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Frequency Offset Effect On Error Probability
Of Fast Frequency Hoping Spread Spectrum System
With BFSK In Selective Rayleigh Fading Channel
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ABSTRACT

Bit error probability of fast frequency hoping spread spectrum with BFSK(FFH/SS/BFSK) modulation in selective Rayleigh
fading channel has been studied'. In this study, we show how the carrier frequency offset affects the performance of
FFH/SS/BFSK system on fading multipath channel. The bit error probability is shown in a summation form using Laguerre poly-
nomial decomposition technique, while it would be shown in joint double integration form without using Laguerre polynomial

decomposition.
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1. Introduction

Spread spectrum communication systems
have been widely studied and mainly used for
military applications. They provide a certain
degree of protection against intentional or
unintentional jamming. Synchronous carrier
recovery is a difficult task in a fading multi-
path environment, which leads to the consid-
eration of noncoherent demodulation tech-
niques. Fast frequency hopping spread spec-
trum(FFH-SS) systems using frequency-shift
keying modulation of a binary bit stream
appear attactive. Bit error rate of
FFH/SS/BFSK has been analyzed on selective
Rayleigh and Rician fading channel(1].
However bit error rate can be degraded by
carrier frequency offset in the frequency
tracking loop.

This paper is composed as follows. The
model of the FFH/SS/BFSK system is pre-
sented in Section 2. Detailed description of
the statistics of the envelope detector outputs
is given in Section 3. The probability density
function of envelope detectors is decomposed
by Laguerre polynomials in Section 4. In
Section 5, the effect of frequency offset to
system performance is evaluated using
Laguerre polynomial decomposition technique.
The bit error probability is shown in infinite
summation form using Laguerre polynomial
decomposition technique which is evaluated
easily by computer, while it would be shown
in joint double integration form without using
Laguerre polynomial decomposition. In Section

6, numerical results are presented.
2. System Model and Definition

2.1 Transmitter Model
The data signal a(t) at the input of the

modulator is a sequence of nonoverlapping
rectangular pulses of duration T, a;, the
amplitude of the Ith pulse, IT<t<(I+1)T, gets
value from{1, -1} with equal probability. The
signal, at the output of the FFH/SS/BFSK

modulator performing one hop per data bit, is

given by
o0
o) = ,/3;.’2 Z P(t = IT) cos [21r(jc+ n
im—o00
tor - o,] (1)

where P(t) denotes a rectangular pulse of
unit height and duration T. E, is the signal
energy per bit, fc is the carrier frequency
and 4/2T, (f=1,2, -, } is one-half the spacing
between the two FSK tones and the phase
angle 0, is a random variable uniformly dis-
tributed between 0 and 27r. The frequency
fi(1 Modulo K) assumes values from the set
F={F,, F#C/T. -, Fg+(K-1)C/T) where C is a
positive integer and K denotes the number of
frequencies used in frequency hoping and F0
is the fundamental hop frequency and T is
the symbol duration. We assume that(K-1)T
2T, in which T, is the delay time spread of
channel. This way of determining K can
guarantee that the data bit al. transmitted
with a given frequency f;, is not perturbed by
an echo using the same frequency emanating

from another data bit.

2.2 Channel Model and Receiver Signal

The multipath characteristics and additive
noise are assumed to be statistically indepen-
dent. The multipath comprises M fading
paths. Each path results from a different
scattering channel. The mth path(m=0,1,--
M-1) is associated with three random process-
es vn,(t), t, and ¢, ,(t) that respectively
describe the strength coefficient., the time
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delay and the carrier phase shift introduced
by the path. The index ! is due to the fact
that the transmitted frequency changes every
T seconds. Since the Doppler shift is a func-
tion of the frequency of the transmitted sig-
nal, the strength coefficient and the carrier
phase shift of each path are also functions of
the frequency f; transmitted during(IT. (I-
1)T). It can be assumed, however. that the
path characteristics do not vary significantly
within a transmission period of T so that
these processes can be respectively described
by the single random variables v, ,;(t). 7, and
d,,(t). Then the received signal can be writ-

ten from Equation(1) as follows:

M-1 oo
R(t) = \/-2-;}1 Z Z vm’,P(t—lT—fm)cu[mr(fc

m=0 {=—oc0

+ f1+ a;B/2T)t — 6y, 1] + N(t) @)

where N(t) is AWGN with double-sided power
density Ny/2. each ¢,, is assumed to be uni-
formly distributed over(0, 27). All path
strengths vm,l are i.i.d., in which pdf of

Va1 i1s shown as

2
bo., = —Z—Z—ﬂexp{— vb"'"].v..,IEO. Vi, ¥m,

where bm is a constant which satisfies

fﬂ v AV mi = 1.

3. Receiver Model

The FFH/SS/BFSK receiver is depicted in
Figure 1. It consists of a frequency dehopper
followed by an envelope detector. The dehop-

ping signal U(t) introduces random phase @

The only assumption made is that the receiv-
er is time synchronous with the main(first
arriving) path(i.e., 7,=0). The normalizing
condition assumed that the mean received
energy per bit at the input of the envelope

detector is equal to E,,. I.e.

B o |M~1
2
E{—?e-/ Z v 1 P(t —IT — tm) cos(2n( fc
~% Lm=0
2
+ 0[5/2T)‘ - 9m'[ - vl)J dt} = E (4>

where it can be shown that €., +¢, is uni-
formly distributed between 0 and 27 and
therefore, left hand side of Equation (4) is

reduced to

op, M
T
D DE S )
m=0
by = E(v',;) and Equation(5) = Eb. it can be
deduced that
M-1

E bm = 1.

m=0

The square-law envelope detector has two
branches each with in-phase and quadrature
subbranchs. The output of the branch corre-
sponding to “+1” data bits is denoted by X(n)
and the output corresponding to “-1"data bits
by Y(n) where

X(n) = \/IX1(n))2 +[X2(n))?
Y(n) = /M2 +[Ya(n))2.
Xi(n) and Y,(n) are the outputs of the in-

phase subbranchs. and X,(n) and Y,(n) are
the outputs of the quadrature subbranchs:

. (n4+1)T
Xi(n) = F/ R(t)U(t)cos [21!’(](; + 14
nT

during the time intervals between hops: + ..L)c] at (6)
o0 2T
_ {(n+1)T
v = Y P-ieansiet o) (3) Xy(n) = i_/ R(8)U(E) sin [21r(fc+!d
l=—00 T
nT
{ module K. + —I—-)t] at (7)
1252 2T
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Figure 1. Envelope detector structure

where fy is frequency offset caused by fre-
quency tracking loop. Y,(n) and Y,(n) have
the same expression as X;(n) and X,(n) with
replacing 1/2T by ~1/2T.

3.1 Statistics of In-phase and Quadrature
Subbranchs Output

The marginal probability density functions
of in-phase and quadrature subbranchs out-
put, i.e., X;, X; Y, and Y, are computed in
this section. The output of in-phase sub-
branchs of Xn, X,;, is represented by substi-
tute Equation (3) to (6),

1 [TE, fornTil =
)ﬁ(u):T\/—T:‘./T S S b P IT
n

m=0|{=-~co

— Tm) cos[2n(fe + fr + a1f/2T)t — 6]

x2 Y P(t=1IT)cos(2mfl't + )2 cos(2n(fe + fa

P=—oc

5 1 [enT S ,
+ Sot)dt + a/ N(t) x2 Y P(t=IT)
2T T Jor it

cos(2m fl't + ép)2 cos(2n(fe + fa + %)t)dt. -

Assuming F; » 1/T and F, » f; we separate

Equation(8) to signal part(term of m=0),

intersymbol interference(terms of nonzero m),

and noise after simple integration:

L 2B, /2= Zcos(Zn(fd = (an = DB/2T)T)

Xu(n) =7y = 27(fd = (an — DB/2T)
Von COS(Go,n + @n + w:,au)
e ny + Neyn), @
where
1253
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v 1 1= cos(2n(fa = (an = 1)8/2T)T) prn=d={sin (A T4 1 fo) (1 tm s
z.a = tan - )
e 27 - (anp —1 2T
sin(2n(fa = (an = 1)F/2T)T) /T) = bmn—s-1 = @n) —sin(A(n, J
and — AT )
- oo + L fam—=btnn-y-1—¢n
4 [2E, (n+1)T M =1 .
Iz:, n = 5 ‘_/ Um‘lp(t =T
™ T T nT mzzl l:E—:oo
)
= m 2 < + -+ QT t— omy A
) cos2lfe + fi+ af/2T) 1l where A(n,.J f)=0x((foyfo - £ + (apy-1) A
%2 }: Pt — I'T) cos(2m f't + )2 /2T)T. In Equation(11), v, ,.; is Rayleigh dis-
=0 tributed and 4, ,; - ¢, is uniformly distrib-

B (10
cos(2w(fe + fa + ﬁ)t)dh
Ny is a Gaussian r.v. with zero mean and
variance 2Ny /T. To evaluate Equation (10),
the time delay r, of the mth path can be

expressed as
=JT + tm’J

where t,; is uniformly distributed between 0
and T, and J € { 0, 1, (K-2) }. Ruling
out the high frequency term and taking into
account the definition of the function P(t),
L ;) becomes

2E (n+1)T
I:|(n) = b Ymn-J

J OmE}\/ { nT+im s

COS(QW(f: + fn-J + an—-],ﬁ/2T)l b 6m,n-—])

x cos(2 fut + pu) cos(2(fe + fa = 22)0)
AT 4tm, s

At + vymn-goy X / cos (21(}}
nT

+ fo-s-1+an-s- 12'21) ~Omn-s-1)

cos(27 fn + ) % cos (QW(fc + fa -

)

After finishing integrals of above equation, it

aT

can be easily shown that

2Ejb Um‘n—J

1‘1(")
, A n,eN A, T, fa)

{sin(A(n, J,

fd)(" + l) - om,n—.l e ‘p”n) -—Sill(A(n,

J, fd) (" +tm,J/T) - am,n—l - Pn)} +

uted, therefore v nysin(&, ,.; - #,) is mean
zero Gaussian random variable and linear
combination of Gaussian random variables is
Gaussian. Given a, and {a,;}, vy, cos (gy, + @
otPan) is Gaussian with zero mean and I,
is approximated by a Gaussian r.v. with zero
mean variance @ To determine ¢’ assump-
tion is made that Nj denotes all paths arriv-
ing with time delay between (JT, (j*I)T) and
variance of the strength coefficients v, ;. by,
is the same for all the N; paths and SﬁEmENJ
b,. and the variable t,; are uniformly dis-
tributed over (0, T).

o’ = E(lLyml)

2F m,, .
- & Z Z Tn ij {sin(A(n, J, f2)

J=0 meN;y

(n+1)=Omncy — ) —sin(A(n,J, fa)(n
+ tm,J/T) - 0m,n-J - ‘Pn)}2 + U,zn’n_j_l
{sin (A(n,J + 1, fd) (n + tmyj/T) —Onn-t1
- 9971) —sin(A(n,.] + lyfd)" - em,n—.l—l

- ‘P’n)}2

Note that E{v’s.;} = bm. and S;2E.cns ba.

Then a* can be represented as follows,

of = %Z { and)<1

_sin{A(n, J, fa)) = sin(A(n, J, fa)(1 - To/T)))
A(n, J, fa)T/T
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1
—_—e—— {1
TG I+ L) (

_sin(A(n, J + 1, fd)To/T)> }
Aln,J + 1, fo)To/T

Likewise, the output of quadrature sub-
branchs of X(n), X,(n). can be evaluated as

follows,

2E, V2 —2cos(27(fq — (an — 1)8/2T)T)
T 2n(fa — (an ~ 1)8/2T)

Xa(n) =

Von sin(ﬁo,,, +¢n + d)z,ﬂn) +Iz;(n) + J,Vr;(n);

where N,y is a Gaussian r.v. with zero
mean and variance 2N¢/T. ILgm is approxi-
mated by a Gaussian r.v. with zero mean and
variance ¢ and v0,n cos(®,, *+ #,*F,..) Eiven
an is Gaussian with zero mean and variance
by/2. I,z can be expressed in the similar way
that I is expressed:

2Eb vmn J

feat (n, J, fa

cos(A(n, J,
0 mEN ) { ( (

fd)(n + 1) - em.n-l - ¢n) — cOos (A(n, J,

fd) (n + tm,J/T) - am,n—J - ‘Pn)) +
Umn-Jd-1 {cos(A(n,J + 1, fa) (n +tms

/T) = Ompnes—1 —pn) —cos(A(n,J + 1,
12

fin = Omn-g-1~—pn)}.
Likewise, we can compute pdf of inphase and
quadrature components of Y(n). The output
of in-phase subbranch of Y(n), Y,(n) can be

expressed as

vi(n) = L [2Ee V2= Zeos(2n(fa = (an + DB/ITT)
wWY=TFVT 2n(fa — (an + 1)B/2T)
Von €08(00,n + Pn + Yyan) +

Iy () + Ny 13

where

1 1 =cos(2n(fa — (an + 1)3/2T)T)
sin(2w(fs — (an + 1)8/2T)T)

Yya, = tan

Given a, and {a,;}. Vo, cos(F,, +#, +¥,.,) is a

Gaussian r.v. with zero mean and variance
be/2. Ny is a Gaussian r.v. with zero

mean and variance 2No/T. I is expressed

as follows,

/?E mn=
Lim = : Z vn 7 ; ) {sin(B(n, J,

fa)(n+1) = 8mn-s — @n) —sin(B(n,J,
JY(n 4 tm s /T) = bmncs — )} +
Vmn-s-1 {sin(B(n,J + 1, £3) (n +tm s
/T) = b8mun-s-1 = n) - sin(B(n,J + 1,
faln = Omnoso1—wn)}.

a9

and approximated by a Gaussian r.v. with

zero mean and variance £*

2 2Eb K-2 { 1
= e S —
¢ T & S\ BT 7 (1

N sin(B{n, J, f4)) — sin(B(n, J, f2)(1 - Tg/T)))
B(n,J, fa)To/T

TR —
B"’(ﬂ,]-{-l,fd)(

sin(B(n,J + 1,fd)To/T))}
B(n,J +1, fa)To/T ’

where B(n o fd) = 2n(f, n-J f fd+(a,,..;+1)/2T)T
The output of quadrature subbranch of
Y(n), Y,(n) is

_ 28y /2 — 2cos(2n(fg — (an + 1)3/27)T)
Ya(n) = T T 27(fa = (an + 1)B/2T)

Vo,n 8in(B0,n + P + Py.a,)
+Iy,(n) + Ny:(")

where v, sin (8, ,+¢, +¥,.,) is zero mean
Gaussian with variance by/2 and Iy, is
approximated as zero mean Gaussian with
variance {* and N,zn is zero mean Gaussian
with variance 2Ny/T.

3.2 Decomposition of Joint Pdf of X,(n) and
Y ;(n) using Laguerre Polynomials
We show joint pdf of X,;(n) and Y,(n) which

1265
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is decomposed by Laguerre polynomials. This
form is useful to compute bit error probabili-
ty. X;(n) is correlated with Y,(n) and X,(n)
is correlated with Y,(n) by frequency offset.
Correlation coefficient of two in-phase compo-
nents can be computed by the definition

which is.

E(Xi(m)Yi(n))

Pzi(n)yi(n) = P
L 3%

Standard variances can be evaluated from
variances of Y,(n) and X,(n) by taking
square root. Variance of X,;(n) can be easily
computed using Equation(9). Given an and
{an-i}. signal term, ISI term, and noise term
are statistically independent so that variance
of X;(n) is just sum of variances of each
terms and expressed as

52 = 2Ey 2 — 2cos(27(fq — (an - l)ﬁ/QT)T)_

DT (@2n(fa - (a0 — 1)B/2T))? 2

2Ny
i

+a% +

Likewise, variance of Y,(n) can be computed

and expressed as,

9 QEQ 2- 2CO>(27((fd - (ﬂn + l)ﬂ/QT)T) bo

T TS T @n(fa - (an + DA2TYE 2
2N,
+E

where @ and {* are defined at the last sec-
tion. The cross correlation of X;(n) and Y,(n)
can be computed by multiplying and taking
expectation of Equation(9) and Equation(13)

which is as follows,
E(Xl(n)Yl(n)) =

Ey, !
T3°%m(fa — (an + 1)B/27)27(fa — (an — 1)B/2T)

x [sin(27(fq ~ (an — 1)B/2T)T)

sin(27(fq — (an + 1)3/2T)T)
+(1 = cos(2m(fqg — (an — 1)B/2T)

1256

N1 = cos(2r(fa — (an +1)8/27)
N
HELe () Iy (m),

in which cross correlation of Iy, and ILm
can be computed from Equation (11) and
Equation (14) which is,

. _ 2k, 1
‘E(Il'x Iy:) - = Z SJ A(fl,], fg)B(Tl,J, fd)

ISV S
2 B(n,J, fa)To/T

—sin(2n f4T)

+sin(2n faT + B(n, J, fa)To/T)}

" YA, J,lfd)To/T o 211rTo/T
x (= sin(25To/T))]

AT +1, fd)lB(n, T 1.7

ST
TA(n,J +11, TR T

J+1, fa)To/T)

1
TBn T+ 1.V Te/T

+5Sy

x{—sin(2xT,/T))

— sin(A(n,

sin(B(n, J
+ Lf)T/T)+1|.

It is easy to show that fum yim) = Pram).y2m-
Since X;(n) is independent of X,(n) and X,(n)
X(n) is Rayleigh

Therefore we can

is independent of Y,(n),
distributed, so is Y(n).
obtain decomposed form of joint pdf of X(n)
and Y(n) by using results of (2],

= 4 1'2 2
e o () ()

where
E(X\Y)

Tz,0y,

and p, 9, and ¢, will be evaluated. Let
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p=p- ifa,=-1

2 2
ol=0l, 0o

oel=z=ol,, © 4 P=py fap =1

where time index n is omitted.

4. Bit Error Probability in Rayleigh
Selective Fading Channel

The bit error rate performance of the sys-
tem under consideration is evaluated when a
maximum likelihood symbol by symbol detec-
tor is used. In the bit intervallnT, (n+1)T)
(synchronized to the main path), the received
waveform R(t) depends on the symbols a,, a,-
;. ", apx-p. This, in fact, is due to the
intersymbol interference(ISI) introduced by
the multipath propagation.

The bit error probability given {a,;} is

Pel(en-sy = SPrIX(n) > Y(n)lan = =1, {an_i)]
+ %Pr{X(n) <Y(n)lan =1,{an-i}] (9

where {a,;} represents the sequence a,.,
a,-k-1. [t will be shown in Section 4.1 that
conditional error probability can be expressed
as infinite summation form which is numeri-
cally computable:

PrX(m) > Ymlan = 1 (ancl] = 5o D o

¥ knd

(Ab;“-_)k r(i,!t - * E(:;!)u_]

9

whereA-=1/(2¢%,)), —=1/(2¢*,)), and b=A+x. and

1 o= AR
PrlX(n) < Y(n)lan = +1,{an-i}] = 1~ 5T -
Tyt kme
(,\“H)" [P(2k+1) _ T2k ]
b2 kb, (k= 1)luyg
an

where 4,51/(2¢%,),#=1/(2¢°,), and b.=A+a. By
inserting Equation (16) and (17) to Equation
(15), we can get

111 & 1 fauc\

Pelta,.} = 5{5;?1‘20/’_F(T;-—)
{F(2k+1)_ ree) ] 1
. -ne S|z

111 ¢~ el (/\+#+)k
i otk L

P [2:;;,1‘2__:0 * R\
{F(2k+1) I (2k) }

®

Then average bit error probability is comput-
ed by averaging Equation (18) over all possi-
ble {a,4}. i.e.,

P. = Ep Pel{ea-0}

When there is no frequency offset, i.e., fF0,
the bit error rate given {a,;} is obtained by
letting # be 0, i.e.,

11 1 1 11 1
Plias.y = ;;;(;:)*5‘4‘«:? (Fl) “

Equation (20) corresponds to result in(1).

4.1 Conditional Error Probability

The conditional error probability given a,,

. a,~(K-1) is evaluated by using decomposed
form of joint pdf of correlated Rayleigh pdf.
When a,=~1 and {a,;} is given, conditional

error probability is

Pr(X(n) > Y(n)lan = ~1,{an-i})

= /°°/°° Azy exp
o Jy oi-ol
(=)
-
U,—Vy-(l—P_)

Io (——————,—2”’" ) dzdy
d,—(Ty—(l - P-—) 1057
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o0 1 . o0 oo y2 2
= 2 —exp | — Ly
o [T  (-2r) [ (2]
z? z? 2 2
d Y
(203_>6XP (205_) z L (2 ,-)exp (—20:_)@
2 2
yLy Qg'-’ > exp (2:2 ) dy. @) @5
v ¥y

Putting Consider the first term of Equation(25) and

22 putting

207, © t
z- 2
=t
then y
e 22 I and by the identity (3, p.884)
/y zLy (‘203_ ) exp (5;3—_—> dz -
[ explobeyeersunys (us)dz =
o0 o
b3
= [ B0 o Lt mta+t) b= N p)m
= m'n! bmintatl
By the identity (3, p884]): -
y y p XF[~m,~n;—m—n_a;M
(b= M)~ p)

[ ept-atade = exp-ulLa) - L30)
v

Equation(22) becomes

2 2 2
p y Y Yy
o) [ ) -0 ()]
- r= -
for k=1,
o 2 ) o2 ( ¥ >
T exp (— de = —L-exp|—-—=— (04)
J o 5oe \mam

for k=0. By substituting Equation(23) to
Equation(21),

’u
2
by
2
v
=
5
3

|
!
-
2
3
L
I
e

1258

where Re(a) ) -1 and Re(b) > 0. the first
term of Equation(25) is reduced to

$S A LTk F DA
k=0 2

ol ERIp2E+1 Fl-ki—k;=2k:00 0

where hypogeometric function reduces to 1.
Similarly, the second term of Equation(25)

becomes
i i oce‘( -——i—— exp | — ! L
a?_ Jy XPA T 95T, PR %07 ) “*1
k=0 ¥ z T
t t 1
(%3_) L <2a3_> 2%

_ N PRI (@A AR
- 2 (L 53k 9"
pyard ay_(L — 1)k162% 2

en

Therefore conditional error probability is
obtained by subtracting Equation(27) form
Equation(26):

1
7
2z7y_

£k (=) [E2he - ]

Pr(X(n) > Y(n)lan = =1, {as-3}] =
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This proves Equation(16). Similarly we can
compute another conditional probability,
1

7
ng*

i/’i"i (A,L?,“,)“ [F(2k+ 1) T(2k)
=R kb, (k= Dlgy

PriX(n) < Y(n)lan = +1,{an}] = 1-

5. Numerical Computation

The path gain b, is assumed to be the same
for a'll the N, paths and K is assumed to be
2, i.e.., the number of frequency for hopping
is two. We also assume that all path delays
are smaller than the symbol duration T. This
is the
Communications(IWC)(1). This model is one

case of Indoor Wireless

of the simplest fading models to analyze. The

E /N (08)

Figure 2. Average bit error probability in Rayleigh
selective fading channel, f;T€(0,1)and
T,/T=0.1, SIR-0dB, C=54, §70

performance of the system for this channel
model serves as a reference with which the
performance for more realistic but more com-
plex models can be compared.

Figure 2 and 3 show bit error probabilities
for some range of frequency offset time prod-
ucts for SIR=0dB, C=54, B=70, T,/T=0.1, and
Ty/T=1. When £;7=0.4, about 3dB degradation
is shown. This implies that when bit rate is
100 bps. the 40Hz frequency offset causes
3dB performance degradation. When ;T is
smaller than 0.8, bit error probability for
T,/T=0.1 is large than that of Ty,/T=1.
However when f;T is greater than 0.8, bit
error probability for Ty/T=1 is less than that
of Tg/T=0.1. This implies that when carrier
frequency is shifted by 1/T, dispersive chan-

nel is superior to nondispersive channel. In

10°

G54 §=70-

-0 0 10 20 30 40 50

E /N (dB)

Figure 3. Average bit error probability in Rayleigh
selective fading channel, f3;T€(0.1) and
T,/T=1, SIR-0dB, C=54, &=T0
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SIR=0dB, To/T=0'1' C=54, =70
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Figure 4. 3-D description of average bit error proba-
bility in Raylleigh selective fading channel
T,/T=0.1. SIR=0dB. C=54, #=70

other words, X(n) and Y(n) have only noise
when f;T=1 and Ty/T=0. When Ty/T=1, howev-
er, signal component of main path is orthogo-
nal to references of correlators and time
delayed replicas of transmitted signal are not
orthogonal to reference signal of correlators.
Therefore these dispersed transmitted energy
gives better performance than nondispersive
channel.

Figure 5 shows bit error probability for the
case that 8 is 2, ie..
8. In this case, the distance of information
carrying frequencies is 1/T. The X(n) having
1/T frequency offset corresponds to Y(n).
Therefore we can expect 0.5 error probability
for equally likelihood data. Figure 6 shows
bit error probability in the case of Ty/T=1.
Error probability on highly dispersive channel

the minimum value of
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Figure 5. Average bit error probability in Rayleigh
selective fading channel, f;T€{0.1) and
T,/T=1, SIR-0dB. C=54, -2

is almost same as low dispersive channel
when f,;T is 1 and E,/N, is low. Figure 4
shows 3-D graphs for average SNR and fre-
quency offset time product for 10dB SIR,
Ty/T=0.1, C=54 and B=70.
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