one of

the most important. It is important because
it provides the essential structure information
in an image and allows us to group pixels
into relatively large, homogeneous regions.
For example, grass, sky. and tree each define
relatively large homogeneous regions with
their own textural structure. When a rela-
tively large region can be represented by a
single texture, a significant amount of redun-
dancy can be removed. A good representation
of the texture information in an image is
necessary for developing a system with high
compression and good quality.

Fractal Geometry in Image Analysis

If we regard the pixel intensity in an image
as the height above a plane. then the intensi-
ty surface of a texture image can be viewed
as a rugged surface. The fractal model pro-
vides an excellent description of the rugged-
ness of the natural surface. The fractal
model has been used in the computer graphic
simulation of natural phenomena like moun-
tains, trees, human faces, and animals (1].
The fractal model has been applied to texture
image analysis (2.4,6,8.10,19]). One important
characteristic of fractal is the fractal dimen-
sion D, which is related to the metric proper-
ties. length and surface of a curve. D pro-
vides a good measure of perceptual roughness
of the curve or surface, with increasing val-
ues in D representing perceptually rougher
curves and surfaces (19). The most useful
fractal model has been the fractional
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Brownian function (FBF) introduced by
Mandelbrot and Van Ness {13-14,17]) since it
produces surfaces that closely resemble natur-
al surfaces. The FBF model regards naturally
occurring rough surfaces as the end result of
random walks. Such random walks are basic
physical processes in our universe. An inten-
sity surface of a texture image can also be
viewed as the end result of a random walk,
so the FBF can be used for the analysis of

image texture.

Fractal Dimension

The definition of the fractal dimension is a
set for which the Hausdorff-Besicovich
dimension is strictly greater than the topolog-
ical dimension. We consider object X in an E-
dimensional space. N(¢) is the number of E-
dimensional sphere of diameter € needed to
cover X, where E is an integer and the E-
dimensional space is the minimum integer
dimensional space among all possible integer
dimensional spaces which can envelop X.
Thus, if N(e) is given by

Me) = K-(%)D, as € — 0, 1)

where K is a constant and X has Hausdorff
dimension D. If D is fractional, D is also
called the fractal dimension. For fractal
objects, D is independent of e,

If the fractal dimension is to be used to
characterize the texture in an image. we need
a method for estimating the fractal dimension
from the given dataset. Many different esti-
mators have been proposed: box counting (1],
yardstick (6], blanket (18}, and power spec-
trum (19). In our case, a blanket method is
adopted since it is computationally efficient.
The blanket method is described in detail in
paper (18]1. A brief explanation of the proce-
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dure for estimating the fractal dimension is
given here. All points in the three-dimension-
al space at distance € from the surface are
considered, covering the surface with a blan-
ket of thickness 2¢. The covering blanket is
defined by its upper surface u, and its lower
surface b,. Initially, given the gray level
function g(i.j}. ue(i,)=by (4, ))=g(i,j}). For e=1,
2, 3,.... the blanket surfaces are defined as

i, =max{uc (L N+1, max|mm-ap) <1 Uer{m,n))

(@)
and

b,(i.f)=min{b.41(i,j)+l, min | ¢m.m)-Gi. ) | 1 b _1(m.n)}

(3)

The image points (m,n) with distance less
than one from (i, j) were taken to be the four
immediate neighbors of (i, j). Similar expres-
seions exist when the eight-neighborhood is
desired. A point (x,y,f) will be included in
the blanket for € when b.{(x, y){f<u.x, y).
The blanket definition uses the fact that the
blanket of the surface for radius & includes
all the points of the blanket for radius -1,
together with all the points within radius 1
from the surfaces of the blanket. Expression
(2), for example, ensures that the new upper
surface u, is higher by at least 1 from u..,
and also at distance at least 1 from u., in
the horizontal and vertical directions.

The volume of the blanket is computed
from u, and b, by

ve= .Z, (2 (1, )—b(1,1) (4)

As the surface area measured with radius ¢
we take the volume of the added layer from
radius €-1, divided by 2 to account for both
upper and lower layers:
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(vs"_vs-l) —

Ale) = 5

e’ Me)=K-£*" (5)
where K is a constant.

From a theoretical viewpoint, if a surface
is a perfect fractal surface, then the fractal
dimension will remain constant over all
ranges of scale €. In practice, there are scale
range limitations of fractal dimensions due to
limitations in textural images. For example,
the resolution limit of the image system sets
a lower limit on the fractal scaling behavior.
An upper limit may be set by the structure
being examined. Thus, a real surface will be
fractal over some range of scales rather than
over all scales. These limiting scales can be
expressed as upper (€,,,) and lower cutoff (&,; )
scales.

To compute the fractal dimension, we apply
the log function to both sides of Eq. (2). A
least square linear regression is applied to fit
a straight line to the plot of logA(e) vs. log(e
) for €, and €,,,. The fractal dimension D is
equal to 2 minus the slope of the straight
line. To illustrate the point, we show the
results of applying this algorithm to a natur-
al image with 32x32 pixels and 256 gray lev-
els in figure 2(a). Figure 2(b) is a plot of
measured surface area, A(g) versus € in log-
7. The fit is
good for €=1 -, 5, which implies that the

log scale respectively for &=1, ,

natural image is a fractal surface for &1,
5. Therefore, €., and €., are 1 and 5 respec-
tively. The value of the estimated slope is -
0.62729. Therefore, the estimated fractal
dimension is 2.62729.

It proved that the higher the value of D.
the higher the spatial frequency content, the
rougher the waveform from the papers
dicussed in (4, 17). In the following subsec-

tion we incorporate this relationship into the

proposed codec.

2.3. Visual Threshold for Regions Belonging

to Class |

To determine the split-merge condition
between the regions belonging to class 1. we
use a visual threshold based on the HVS
properties in the segmentation algorithm. The
HVS-based threshold is adapted to local
intensity characteristics in the image by
using the JND as the visual threshold.

A split-field method is used to measure the
JND on SUN SPARC workstation with 1024 x
768 19” color monitor. The image display
device is divided down the middle into two
equal-size fields. The left field is a constant
reference intensity and increases linearly up
to 40 steps above the constant reference
intensity. To perform the tests, the viewer
simply clicks the mouse at the point where
the difference between the left and right
fields is no longer discernible. This point is
the JND between the reference intensity on
the left and the test intensity on the right.

Five test subjects were asked to take a
measurement of JND, Each test subject sat at
a distance of six times the image height away
from the screen. The test subject was given
approximately three minutes before the start
of the experiments, to allow for adaptation to
the laboratory’s illumination. The test subject
was asked to take five seconds in each click
to allow for adaptation to the screen. The
average of the results of five test subjects is
shown in figure 3. It is seen that the experi-
mental results agrees with the HVS contrast
sensitivity properties (5} described in subsec-
tion 2.1. The JND is largest in the lowest
and highest intensity areas of the image. The
JND is smallest and nearly constant in the
middle intensity areas of the image. To
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Figure 2. (a) A natural image with 32 x 32 pixels and 256 gray levels. (b) The calculation
of the fractal dimension of a natural image given in Figure 2(a). The values of
the estimated slope and estimated fractal dimension are -0.62729 and 2.62729
respectively.
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determine threshold, the approximated JND
curve is derived in figure 3. The bold line
corresponds to the approximated JND curve.
Based on this result, a larger threshold is
chosen for the lowest (0 to 74) and highest
intensity areas (241 to 255), while a smaller
threshold (about 5) is used in the middle
intensity area (75 to 240).

2.4. A Texture-Based Segmentation
Image Codec

In a segmentation-based compression algo-
rithm, the number of segments and number
of bits representing the textures of the seg-
ments are directly proportional to the bit rate
of the coded image. Thus, the main purpose
of the preprocessor which is the first stage of
the proposed transmitter in figure 1(a) is to

alter the image in such a way that fewer seg-

50 1
45
40
35
30
JND 25
20
15
10 1

ments and textures are produced by the seg-
menter, but without degrading the visual
quality of the segmented image. It should be
noted, however, that it is possible that no
preprocessing will be required in this paper.
After preprocessing, the image data is seg-
mented into texturally homogeneous regions
with respect to the degree of roughness as
perceived by the HVS. The segmentation is
accomplished by thresholding the fractal
dimension so that membership is in one of
three textural classes: perceived constant
intensity, smooth texture, and rough texture.
The last stage in the transmitter is the
mixed encoding to the segments of each class
and their boundaries. The objective of the
coding is to obtain an efficient representation
of the segmented image data for transmission

or storage. The image coder should use more

1 51 101

} 4 "
T

161 201 251

intensity value

Figure 3. The mean of five subjects’s JND measurements on SUN SPARC workstation with 1024 x
768 19" color monitor. The bold line corresponds to the approximated JND curve.
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bits to encode the information for which the
HVS is more sensitive and use fewer bits te
encode the information which the HVS is less
sensitive. To accomplish this we propose a
mixed encoder. It consists of four alternative
stages: the boundary encoding and three tex-
tural class encodings, see figure 1(a).

For boundary coding. accurate representa-
tion of the boundary is necessary to describe
the location of the region boundary because
of the HVS sensitivity of the edges. As a
result., we choose an errorless coding scheme
to represent the boundaries. A binary image
representing the boundaries is created. Then,
the binary data is encoded using an arith-
metic code (20].

In our approach, the boundary information
was represented using blocks, not pixels.
Therefore. the number of bits to represent
the boundaries is reduced by almost the block
size. The compression ratio of the boundaries
does not govern the overall compressicn ratio.

For regions which belong to class | (per-
ceived constant intensity), only the mean
intensity values need be transmitted to
describe the textures of the regions. In this
case. lossy compression has already taken
place since we are approximating each region
texture with a constant value. We do not
wish to introduce any further compression so
a lossless arithmetic code is again employed to
achieve further compression. Since an intensi-
ty mean requires 8 bits. the mean intensity
value is converted into a vector of an 8xXN
binary array, where N is the number of seg-
ments belonging to perceived constant
regions. The mean vector is then encoded
using an arithmetic code.

Regions belonging to class [ and class 1
are not directly encoded. To get higher com-

pression, their regions are modeled first using
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polynomial functions. The coefficients of the
polynomial functions are encoded because the
variance of the coefficients is less than that
of the original data. An arithmetic code is
used to encode the coefficients. A smaller
amount of error between the original image
data and the modeled image data is chosen
for class [ than class I because of the sensi-
tivity of the HVS. In general, modeling these
regions by functions of higher order polyno-
mials is computationally excessive. The first
order polynomial functions are used because
the sum squared error (SSE) for the first
order polynomial functions as given in Eq.
(7) is not much greater than that of the SSE
for a second-order polynomial function, while
the SSE for the first order polynomial func-
tion is much greater than the SSE for the

zero order polynomial function(3).
PONCCEFICN)E 6)

where g(i,j) and z(i j) are the intensity of
the original image and the modeled image at
index (i.j) respectively. The experimental
results of the mixed encoder will be given in
subsection 3.1.

At the receiver, see figure 1(b), two types
of coded information come into the mixed
decoder, boundary information and region
texture information. The boundary decoder
must regenerate the boundaries for the decod-
ed image. The region decoder must fill in the
missing texture information within each
region. Regions belonging to class | are per-
ceived constant regions, thus their mean val-
ues are painted within the appropriate
regions. The texture informations for classes
[ and M are reconstructed by reproducing

the appropriate polynomial functions.
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2.5. Texture-Based Segmentation Algorithm
Incorporating the HVS and the fractal
model, the proposed texture~based image seg-
mentation algorithm for image coder is
defined as follows.
Step 1) Divide the image into NRXNC blocks
(NR and NC are the numbers of row and col-
umn blocks, respectively).
Step 2) Calculate the feature set: the mean
and the class type for each block and the
JND lookup table.
Step 3) Calculate the distance between an
observing block and its 4-connected neighbor-
ing blocks. The distance is given by

F(OBXD,, C(OB)=C(NB)

| M(OB)-M(NB) | (JNB(OB, NB)
or

D(OB,NB)= { 0 if} p,<F(OB)(D, C(OB)=C(NB)
or

F(OB)2D,, C(OB)=C(NB)
1 otherwise

where F(OB) is the fractal dimension of an
observing block. C(OB) and C(NB) are the
class types of an observing block and its
neighboring block respectively. M{(OB)and
M(NB) are the means for an observing block
and its neighboring block respectively.
JND(OB NB) is the just noticeable difference
between an observing block and its neighbor-
ing block.

Step 4) If there is a neighboring block with
distance 0. then merge the observing block
into it: else declare a new region. If there
are more than two good neighboring blocks,
merge the observing block into a neighboring
block whose mean value is closest to the
mean value of the observing block.

Step 5) Repeat step 3 to step 4 until all

blocks are segmented and stop.

3. Coder Performance

In this section, the performance of the pro-
posed image coding technique is presented.
First, we investigate the number of segments
for each class and the boundary points using
D=2.033 and Dy=2.371.

3.1. The Experimental Results of the
Mixed Encoder

Segmented images were obtained with
D=2.033 and D,=2.371. Information about the
number of total segments and the boundary
points and the number of the bits to repre-
sent the boundaries is summarized in table 1
using an arithmetic code. Number of seg-
ments in Miss USA is almost equal to that of
segments in House and since Miss USA has a
very large background and House has large
sky in the top, trees and bushes in the mid-
dle, and wall in the bottom. The numbers of
boundary points of Miss USA and House are
1910 and 1945 respectively. After encoding.
numbers of bits required to represent the
boundary are 1344 and 1358 respectively
which are fairly small. Recall, the boundary
information is represented using blocks. not
pixels. Therefore, the number of bits to rep-
resent the boundaries is reduced by almost
the block size (8x8).

To encode the regions belonging to class |,
their mean values are converted into an 8xN
binary. Each mean value is represented by 8
bits and there are N segments belonging to
class |. The total number of the regions and
the number of constant regions and the num-
ber of bits to represent the constant regions
are given in table 2 using an arithmetic code.
After encoding, the number of bits required
to represent the regions to class 1 are 1022

and 1156 respectively.
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To encode the texture information of the
regions belonging to class 1 and class . the
first order 1-D polynomial functions were
used to represent textural regions. Error
amounts tolerated between the original image
data and the modeled image data were 40 for
class T and 80 for class . The polynomial
coefficients were encoded using an arithmetic
code. The result is given in table 3. The

numbers of regions in Miss USA and House

are 56 and 62 respectively. Based on these
results. House has a small number of regions
belonging to class I and class 1 although
House looks the most complicated. That is
why trees, lawns, and bushes in House are
segmented into few large regions instead of
many small regions. After encoding. the
numbers of bits required to represent those

regions are 6244 and 10315 respectively.

Table 1. Summary of the numbers of the total segments and the boundary points using D;=2.033 and

D,2.371
image number of total number of boundary number of bits for
segments points arithmetic code
Miss USA 231 1910 1344
House 245 1945 1358

Table 2. Summary of the numbers of the total segments and the regions belonging to class | using D;=2.033

and Dy=2.371.
image number of constant number of bits for
regions arithmetic code
Miss USA 175 1022
House 183 1156

Table 3. Summary of the numbers of the segments belonging to class [ and class I and the number of bits
to represent those regions using a 1-D polynomial. The polynomial coefficients were encoded using the
arithmetic code.

image number of segment regions number of bits for
for class [ and 1[I arithmetic code
Miss USA 56 6244
House 62 10315
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Figure 4. The two test images. Each image is 256X 256 pixels with 256 gray levels. Miss USA and
House are on the left and right respectively.

Figure 5. The decoded images of two test images with D,=2.033 and Dy=2.371. The decoded images of
Miss USA and House are on the left and right respectively. The compression ratios for the two
test images are 0.13 and 0.19 respectively.
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3.2. Bit Rate Computation

The number bits calculated for the bound-
ary, constant region, and smooth/rough tex-
ture as given in table 1.2. and 3 are added.
We see that Miss USA
1344+1022+6244=8610 bits for encoding and
House requires 1385+1156+10315=12829 bits for
this coding method. The compression ratios,
BR for the test images are 8610/65536=0.13
and 12829/65536=0.19 bit per pixel. respec-
tively.

requires

The two test images and the decoded images
for each test image are given in figure 4 and
figure 5 respectively. The image quality of
the decoded images are good with these bit
rates. Through our experiment. our segmen-
tation-based image compression method works
well for a wide variety of images including a
natural image with highly textural areas

referred as House.

4. Conclusion

These results indicate that, using the pro-
posed texture segmentation-based image com-
pression system combining fractals and prop-
erties of the HVS, compression ratios in the
neighborhood of 0.13 to 0.19 bpp are attain-
able with good image quality. The segmenta-
tion is good and conforms to the human per-
ception of roughness. These compression
ratios are almost the same as those achieved
by a segmentation-based compression method
using flat segments (3.12]. However. pro-
posed compression technique produces better
image quality and is quite useful for a wider
variety of images. This is because our seg-
mentation compression method was developed
using texture features as well as gray levels.
Specifically, our technique works well for

images with highly textured areas, while pre-
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vious compression techniques were not useful

for those images.
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