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Statistical Analysis of Morphological Filters for a Stationary Source
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ABSTRACT

Statistical properties of three dual morphological filters of dilation/erosion, closing/opening, and clos-opening/open-closing and
their statistical relations are analyzed for a stationary source using probability laws together with set operations. The principal sta-
tistical properties obtained are : (1) a mutual relation between the cumulative distribution functions (cdt’ s) of filtered sequences
by a pair of dual morphological filters, and (2) the representation of edf s of filtered sequences by hybrid morphological filters as a
linear sum of those of the basic dual filters, namely, dilation and erosion. From these, we can subsequently obtain some relative
statistics of morphologically filtered sequences compared with the source statistics.

Computer simulations for a Ist-order Gauss-Markov source clearly show the validity of the statistical properties developed in
the paper
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[. Introduction

Mathematical morphology introduced by
Matheron (1) and Serra (2] is one of the most
active research fields in nonlinear signal pro-
cessing. which is originated from the set
algebra for the quantitative description of
geometric structure of binary images and
later on extended to grayscale morphology
(2.3,4]). Morphological filters such as opening,
open-closing, etc., have found extensive
applications in the areas of image analysis
and processing (5.6.7.8).

The basic dual morphological operations,
i.e.. the dilation and erosion, are completely
equivalent to the lst and last ranked-order
filters. respectively. Their statistics for an
independent and identically distributed(iid)
source have been already found in some bibli-
ographies about “median filter” {9) and about
“order statistics” (10,11].

The other two duals, the opening/closing
and open-closing/clos-opening, compared with
the median filtering. possess very interesting
properties (12,13) that the median filtered
sequence is bounded below by opening and
above by closing., the median root sequence is
bounded below by open-closing and above by
clos-opening. and the open-closed and clos-
opened sequences are median roots them-
selves, For an iid source, statistical properties
of the morphological open-closing and clos-
opening have been analyzed in (6) with the
threshold decomposition method, and statistics
of all the three kinds of duals mentioned
above are studied in (14]). Recently a new
approach to statistical analysis of opening
based on the basis functions of the filters has
been considered in (15).

So far statistical analyses of the morpholog-
ical filters have been widely studied for an

iid source in (6,9.14.15) as noted above.
However they have limited practical impor-
tance because real signal sources such as
speech and image signals, unlike white noise,
are far from the assumption of iid processes.
From this point of view, we are interested in
a stationary source.

The goal of this paper is to find statistical
relations between dual morphological filters
and to analyze their statistical properties for
a stationary source.

The paper is organized into five sections. In
section II, the dual morphological operations
and their statistical relations for a stationary
source are dealt. In section III, the statistical
properties of dual morphological operations
for a stationary source are developed. In sec-
tion IV, for a specific application, the statis-
tics are analyzed for a stationary source
whose joint probability density function (pdf)
is symmetrical about its mean. In section V,
to test the statistical properties developed in
preceding sections, computer simulations are
carried out for a stationary lst-order Gauss-

Markov source.

I . Dual morphological operations and
their statistical relations

The basic dual morphological operations are
dilation and erosion. The others are hybrid
operations using the basic duals. Let us
define these duals briefly and also examine
their statistical relations.

1. Dual morphological operations

For a given random sequence X={« 'i€J}and
a given structuring element W={i:i€I}, one
dimensional grayscale morphological dilation
and erosion of X by W, denoted Dw{X} and
Ewl{X), respectively, are defined as (7)
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Dw(X) = {d; * d; = max{»; @ jEW)} and

Ew(X) = {e; : € = min(au; 0 jEWH.
where [ is a set of integers.

Let X/ and W, respectively, denote the
sequence X translated by j €I and the
reflected W with respect to the origin as

X[ =2y i €1l jEN and

W=1{-i:i€l.

It then follows from the above definitions
that

Dy { X} =Dy X[1=(Dyt X))

EWjT{X}:EW{X"AJF(EW(X})T,V (1)

Dyl X}=-Ey{-X}. and Ew{X}=-Dwi-X}.

The hybrid duals, the opening and closing
of X by W. denoted Oyi{Xl={o; i€} and
CwiXt={c; i€, respectively, are defined by

Owi X} =DylEwiX}t and CylX}=EwlDyiX}}.

The other hybrid duals, the open-
closing(opening followed by a closing) and
clos-opening. denoted OCy{X} and COui{X),
respectively, are defined by

OC A X)=Cyl Oyl Xt} and COWIXI=04{Cw{X)}.

It follows from the translation properties in
Eq.(1) and structuring element decomposition
that

Ow{Xt=-Cyl-X}, OWJT(X}=OW{X).

OCW X}=-COw{-X). CWJ.T{X}=CW{X) .

OCw X} =Ewl Dy{Ew{X}}, OCw HX)=0Cw(X}.

COW X =Dyl EviDyiX}}}. and

COWjT{X}=COW{X}.

where V is identical to the binary dilation
result of W by itself, i.e.,

V=lirji €W jEW).

So far we have defined the duals and
described their functional relations. From the
above three kinds of duals, we can systemati-
cally describe the duals as in the following

property 1.

Property 1 : Let A and B be dual morpho-

logical operations such as dilation and ero-
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sion, opening and closing. and clos-opening

and open-closing. Then the filtered X by dual

morphological operations with a structuring

element W can be expressed by
Auw{X}=By{-X}.

and if W is a contiguous structuring element

of size N such that

W={i,+i:1=0,1.---,N-1 and i,€} (2)
then
Al X)=(Byl-X1]. (3)

where the translation j equals zero except for
dilation and erosion, i.e.,

DA X} == (B =X "z 1.

Proof : The lst statement is merely a sum-
marized form of the above results and Eq.(3)
is clear from Eq.(1) since W =W'y, .y for
liq.(2). o

In the remainder of the paper. W will
denote a contiguous structuring element of
size N as in Eq.(2) and W,, will denote a con-

tiguous structuring element of size N+k.

2. Cdf's of dual morphological operations
for a stationary source

Theorem 1 : Let A and B be dual and X be
a continuous random sequence whose cdf is
continuous everywhere and stationary in the
strict sense. Then the cdf s of Awy{X)}and
BwlX}, denoted F,(x) and Fg(x), respectively,
have the following properties :

1-Fa(-x) = FByx(x)
where the right-hand side is the cdf of
Bw{-X} and therefore can be obtained by a
probabilistic transformation of Fp(x) corre-
sponding to the change of source polarity.

Proof : This statement is obvious from the
property 1, the stationarity of morphological-
ly filtered sequences by the afore-said three
duals for a stationary source (16), and the
fact that the cdf s of Z and -Z are F,(z) and
1-F,(-2). respectively. 0
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For an iid source, the statistical properties
of the three kinds of dual morphological oper-
ations have been already investigated
(6,9.14,15), but here, for the verification of
the duality property in theorem 1 and to
point out some mistakes in (6], (13}, and
(14}, the correct cdf s are summarized as fol-

lows.

Fp(x) = Fy(x)".
Fa(x) = 1-F x(x)",
Fp(x) = NFx(x)™(N-1) Fy(x)™,
Folx) = 1-NF x(x)"(N-1)F x(x)™", (4)
Feolx) = Felx) +F (0™ Fx(x) (1
+ AMPINVED B ) ) N-2),

Focx) = Folx) — FA’(X)ZNFX(I’) (1
+ ﬂ“—'é.lzﬂ—\’iilp\(x) Yu(N=2),

where F—;x(a‘) = 1-Fy(«) and u(N) is the unit
step sequence.

For a simple verification of correctness of
Eq.(4), we can substitute N=1 into Eq.(4) and
then verify whether each distribution func-
tion equals Fx(#) or not. If so, it is right
because X is not affected by any morphologi-
cal operation if N=1.It is then easy to show
that the references mentioned above are
incorrect for Fgp(2) and Foe(+) for iid sources.

Now we define some probability laws useful

for the remainder of the paper.

P-1 : P(A)=1-P(A),
P-2 : P(A+B)=P(A)+P(B)-P(A,B).

P-3 : P(A+(A,B)+(A,B,C)+- - - )=P(A).
N
P—4: P(A Ay, - - '.AN)=§'P(A.)
N-]
- ‘_glP(Ax'*'(A[H-AHZ- Tt .AN))
w(N--2),

151
P"‘S . .P(f/ll'i"Az"‘“ R +AN = ZN]P(A,)
N_1
- EIP(A[:(AIvl—*_AMZ'*_ e +AN))

w(N=2),
P-6 : P(A+B)>P(A), P(A,B)<P(A),
P-7 : P(A)-P(A,B)+P(A.B,C)-P(B, ()
=P(A+B+C)-P{(B+C) =20
P-8:Jx(B; /1)= (B p. (Bio1 /s Biez st +Biek ym))
=B;/m for 1<K<M

where A denotes the complement of an event
A, (A+B) and (A,B) the union and intersec-
tion of two events A and B, respectively, P-4
and P-5 result from the recursive operations
of P-2 and satisfy the duality principle (17,
pp.24), and in P-8 Bi/w=(Bi. Buy, * © * . Bp1).

[l . Statistics of dual morphological
operations for a stationary source

In the remainder of the paper we assume
the source X to be stationary in the strict
sense, and Ay~ (X) denotes the filtered X by
a morphological operation A using W,, and
Fa (%) the cdf of Ay (X).

Theorem 2 (dilation and erosion) : Let X be
a stationary continuous random sequence.
Then the dilated and eroded X's with W have
the following properties :

(a) Fpu(x)SFp(x) <Fx(x) S Fg(x)<Fg,(x),
(b) ZFD(X) ﬁFD.l(X)*’FDq (x),
ZFE(X) EFE-l (X)*FEH(X).

Since dilation is max operation within
structuring element, Dy(X) <Dy, (X). Thus it
is reasonable that Fp.,(x)<Fp(x) as in (a) of
Theorem 2. Furthermore as N increases, the
increasing rate of dilated result corresponding

to the unit increment of size of structuring
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element from N to N+1 becomes smaller.
Therefore Fplx)-Fp.1(2) <Fp,(2)-Fp(4) as in (b)
of Theorem 2. In other words, the difference
Fp(2)-Fp., (2 is decreasing function with
respect to the ratio N/(N+1).

The results of erosion can be explained in a

similar manner.

Theorem 3 (closing and opening) : Let X be
a stationary continuous random sequence,
Then the closed and opened X s with W have

the following properties :

(a) Fol®)=NFp(2)-(N-1)Fp. (),
Fo(2)=NFg(2)~(N-1)Fy, (2).

(b) Fen(#) < Fo(#) <Fy(2) < Folx) < Fou(a).
F(2) S Fo(2) € Fyl2) <Fo(2) < Fylal

Note that the theorem 3 also holds for

Eq.(4) of iid sources.

Theorem 4 (clos-opening and open-closing) :
l.et X be a stationary continuous random
sequence. Then the clos-opened and open-
closed X s with W have the following proper-

ties :
(a) ]"a)(z):frc(1)+[F1x,\' it Fan ‘\"ll(")] u(N-2)

N2, . .\
+ § (D) UFpev e o (8= Fpin s v ()

+F[J(er‘rl N’l(")_FD(N'l ,‘1\')('1)]1.1(1\]”3),
Foc(l):[?o( 1)*‘:F51N1 m(")‘lph‘(}q.l_o M(’)]U(N‘2)

N-2
+1§ (i*l)’.FEl‘\')'L .\1(1)'17[;(1\/‘1‘, N)(")

*I?E(N,] - ‘\'.1‘(1)‘1’7‘1.;4‘\', N,U(Z)]U(N"B).
(b} Fela<Fgole),  Focld <Fpla),

where FD(L.M,N)(z) and FE(L‘M‘N) («) are the
cdf' s of dilated and eroded X's using a non-
contiguous structuring element W »» which

consists of two contiguous structuring ele-
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ments of size L and N and split by M,
defined by

W=t 1.2, L L+M+1 L+M+2,  L+M+N}.

The proofs of above Theorems 2, 3. and 4
will be later in the appendix. Note that the
cdf s of hybrid duals can be represented by a
linear combination of those of the basic

duals, namely, dilation and erosion.

V. Statistics for stationary sources
of symmetrical joint pdf

For a specific application of the results of
the previous section III and for simple analy-
sis. we assume that (1) the source X is a sta-
tionary continuous random sequence and then
has a common pdf fx(+). i.e., the same mar-
ginal pdfs, with mean my and variance &y,

(2) whose joint pdf is symmetric about the

mean. i.e..
f(mX+'L1_mx+x2, o ,IT)X+XN)
= f{my-». Myxg, © - - My zx).

Note that a stationary jointly Gaussian ran-
dom sequence does satisfy the above assump-

tions.

logical operations and X a stationary continu-
ous random sequence whose joint pdf is sym-
metric about the mean. Then the filtered X
by dual operations using W have the follow-

ing property of symmetry :
FA(mx""l):l'FB(mx"’/)A

Proof : Consider first the basic duals of
dilation and erosion. From their definitions,
Theorem 1, and the definition of the cdf,
Fp(2) and Fg(z) can be rewritten by

www.dbpia.co.kr
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FD(’?):J:‘me S fmﬂxhxz, e :xN)d;.
Fg(x)=l—£°f‘ - Lm/(xl,xg, < e xpdx.

- dxn. Thus we have

Fl)(mx'*'x):f_:“-‘ﬁw cor J‘_:ﬂ‘xf(xhxz.

. .'xN)dx =£mf<o. - .
X
frmf(mx'i’xl,m,\"sz, t
X X X
:j J" .. f Rmy—x), my—x,,
- J—co -
6 o0
. ,7714‘("'1’[\')(1"’\' :fmx—xfm.r'x. o

o
f f(xl,xg, °
myx=x

=1-Fp(mx—2x),

where dx = dx;dx, - -

my kX

c L myt+andx

., XN)(];

where the third equality follows from the
symmetry of the joint pdf.

Applying the above methodology and results
of basic duals into Theorems 3 and 4, and
fact

Fewm{my-2), it

using the that FD(L.M‘N)(mx*"l):l’
is easy to see that
Fc(mx"”%):l'Fo(mx"ﬂ) and Fco(mx+1)=l_

Foclmy~+). And so Theorem 5 is proved. o

Theorem 6 : Let X be a stationary lst-order
Gauss-Markov process, with zero mean, unit
variance, and correlation coefficient @, gener-
ated by [17,18)

% = P tWy, (5)

where wi is white Gaussian noise with zero
mean and variance (1-#") and independent of
past outputs, i.e., E(w; %;)=0 for j) 0. Then
for highly correlated process (¢—1). the mor-
phologically filtered X with Wy(N22) have
the following statistical relationships.

(a) asp — 1,

Fp(2)=Fg(2)=F(2)=Fo(2)=Feo(2)=Fpo( 2)=Fx(2),
(b) asp - -1,

Fpla)=Fg(2)=Fpo(2)=(2Fx(«)-1)u(«),
FE(4)"‘{70(¢)=Foc(¢)=(2Fx(¢)‘l)ll(“u.)"‘l.
(c) standardized central moments

P mean |variance|skewness| kurtosis
]’erl 0 1 0 3

2 _2 | N2U4—-n)|3—4x—12
ip | V2 | 1-% At
Pl =0.798 | #0.363 | =0.995 =3.87

Proof : If p — 1, then + — =, and there-
fore all the cdf' s Fx(2)regardless of the types
- -1,

% is an alternative

of morphological operations. And if p
then x T Tz, i.e.,
sequence with respect to the index i. Thus we

have

limFp(+)=P(max(z, =) <x)

o
=P(0< 2, < 2)+P(-2< £,(0)
=(ﬁ2Fx(4¢)‘1) u(a).

Ll—g}FE( a)=P(min(4o,~a,,) z)
=1-P(min (s, —2,) >=)
=1-P(0< ¢o<‘z)‘P(¢<¢o<0)
=1+(2Fy(2-1) u(-4).

Using the fact that E{I}FD(N,i.M(“)szD(N‘ii
.n¥n{# and substituting the above relations
into theorems 3 and 4, we find (a) and (b) of
Theorem 6. And we obtain (c) of Theorem 6
from the definitions that, for a random vari-
able Z. the mean m=E(Z), the variance ¢*=E
((Z-m)*), the skewness=E ((Z-m)®}/¢’, and the
kurtosis=E ((Z-m)*)/¢*. Among these the skew-
ness and kurtosis are sometimes used as
dimensionless measures of asymmetry and

sharpness of pdf, respectively. b
V. Simulations

To test the statistical properties of morpho-
logical operations developed in previous sec-

tions II, III. and IV, we have generated
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eleven sources of lst-order Gauss-Markov
process varying correlation coefficient in
Eq.(5) as p=0, £0.3, £0.5, 0.7, *0.9 +
0.99. Each of them consists of 2 x 10° sam-
ples. For these sources, we have computed
numerically the statistics of three kinds of
dual morphological operations varying the size
of contiguous structuring element as N = 2,
3, - .10

Fig. 1 shows simulated cdf's and pdf's of
morphologically filtered sequences by three
extensive operations of dilation, closing, and
clos-opening using Ws;. when #=0.3, where. for
simplicity. those of their dual antiextensive
operations are omitted since they can be got
from the properties of symmetry of theorem
5. We can thus find in Fig. 1 that as in
Theorems 2, 3, and 4. Fo(x)<Feo(s),
Foc(ad < Fols), and Fpla) <Fe(2) SFx{2) SFp(a)
<Fg(2). Note that meo2mx=moc even
if Feoola) $Fx(2) dFpc( ).

Table 1 shows the mean values of the fil-
tered sequences by the extensive morphologi-
cal operations versus N when £=0.3. Here we
can see that the simulated means hold for

Theorems 2. 3 and 4. For example, we have

Table 1. Simulated mean values versus N for p = 0.3.

N Dilation Closing Clos-opening
2 0.4717 0.2038 0.0972
3 0.7397 0.3726 0.2610
4 0.9232 0.5091 0.4028
5 1.0612 0.6227 0.5225
6 1.1708 0.7203 0.6253
7 1.2609 0.8017 0.7102
8 1.3374 0.8751 0.7880
9 1.4035 0.9410 0.8583
10 1.4613 0.9987 0.9193
1902

the following numerical results for N = 5 as
2mp-mp,~mp=2x1.0612-1.1708- 0.9232>0,
me5mptdmp,=0.6227-5x1.0612+4 x1.1708=0,
memep=0.6227-0.5225>0.

Fig. 2 represents the simulated statistics of
the filtered sequences by the extensive mor-
phological operations versus N for #=0.9 and ¢
= -0.99. Their means and variances are
monotonic with respect to N, while the skew-
ness and kurtosis are not monotonic. As
expected from Theorem 6. for a positively
higher 2. the morphologically filtered
sequences have almost gaussian-like statistics
in view of skewness=0 and kurtosis=3, while
for a negatively higher they become half
truncated gaussian-like with both skewness®
0.995 and kurtosis==3.87.

Similarly, Fig. 3 illustrates the results ver-
sus for N=5. All the statistics converge on the
two extreme limits of ¢ - =1, as tabulated

in (¢) of Theorem 6.
V. Conclusions

In this paper. We have analyzed statistical
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Fig. 1. Simulated c¢dr's and pdf' s of morpologically
filtered sequences by three extensive
operations of dilation, closing and
clos-opening with W5 for a lst-order
Gauss-Markow source of p=0.3
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Fig. 2. Simulated mean values of the filtered sequences versus N for a lst-order Gauss-Markov
source of #0.9 and £=0.99.
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relations and properties of dual morphological
filters for a stationary source using some
probability laws and set operations.

We first introduced statistical relations of
the basic dual of dilation and erosion as stat-
ed in theorem 2. Based on these, we found
out the cdf s of the hybrid morphological
operations. i.e.. closing/opening and clos-
opening/open-closing, in a closed form, as in
theorems 3 and 4, and compared the cdf's
and their means one another as in theorems 3
and 4.

For a specific source of symmetric joint pdf
about its means. we saw, as expected, that
the statistical symmetries also exist between
duals as in theorem 5. As such a source and
for the experimental purpose, we took a 1lst-
order Gauss-Markov source which are often
referred to as a simple signal model in digital
signal processing.

Computer simulations are carried out to see
the statistical behaviors of the dual morpho-
logical filters for a lst-order Gauss-Markov
source. and the results show a good agree-
ment with the theoretical statistical proper-

ties developed in this paper.
Appendix

In this section we present proofs of

Theorems 2. 3, and 4 in section [II.

1. Proof of Theorem 2 ! Using the defini-
tion of dilation in section II , we have

Fp(=Plyy<x 5<a - - - ay<a)

SP(eS 2 5<z g S SP(n< ),

where the 1sd equality follows from the sta-
tionarity [16), the last two inequalities from
P-6, which equal Fp (2 and Fyx(z), respec-
tively. And using P-4 and P-8 and letting X

=(x<2), Fp(z) can be rewritten as

1904

Fr(=Fy(2)+Fp (2} -P(X+ X2, n-1)

With recursive operations of this result and
using P-6, we obtain the 1st term of (b) of
Theorem 2.

The other properties of erosion can be

proved in a similar manner. o

2. Proof of Theorem 3 ! Using the defini-
tion of the opening in section II, letting B,
=(xz)and eFmin(a,; 0 j € W), the cdf of OylX
} can be expressed as

FolD=Ple|< x ;5% + -+, eny<a)
N N1
=2 Pley< ®) £ (1-P(Jy(Bi/ ) u(N-2)

=NFg(2)-(N-1)Fg ().
where the 1st equality follows from the sta-
tionarity (16) and the last two from P-4, P-
8. and P(B,,yn)=1-Fg.(2). And for closing.
Fe(#) can be obtained either by the same way
used above or by using Theorem 1.

And from Theorem 2 and (a) of Theorem 3,
it is clear that

Fe ()~ Fela)=N(2Fp ()= Fp., (£} -Fpls}) <0,

Fon(£-Fola)=NQ@Fg, (£)-Fpy(2)-Fg(2)) 20,

Fol2)-Fp(2=(N-1)(Fp(2)-Fp.,{2)) 20,

Fola-Fgla=(N-1)(Fgla)-Fg,; () <0.

And so Theorem 3 is proved. ©

3. Proof of Theorem 4 @ Using the defini-
tion of the clos-opening in section 1I, letting
De(dpx) where demax(x,;: j&W), and using
JEV. V={2i,2i,+1, - - - 2(i,+tN-
1), we have

Fco(m)=P(91Sz,€‘2§m o .GNg’t)

eFmin(d,; :

:gP(eiS x))-gl(l-P(JNﬂ(D,-/ZNvl)))u(N—Z)(A.1)
=1-NP(Dj,;an-1)H(N-1) P(D;/20)
where the lst equality follows from stationar-
ity (16]) and the last two equalities from P-1,
P-4, and P-8. Eq.(A.1) can be viewed as a
weighted sum of P(D;,x) with respect to K s
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equal to 2N and 2N-1.
Letting X7(«<4+) and using P-4 and O-8,
we have

P(D; /1)=1-KFp( ) +Rgu(K-2). (A.2)

where RK:E; =P (Jx-i( Xi/n))

and can be rearranged from P-2 and P-8 :

K-1
RK;}g;NP(‘ i/N*l) u(K-N-1)

K-N-1

‘*’EP(X,'/Nq*(X,‘/N,S(l)))U(K’N'Z) (A.3)

=(K-1)FD.1(X) U(K‘N'1)+QK.
where

M= Xinen s Nt Xjonenet/ 8+ X N U(K-N-n-i),
1 K-N-1

QK=§1(—1)‘%’P(X,-/N,,,,s(l))u(K-N—2).
With some tedious and complex work, we

have
11 K-N-1-b
Q=L L (-1)** L (K-N-k-b) Fpiub, k-s. Nea
(x)u(K-N-b-2).

Substituting Qx into Eq.(A.3) and subse-
quently Eg.(A.3) into Egs.(A.2) and (A.1).
finally we obtain Fpo(x) of (a) in Theorem 4,
and also Foo(x) using Theorem 1.

The terms inside the 1st and 2nd brackets
of Feolx) in Theorem 4 equal P(A)-P(A,B)
and P(C+D+E)-P(D+E),
(Xiyn. Xnaw) . B=Xya1, C:(Xl/NvXNfirZ/N)- D=Xp. .
and E=Xp..a. Using P-6 and P-7, Feo(x)=Fg
(x). Similarly it is readily verified that the

respectively, with A=

terms inside the brackets of Fyc(x) are all
less than or equal to zero. And so Theorem 4

is proved. o
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