DEri=

F@X 95-6-6-14

Design of a Test Suite Validator for Protocol Conformance Testing

Sung Hee Woo*, Byeong Ho Oh*, Sang Ho Lee* Regular Members

T2EZ AU YL A% HAE AJE HUZ 79 A

A BEE AWE, FHS

of & 19944 % BB EACS] FRAA AFH o o3le] APHUE

ABSTRACT

Although a great deal of research activities in protocol testing have focused on formal methods for protocol test suite generation
in the recent years, in practice many test suites are still developed in a heuristic manner. This gives rise to a strong need for test
suite validation before they can be used in the conformance testing of implementations under test({UT). In this paper we discuss
the basic idea of validation and present an overview of TESTVAL, a tool for test suite validation based on Estelle specifications.
The paper also demonstrates the validity of TESTV AL by applying it to the LAPB standard test suite. From the experiments per-
formed we find TESTVAL a useful, practical tool for test suite validation. Some redundancies in the LAPB standard test suite

were uncovered,
g ®

TZEZ AY Folo #e dTe F2 HAE 4o #ald olFoH fton HAR Y& HAE AYEE] o}
Az WA PPes ALEn Sle AFelth. waty [UTY A8 A¥ olAd Ha2E 2950 HFo] wie
g3t E eRdAE H2E 2HE AF9 ML Add tatd Fejsta, Estelle HAAME 7oz se H2E
29E A% £7 & AAYY. =2 FEE HF EFE LAPB EE H2E A9 E A R3te) 1 FFAL Hlo
A3Y A3 LAPB ¥ H2E 29 Ed $/)9 8o} A&S A

*augttn AR et
ﬁi&fﬁ 1 95087-0227
HEAF 19954 2R 27H

1619

www.dbpia.co.kr

154

AREE {2 SR '95-6 Vol.20 No.6

|. Introduction

Conformance testing of communication pro-
tocols is necessary to ensure that a protocol
implementation meets its design specifications
and operates correctly in communication net-
works(1]. Valid test suites are essential for
the conformance testing of protocol implemen-
tations. However, as in the case of software
testing. much research effort has focused on
test suite generation rather than on valida-
tion or trace analysis(4].

In addition to the formal description tech-
niques such as Estelle, SDL, and LOTOS, the
international standard organizations CCITT
and ISO have jointly developed a standard
notation to describe test suites for OSI con-
formance testing. known as the Tree and
Tabular Combined Notation (TTCN){(2]. Two
TTCN test suites have been defined by ISO,
one for the X.25 LAPB protocol and the other
for the X.25 packet layer protocol. However,
there may be potential errors with any test
suite developed heuristically(5). The presence
of such errors means that we can only have
limited confidence in the results of confor-
mance testing. During conformance testing
some failures may happen which can make it
difficult to decide if and where a real error
occurs. It is thus useful to develop an effec-
tive method for producing reliable test suites.
Test validation is a way to ensure the test
suites developed are valid according to some
formal specification and/or will meet the test-
ing purpose. Our approach is concerned with
the first goal. Thus, the validation of a test
suite is a statement defining a relationship
between the test suite and the formal
description of the protocol specification. The
following are fundamental issues in test vali-
dation{6].

1620

O Are all behaviors rendering fail verdicts
really invalid with respect to the formal spec-
ification of the protocol?

O Are all behaviors rendering pass verdicts
really valid with respect to the formal speci-
fication of the protocol?

The problem of test validation is basically
equivalent to the one of trace analysis where
a test suite can simply be viewed as a trace.
Some works on the trace analysis based on
LOTOS was reported in(1) and a method for
trace analysis based on Estelle using Prolog
was proposed in(9]. Recently a trace analyzer
based on Estelle was implemented(4].
However there does not yet exist an imple-
mentation of an effective test suite validator
based on Estelle.

In this paper, a test suite validator, called
TESTVAL is designed and implemented and
also the test validation experiments per-
formed on the LAPB test suites translated
from the LAPB standard TTCN test suite are
presented. TESTVAL based on protocol speci-
fication in Estelle and ASN.1 is realized
using a two-phase scheme: the first phase
produces an internal representation from a
given protocol specification using the frontend '
parser of TESTGEN, a tool for test suite gen-
eration(11]) followed by the second phase
which performs the validation using a simula-
tion and symbolic evaluation method.

The remainder of this paper is organized as
followed. Section 2 provides an overview of
TESTVAL. Then the LAPB specification and
the test validation process are presented in
Section 3. In section 4 we present and discuss
the results obtained from the validation of
LLAPB standard test suite using TESTVAL.
Finally. some concluding remarks and sugges-
tions for further work are offered in Section
5.

www.dbpia.co.kr

RX/Z2EF AU AYE AT H2E 2HE JF =T 4A 155

I{. Overview of TESTVAL

For test validation, we modified and
extended an existing trace analysis tool devel-
oped at the University of British
Columbia(10). The resulting test suite valida-
tor allows the checking whether a given test
suite is valid with respect to a given Estelle
specification. Actually the specification,
which must be in P Estelle.Y, a subset of
Estelle, and ASN.1(5) is first supplied to
TESTVAL: subsequently we can input the
test suites to be validated. The TESTGEN
frontend components include an Estelle.Y
parser and an ASN.1 parser. which translate
the specification in Estelle.Y and ASN.1 into
an internal format known as the Protocol
Data Structure(PDS)(10}. Once the PDS is
produced, TESTVAL performs the test suite
validation in two steps : the preprocessing
step and the main validation step, which
operate directly on the PDS.

Protocol Specification
ASN. 1 Estelle. Y
Specification Spercification
| TESTGEN Parser |

Protocol Data Structure

| Main Module |

Internal Results

I Output Module I

Preprocessor

Test
Suites

Results
Figure 1. Structure of TESTVAL
@1 TESTVALS #z

2.1 Functional Structure

As shown in Figure 1, TESTVAL consists of
four major functional modules written in C
language. First, TESTVAL produces the PDS
by using the TESTGEN parser which was
designed for test suite generations, taking
into account both the control and data flows
of formal protocol specifications. The pre-
processor was developed for the fast and effi-
cient processing of test suite validation. This
module inserts some special attributes into
the PDS such as the initial values and the
types of the input service primitive(ISP)'s
parameters.

The main module was designed to deal with
the actual validation of the given test suites.
This module starts in the initial state for
each test suite validation and can currently
handle two types of parameter values @ inte-
ger and boolean. It validates test suites with
respect to the PDS of given Estelle specifica-
tions. These data structures contain all essen-
tial protocol information, including the num-
ber of transitions from each current state and
the next state of each transition. Also the
current pointers of the test suites being
processed are maintained in order to keep
track of the current processing position in the
input test suites. The output module produces
the result of the test validation with some
helpful information with respect to the

debugging of the test suites.

2.2 TESTGEN parser

The TESTGEN parser is designed for test
suite generations, taking into account both
the control and the data flows of formal pro-
tocol specifications. It parses the
Estelle. Y/ASN.1 specifications and translates
them into the PDS. The ASN.1 parser(7] is

used to parse the ASN.1 specification of

1621

www.dbpia.co.kr

156

H A S A CEE '95-6 Vol.20 No.6

PDUs and service primitives(SP) into ASN.1
type trees. The generated ASN.1 type trees
are linked to the PDS by the TESTGEN pars-
er when the Estelle.Y specification is being
parsed. As a result. the PDS includes both
Estelle.Y and ASN.1 protocol information
generated from an Estelle. Y/ASN.1 specifica-
tion. Estelle.Y uses an Extended Transition
System(ETS) to model the observable behav-
iors of a protocol, and ASN.1 is used to
model the data representations(PDUs and
SPs) of the protocol. The main differences
between Estelle. Y and the normal form speci-
fication(NFS)(8) which is used in many test
suite generation methods based on Estelle,
are that Estelle.Y uses ASN.1 and supports
more Pascal statements such as the condition-
al and loop statements as well as some timer
primitives in the ASN.1 (TTCN) style. The
structures of Input Service Primitives (ISPs).
Qutput Service Primitives(OSPs) and Protocol
Data Units (PDUs) in Estelle.Y are required
to be specified in ASN.1.

The ASN.1 parser was developed using the
UNIX Lex/Yacc tools, and produces an ASN.1
type tree from an ASN.1 specification. The
PDS is designed to be a machine accessible
form of the ETS/ASN.1-based formal descrip-
tion. It holds information of both the control
and the data flows of a protocol specification.
The ISP. OSP and PDU data types are stored
in the data structures of the service primi-

tives in ASN.1 type trees.

2.3 Preprocessor

The preprocessor consists of two submodules
and converts certain types of transitions in
the specification into a more suitable form
for the main processing. Its function is to
improve the performance and efficiency of

the main module.

1622

It produces a list containing ISP (or OSP)
parameters and their types using an ASN.1
type tree generated by the ASN.1 parser. The
ISP (or OSP) parameters in the list are
assigned values according to the Estelle speci-
fication. [t also translates the EFSM form of
an Estelle.Y specification into a simple FSM
form(4}. Instead of enumerating all possible
combinations of service primitives and their
parameters, some parts of the enumeration
are realized based on the cost-effectiveness
consideration., The "PROVIDED" clause of a
transition corresponds to the input condition
of the transition. If the clause consists of ISP
parameters with values and operators such as
“EQUAL" and "AND". it is considered to be a
list of input symbols of a transition of the
FSM. In order to make output symbols of a
transition of the 'SM correspond to the ones
of the EFSM. the assignment statements are
checked to select those consisting of OSP

parameters with values.

2.4 Main Module

The main module validates given test suites
with respect to the PDS of the Estelle specifi-
cation. The information specified in the pro-
tocol specification should be effectively acces-
sible to the mail module. The contents such
as state. transition. constant/variable, ISP
and OSP in the PDS is organized as an inter-
nal representation of the protacal state
machine graph(5). To achieve validation of
test suites, it makes use of some data struc-
tures. “Paths’ contains information such as
the number of transitions, “from_state” and
“to_state” for each transition in the path.
“From states” and “to_states” contain the
state information of the system, via the val-
ues of related variables and the information

on all candidate transitions at these states.

www.dbpia.co.kr

HX/EREE YA AYEE A48 HAE 2E HF =27 A 157

The pointer “no_proc’ keeps track of the pro-
cessing position of the event in the test suite.
For each candidate transition. the values of
variables and service primitives from the test
suite are substituted to the symbolic repre-
sentation of the PDS. If the predicate and
the output primitives of a transition are sat-
isfied in the test suite, then the test suite is
valid according to the formal specification.
The algorithm in the main module is given as

follows:
Main Module Algorithm

int no_proc:

PDSTATE from state:
PDTRANS transition(MAX+1):
PDSTATE to_state(MAX+1]:

begin
point first test suite:
while not(eof)
begin
read one test suite into buffer:

rr

initialize Paths’™ with from_state as ini-
tial state:
set variables at from_state using PDS:
find a set of executable transitions at ini-
tial state:
while(if there is executable transition)
begin
set “no_proc” to 1:
while(if there is unprocessed path)
begin
while(if there is unprocessed transi-
tion at from_state)
begin
call FIRE(the transition with
from_state and to_state):
if firable,

add 1 to “no_proc”:

endif’;
end
endwhile
end
endwhile
endwhile
copy the current “Paths” to new “Paths”:
if no transitions in the new "Paths’
if the “no_proc” is less than the size of
test suite,
print “test suite is invalid”:
else
print “test suite is valid”:
endif
endif
end
point to next test suite:
end
endwhile
end.

Function FIRE(from_state, transition,
to_state. no_proc)
begin
assign values of parameters to the transi-
tion:
set to_state by target state:
copy values of variables at the from state
to the to_state:

if the “PROVIDED" clause is false,
return(false).
endif;
f the values of the variables are the same
as the OSP parameters,
save the values to to_state:
else
return(false):
endif

find a set of transitions given by PDS at

1623

www.dbpia.co.kr

158

MEAREREHIE "95-6 Vol.20 No.6

to_state excluding transitions
not satisfying ISP, OSPs, and their para-
meters with respect to an event
corresponding to no_proc and store those

transitions in “Paths”:

if the transition is not spontaneous,
return{true):
endif

end

Each test suite consists of a sequence of
events. The following is a syntactic

form of one event:

“inputl{or input2)/outputl/output2’

where inputl and outputl are of lower
interaction points of the IUT whereas input2
and output2 pertain to upper interaction
points. Note that an input event from either
the lower or upper layer can cause two out-
puts. one to the lower and the other to the
upper interaction point. Each service primi-
tive and PDU has its own name(kind of
action) and parameter values list suitable for

the specific action.

2.5 Output Module

TESTVAL logs the traces of states and
transitions which satisfy the given test suites
in a file. If a test suite is valid according to
the given formal specification, TESTVAL
generates a message “test suite valid” dis-
played on the terminal and in the log file.
Otherwise, if a test suite is not valid. TEST-
VAL generates a message “test suite invalid”
displayed on the terminal as well as storing
in a log file the information regarding the
position of the event in error. Using the
information logged in the file and messages

on the terminal. possible errors in the test

1624

suite with respect to the formal specification
may be located. Whether the test suite con-
forms to the formal specification or not.
TESTVAL keeps on processing until there is
no test suite left. The logged information
shows which transitions have been executed.
In some cases, more than one path of the
transitions may satisfy the test suite as a
result of nondeterminism. In that case, we
can follow those paths using “transition key’s
given in the file. Every transition has a
unique “transition key” identifying its loca-
tion in the source of the Estelle specification.
Therefore these logged informations could be
helpful to debug where the error occured and

what was the situation at that time.

III. LAPB specification and Test
Validation

In this section, we discuss the experiments
performed on the X.25 LAPB protocol via
TESTVAL. The Estelle specification of the
X.25 LAPB protocol is around 700 lines. The
Estelle.Y and ASN.1 specification translated
from the Estelle specification are approxi-
mately 1600 and 100 lines. respectively(12).
The experiments were conducted on the SUN
4/690 workstation running under UNIX.

We now explian the operation flow of the
TESTVAL by applying it to the LAPB proto-
col. From the given Estelle specification of
LAPB test suite were generated using a test
case generation method such as TEST-
GEN(12]. The specification and test suite of
LAPB protocol are fed into TESTGEN parser.
The TESTGEN parser parses the Estelle speci-
fication to the PDS. As a result, the PDS
includes information of LAPB protocol. The
main module of TESTVAL starts its function
in the initial state with the PDS and test

www.dbpia.co.kr

WX/ZE2EE AP AYe HAY H2E 29E JF =79 4A 159

suite which is fed into sequentially. Test
results are displayed and logged by output
module.

3.1°'LAPB Specification

Compared with Estelle. Estelle.Y can sup-
port only a single module specification, at
most one ISP and at most two OSPs for each
transition, no procedure. no function and no
state list. Besides the problem of having to
deal with multiple modules, two issues arise
in the translation. One is how to handle
while loops containing OSPs and the other is
how to process transitions containing timers.
These issues were partially resolved by M.C.
Kim(4]). The while loop problems could be
solved by using auxiliary states and vari-
ables. It is very difficult to relate the out-
puts from the IUT with test suites with
respect to time. For simplicity. we do not
consider the timer, i.e. the "delay” clause in
Estelle specification is omitted during transla-
tion into Estelle.Y specification. However, it
is possible to use a loosely-tuned timer to
increase the performance in processing the
transitions which contain a timer since this
could produce fewer candidate transitions.

The Estelle.Y LAPB protocol specification
has 6 states(SEND_DM, SEND_SABM, ABM,
ABMONE, WAIT_SABM, SEND_DISC), 5
ISPs(ConReq, DiscReq, ResetReq, DataRegq,
Datalndicat), 6 OSPs(ConInd, Disclnd,
ResetInd, Datalnd, AckInd., DataRequest),
and 1 PDU{Junk), and 132 transitions. The
original LAPB protocol specification has 5
states (SEND_DM, SEND_SABM., ABM,
WAIT_SABM, SEND_DISC). The ABMONE
state in the Estelle. Y specification was added
to handle the while loop of the original LAPB
protocol specification. The major parameters

of the LLAPB protocol specification are given

as follows.
1. frametype : frame type of SP
I(0), RR(1), RNR(2), REJ(3).
SABM(4),
DISC(5), UA(6), DMI(7),
FRMR(8). BAD(9),
contents of parenthesis are
integer value to
the corresponding frame type,
2. address : the address of station the mes-
sage comes from,.
0and 1,
3. pf ! poll/final bit.
0andl,
4. ns : sequence number of the coming infor-
mation frame.
between 0 and 127,
5. nr : acknowledgement from sender if pf is
equal to 1.
between 0 and 127,
6. udata : user data transmitted.
As an example, Figure 2 shows a part of
the ASN.1 description of the LAPB protocol,
including the DataRequest and Datalndicat

service primitives.

LAPB DEFINITIONS ::=
BEGIN
LapbToPhy ::= CHOICE
{ DataRequest, Datalndicat }
DataRequest 11={SEQUENCE

frametype INTEGER.
address INTEGER.,
pf INTEGER,
ns INTEGER.,
nr INTEGER,
) udata INTEGER
Datalndicat : 27 SEQUENCE
frametype INTEGER,
address INTEGER.,
pf INTEGER,
ns INTEGER,
nr INTEGER,
udata INTEGER

END

Figure 2. ASN.1 Description of LAPB Protocol
%2 LAPB Z2E89 ASN.1¥¥

1625

www.dbpia.co.kr

160

AR 95-6 Vol. 20 No.6

3.2 Validation

The whole LAPB standard test suite speci-
fied in TTCN consists of 277 test suites which
are classified into eight groups(3). The first
seven groups, called Data Link Layer Test
Groups DL1 to DL7 are provided to test the
interactive capability of the IUT in every
phase. Each test group is further divided into
three subgroups according to the definitions
of the improper frame, inopportune frame
and proper frame. The eighth test
group(DL8) is designed to test the operational
correctness of the IUT system parameters.
and so it is excluded from the experiments.

DL1 consists of 37 test suites in the discon-
nected phase: it verifies when the IUT
receives DISC and sends UA or DM frame.
DL2 belongs to the link disconnected phase
and checks when the IUT sends DISC. DL3 is
the link set up phase: it tests when the IUT
sends SABM frame from disconnected phase.
DL4 is the information transfer phase: it ver-
ifies when the IUT receives SABM and sends
UA frame, or the IUT sends SABM and
receives UA frame. DL5 pertains to the
frame reject condition phase and tests when
the IUT send FRMR from the information
transfer phase. DL6 is the IUT busy condition
phase: it checks when the IUT sends the RNR
frame from the information transfer phase.
DL7 is the sent reject condition phase and it
verifies when the IUT sends REJ frame from
within the information transfer phase.

We use the test suites translated from the
LAPB standard TTCN test suites to validate
the X.25 LAPB test suite. The procedure for
translating TTCN into local formalism is
described in(12]). It is not always possible to
translate a TTCN test suite into a test suite
in our local formalism. Therefore we have
dealt with only 244 test suites translatable

1626

from the 277 TTCN test suites. The following

are some examples of the experiments.

O Experiment 1

Experiment 1 corresponds to the DL1_101
test suite in the LAPB standard test suite(3).
This experiment verifies that the IUT sends a
DM with F=1 in response to a DISC command
with P=1 received in the disconnected state.
In this case, we send a DISC and wait for a
DM or UA as the preamble: we send an RR
command with P=1 and wait for a DM with
F=1 as the postamble. This test suite is valid
with respect to the specification and produces
the following log file. The number in the
parenthesis is the identification number of

the corresponding transition.

Test case :

Datalndicat DISC 0 1 - - - / DataRequest
DMO1---/-------

Datalndicat DISC 0 1 - - - / DataRequest
DMO1-~-/----~~-

Log file :
SEND_DM --(2)--> SEND_DM --(2)-->
SEND DM --(5)--) SEND_DM

Result : Valid

O Experiment 2

This experiment corresponds to the DL2_101
test suite in the LAPB standard test suites.
This test suite verifies that the IUT sends a
UA with =0 in response to a DISC with P=0
received in the link disconnection phase. In
this test suite, the tester and the IUT send
DISC commands at the same time (DISC colli-

sion) after the preambles. The first two

www.dbpia.co.kr

AX/ZZEE AP ANYEE Y H2E 24E FF =79 44 161

events are preambles and are for connection
setup. The test suite is valid with respect to

the specification.

Test case :

Datalndicat DISC 0 1 - - - / DataRequest
DMO1=---/-=-----

Datalndicat SABM 0 1 - - -/ DataRequest
UAO1---/Conlpnd------

DiscReq - - ---- / DataRequest DISC 11
- - = / _______

Datalndicat DISC 0 1 - - - / DataRequest
UAO1--=-/-------

Datalndicat UA 11 ---/DiscInd - ----
.

Log file :

SEND_DM --(2)--) SEND_DM --(1)--) ABM
--(96)--) SEND_DISC —-(123)

-~y SEND_DICS --(124)—> SEND_DM

Result : Valid

IV. Results Analysis

The overall experimental results are sum-

marized in Table 1. The percentage of valid
test suites varies from group to group. The
differences among the seven groups are main-
ly due to the incompatabilities of translated
test suites with respect to the Estelle. Y speci-
fication. The first three test groups behave
nearly according to the LABP protocol specifi-
cation in Estelle.Y. In general, most of the
test suites in the LAPB standard test suite
are valid with respect to the LAPB protocol
specification.

However in the remaining four groups, due
to the incompatabilities with the LAPB proto-
col specification, some test suites could not be
translated and we got lower percentages of
valid test suites. From the experiments of
test validation we found that some of the test
suites could not be validated via TESTVAL.
The analysis for these experimental observa-
tions are three-fold:

1. Limitation of the Estelle.Y specification
of the LAPB protocol :
suites that could not be processed. For exam-
ple. in the disconnected phase, the DL1_102 is
specified to verify that the [UT sends a DM
frame with F=0 in response to DISC frame

There is some test

Table 1. Summary of experimental results

Bl 49234 8%

Kinds DL1 | DL2 DL3 DL4 DL5 DL6 | DL7 total
No. of Test
Suites 37 38 39 46 41 40 36 266
No. of Suites
Processed 36 31 29 43 40 32 33 244
No. of Valid
Suites 31 29 28 33 28 20 27 196
Percentage of
Valid Suites 86.1 93.5 96.5| 76.7 70.0 60.2 80.2 80.4

1627

www.dbpia.co.kr

162

MELASRRICIE '95-6 Vol.20 No.6

with P=0. However the Estelle.Y specification
has a function dealing with that situation
with F=1 and P=1 only. Thus TESTVAL could
not find any corresponding transitions in the
Estelle. Y LAPB specification, and consequent-
ly reported the case as invalid.

2. Redundant test suite : From a careful
study of all the “invalid” test suites reported
as invalid by TESTVAL, we find a few
redundant test suites which may be omitted
from the LAPB standard TTCN test suite.
Those are in DL4 and pertain to the informa-
tion transfer phase. For example, in this
phase. the IUT shall transmit an FRMR
frame in response to a command frame with
undefined or unimplemented control field.
The C/R bit can be set to either "0" or “1"and
the W bit shall be set to “1” in the FRMR
information field. However, this test suite is
represented as two separate test suites in the
LAPB standard test suite.

3. Limitation of TESTVAL : There are two
examples which are manually checked to be
valid but which were reported as invalid by
TESTVAL. In DL4, the DL4 116 test suite
verifies the IUT in the information transfer
phase can manage its sending window size.
For the purpose of this test. the IUT can
transmit an I frame that has a N(S) value
within the sending window. Acknowledgements
from the tester will rotate the sending window
for the DTE. The IUT window rotation must
be observed over the entire valid range of
sequence numbers. The IUT shall stop the
window rotation when outstanding acknowl-
edgements are not sent from the tester. The
above test suites have some attributes beyond
the current capability of TESTVAL. For
example, currently the PDS used in TEST-
VAL allows up to only 10 distinct values for

each parameter of one SP.

1628

V. Conclusions

In this paper we present an overview of the
structure and the function of TESTVAL . a
tool for protocol test suite validation based on
Estelle specification. We also demonstrate the
usefulness of TESTVAL by applying to it a
real life test suite, the LAPB standard test
suite, with its test suites containing both the
control flow and the data flow information.
We present and discuss the results of the val-
idation experiments on the entire LAPB test
suite. Some interesting results are obtained
from the experiments, including some redun-
dancy in the LAPB standard TTCN test suite
and limitations in the Estelle.Y specification
formalism. In general, we find TESTVAL
performs well as an efficient, general, flexi-
ble, and semi-automated tool which is useful
for test suite validation in conformance test-
ing. However, some aspects of TESTVAL can
be improved. For example, the capability to
directly accept test suite in TTCN format is
an important feature that should be provided.
This would bring TESTVAL closer to the com-
plete automation of the validation process.
Some extensions on the Estelle.Y language(i.e.
the features supported) would be essential to

allow for more complete specifications.
AuEH

1. G. v. Bochmann, D. Desbiens. and et al, “Test
Result Analysis and Validation of Test
Verdicts,” Proc. of IWPTS "90. Oct. 1990.

2. ISO DS 9646-3, "OSI Conformance Testing
Methodology and Framework Part 3: The Tree
and Tabular Combined Notation(TTCN),” 1990.

3. ISO DIS 8882, ‘Information technology-
Telecommunications and information exchange

between systems-X.25-DTE conformance test-

www.dbpia.co.kr

HX/EEEE AP NS AY d2E 29E FF =79 44

163

ing-Part 2 : Data link layer test suite,” 1991.

. M.C. Kim, “Trace Analysis of Protocols based
on Formal Concurrent Specifications,” Ph.D.
Thesis, Dept. of Computer Science, UBC, 1992.

. Ying Lu, “On TESTGEN, An Environment for
Protocol Test Sequence Generation, and Its
Applications to the FDDI MAC Protocol,”
Master Thesis, Dept. of Computer Science,
UBC. 1991.

6. K. Naik and B. Sarikaya, “Static Validation of
TTCN Test Cases.,” Proc. of IWPTS "90, Oct.
1990.

. M. Sample and G. Neufeld, “Support for ASN.1
within a Protocol Testing Environment,” Proc. of
FORTE ' 90 Nov. 1990.

. B. Sarikaya and G. v. Bochmann,. “Obtaining
Normal Form Specifications for Protocols.”

Computer Networks Usage : Recent Experiences,

A B W(Sung Hee Woo) #3349

1990¢ 24 : FFgta AAALM
&3 4 (FEAD

1993¢ 24 : FEoi%a dEgd A
A £9)(0
44

1995¢ 39 : FEdida HAAM
g3 whataby 2

19939 39 ~dA : FHEd%m ARV
¥ TP Hob - ZREZ I3 HFH B AZEd] FHF

10.

11.

12.

pp.601-612, Elsevie Science Publishers, 1986.

. H. Ural and R. L. Probert, “Step-Wise

Validation of Communication Protocols and
Services,” Computer Networks and ISDN
Systems 11, pp.183-202, 1986.

S. T. Vuong and Sang Ho Lee, “TESTGEN+ :
An Integrated ENviromment for Protocol Test
Suite Generation, Selection, and Validation,”
Proc. of FORTE "93 Oct. 1993.

S.T. Vuong. Sang Ho Lee and P. Zhou,
“Protocol Test Validation :
and Examples,” Invited Paper, Proc. of CFIP
‘93, Apr. 1993.

P. Zhou, “On TESTGEN, An Environment for
Protocol Test Generation and Validation,”

Principles, Tools

Master Thesis, Dept. of Computer Science,
UBC, 1992.

R B &(Byeong Ho Oh) #3]¢

1974d : FFuEUY EGE B3
WHEAUG FG Y
AP, ARALE (D).
Aza%a ARG
2 ARAL T (44,
Feostn AAA L
PRETEE]

19854~ FUAEUY AAANT 25
x394 gob L2ESFY, dolg 93, AFG BUE

1628

www.dbpia.co.kr

164 HEBE SR '95-6 Vol.20 No.6

#F 48 $(Sang Ho Lee) 339

19764 28 sAgm AAAL
a3} 29 (2D

19819 29 - 4dem oty A
AA B 29 (2o
A

19899 29 sAMNER Y AAAAER 24 (FEY
Ah

197614 19~19799d 54 #6343 AA4ANL L2 aefv

1981 69~1983¢ 99 : AABANATA HFAT7H

1989+ 19~19909 129 @ @3R3}y A

1990 129~1991d 249 @ 35 98T A74 $EAd7H

19921 9¥~1993'd 8¥ : Fvrt UBC #EA+4

1981 ~8A - FEUSR AFE AT aF

19949 ~dA - FERSR ALY

* T4 Eob ZEEZ 38 AlEYol, £ZEH0 38F

1630

www.dbpia.co.kr

