DBF'ia

3 95-8-8-10

Minimum Unicode One-Shot State Assignment and its Realization
Using Graph-Theoretic Terms

Yong Jin Kwon*, Shuzo Yajima** Regular Members

2EZ o] 2HQl £ L o $3 Ha WS T ejdeiy 1 AY
A HAE B KBHE=

ABSTRACT

We clarify characteristics and present an optimization on the One-shot state assignment which has been known by the
Hamming universal One-shot state assignment. It if possible to perform the One-shot state assignment for all asynchronous
sequential machines by the Hamming universal One-shot state assignment. However, the assignment requires 2“%2"-1 state vari-
ables and 2m-1/m,m=[log, n] binary vectors per state for a flow table with n states, even when [log, n] state variables and only one
binary vector per state are sufficient for the One-shot state assignment for the flow table. We first provide a necessary and suffi-
cient condition for unicode One-shot state assignment, which is described by the recursive form of matrices. An algorithm for uni-
code One-shot state assignments which requires [log, n] state variables is developed in graph-theoretic terms, where n is the num-
ber of internal states of a given flow table. Besides, we propose an upper bound on the number of gate inputs required for unicode
One-shot state assignment realizations, and compare the upper bound with results in other papers. Finally, the topics in this paper
are overviewed and several future works are discussed.

key words: unicode One-shot, state assignment, minimum, asynchronous, sequential circuits, gracuits, graph-theoretic
terms, hypercube embedding

g)

£ =2oMe Hamming® T% &% 4eg@3ezw 4doix e ed Juydde 443 54& 93 s, <]

‘PpErgFddty FAFE TS
Dept. of Telecomm. & Information Engeneering
Hankuk Aviation University

**Dept. of Information Science, Faculty of
Engineering Kyoto University, Kyoto-Shi, 606-
01, JAPAN

OCE 0 95059-0210

B HF 19954 2/ 108

2154

www.dbpia.co.kr

WX/ E ol 8HQ FYPE ol &Y A2 I E 9 Feigd o H¥ 119

e gRE HAHgs] 4% FYE AYT Hammingd w9 98 A 89E ol &AM nlle] 48 Ze HE
7} #AE R @ AHETE G AL BE AP diEa 2% -1 dedssd 2 e 3 27'/m, m=(log, n)
Mol 27 W E PRE ¥ & =EdMe $4 9X 3 ofg I A EEE HE ¥R ¥ 20 E yEE I
of 2& o AAANA HHR FolAh, EF (log, nl/hel FHEFTE AL dhe df-Ed g S A8
o & ALt volsl of GR3d oY Td HedFe J¥o YA gate inputd] AFol WY A
(upper bound)& A A&, g FHe o @3} vz, AES A & U FES 4&4E 93 @

[. introduction

Sequential machines play a major role in
digital systems. Digitalcomputers are very
complex examples of sequential machines and
involvea combination of various sequential
machines.

The computer-aided synthesis of sequential
machines can be partitionedinto several tasks.
This paper addresses the state assignment-
problem. The state assignment problem can
be stated as an optimizationproblem: find an
assignment of binary vectors for the states of
asequential machine that will minimize some
costs of the resulting circuits.

The state assignment problem has been the
object of extensivetheoretical research.
Harmains (Har61), Karp (Kar64), andKohavi
{Koh70) developed algebraic methods based on
partitiontheory. Their approach was based on
a reduced dependence criterion, which led to a
good -assignment. However, no theoretical
result waspresented that related reduced
dependencies to optimal sequentialmachine
implementations. Moreover, no systematic
procedure wasdeveloped that could be used to
encode large sequential machines. However
the computer-aided synthesis of sequential
machines is aprerequisite for coping with the
complexity of very large-scaleintegrated
(VLSID) circuits.

Meanwhile, asynchronous sequential
machines are widely used in many ofpresent
day digital logic circuits. Even in synchro-
nously designedcomputer circuitry, asynchro-
nous sequential devices such as latches, trig-
gers, counters, etc., are widely used together
with combinationalelements to realize complex
sequential functions. However, due to thepos-
sible presence of races and hazards among
asynchronous sequentialmachines. they are
usually more difficult to design than synchro-
noussequential machines.

Furthermore. while every state assignment,
which has a unique binaryvector for every
internal state of a synchronous sequential
machine. may yield a correct circuit realiza-
tion, it is not a sufficientcondition for asyn-
chronous machine realizations. The state
assignmentfor asynchronous sequential
machines must ensure that no criticalraces
exist among the state variables [Yaj87]
{Ung66]. We areconcerned with the state
assignment for asynchronous sequentialma-
chines in this paper.

State assignments for asynchronous sequen-
tial machines can beclassified into two main
categories: 1) multiple transition-time
(MTT)state assignment and 2) single transi-
tion-time (STT) state assignment(Ung66).
Although STT state assignments generally
require morestate variables than the MTT

2155

www.dbpia.co.kr

120

WEBFRER IS '95-8 Vol. 20 No. 8

state assignment., STT state assignmentslead
to faster circuits. For this reason, STT state
assignments havebeen extensively studied
(Yaj87). (Ung66), (Tra66). (Liu63). The STT
stateassignments have been earlier classified
into 1) unicode and 2)multicode state assign-
ment [(Yaj87]. (Ung66}. Although it isknown
that multicode STT state assignments may
require fewer statevariables than unicode STT
state assignments, no general techniques
toderive efficient multicode STT state assign-
ments areknown (Ung66). One of known gen-
eral techniques is. due toHuffman (Huf55]},
named the Hamming universal One-shot
stateassignment, and requires(2™% "-1)state
variables for asynchronous sequential
machines with n states. where (x]) is the least
integer greater than or equalto x.

In this paper. we clarify characteristics and
present an optimization on the One-shot
stateassignment which has been known by the
Hamming universal One-shotstate assignment.
It is possible to perform the One-shot stateas-
signment for all asynchronous sequential
machines by the Hamminguniversal One-shot
state assignment. However. the assignment
requires (27%2 "-1) state variables and (2"
'/m, m=(log, n))binaryvectors per state for a
flow table with n states, even when (logy n)
state variables and only one binary vectorper
state are sufficient for the One-shot state
assignment for theflow table.

We first provide a necessary and sufficient
condition for unicode One-shot state assign-
ments, which is described by the recursive
formof matrices. An algorithm for unicode
One-shot state assignments which requires
{log, n) state variables is developedin graph-
theoretic terms. where n is the number of
internal statesof a given flow table.

Besides, we propose an upper bound on the

2156

number of gate inputsrequired for unicode
One-shot state assignment realizations, and-
compare the upper bound with results in oth-
erpapers [Tan71}.

This paper is organized in the following
manner: In Chapter 2, stateassignments for
asynchronous sequential machines are briefly-
introduced and the notation to be used and
the assumption being madeis contained. In
Chapter 3. we explain the One-shot state
assignmentin short, and a necessary and suf-
ficient condition for unicodeOne-shot state
assignments and a exhaustive algorithm are
proposed,and the number of state variables
required by the proposed algorithmis shown.
Chapter 4 are allowed itsspace for represent-
ing an upper bound on the number of gate
inputsrequired for One-shot state assignment
realizations.In Chapter 5, the conclusion of

this paper and future problems are stated.

[. Preliminaries

This chapter introduces basic definitions
and assumptions which will benecessary later
in the paper, and overviews state assignments

ofasynchronous sequential machines

1. Basic Concepts

Some assumptions being made.basic nota-
tions to be used, and definitions ofseveral
terms are given in this section.

A sequential machine of Moore type (Mealy
type. respectively) M is a 6-tuple (S, 4. T 6,
A.S,). S is a finite set of states. 4 is an
alphabet from which input symbols are cho-
sen. I' is alphabet from which outputsymbols
are chosen. & is a state transition function-
which maps from Sx4 to A is an output
function which maps from S to T (Sx4 to
) and S,,; is the set of initial states. The

www.dbpia.co.kr

WX/2UE ol BHQ] YL ol H4 ©RE W dugds o 4d 121

seque.ntial machines considered in this paper
are asynchronousand of the Mealy ones. A
sequential machine can be also defined by a
flow table that gives the state transition
(next state) function and the output function
in a table form, as shown in Fig.1.

A circuit representation of an asynchronous
sequential machine to bedesigned is shown in
Fig.2. The 4;s in this figure are the inserted
delays in the feedback paths.The following
assumptions are made on asynchronoussequen-
tial machines (for which the state assign-
ments are to bemade).

a) The asynchronous sequential machines
are represented by normal mode flow tables
(Ung66) (for normal mode flow tables the
next state entries are equal to the next stable
states or. equivalently, each unstable state
leads directly to a stable state),

b) The asynchronous circuit realizing the
given normalmode flow table is to operate in
fundamental mode: em i.e.,the inputs to the
circuit are not changed until it is a sta-

blestate.

d ¢, 0 a, 0

Figure 1. A flow table

¢) The delays in the feedback paths in
Fig.2 are adequate toeliminate hazards
(Ung66). Assumptions a)~c) have to be satis-
fied for the generalapplication of most of the
known results on asynchronous state assign-
ments (Ung66). [(Huf55). Elimination of
delays is possible under certain conditions
(Ung68), [AFM68).

Definition 2.1 stable state
A state s; € S is said to be a stable state
under input i; € I if and only if 8(s;, i)= s;. 0

Definition 2.2 race
Such a situation whereby more than one
state variable mustchange in the course of a

transition is called a race. 0

Definition 2.3 critical race

Such a situation, where the final stable
state reached by thecircuit depends on the
order in which the state variables change,is
referred to as a critical race. 0

An example of the critical race is illustrat-

X1 = 7
he 5 Combinational E A
Xm = > i/ P
Logic
Aile
M ' Yn
Asle
Pal<
Yo Y,
Al
| Il
Y1 Y)

Figure 2. Circuit representation of an asynchronous
sequential machine

2157

www.dbpia.co.kr

122

2 P AR SCEE 95-8 Vol .20 No.8

ed in Fig.3. which should be considered as a
portion of a larger flow table. Thetransition
from state 4 to state 7 involves a race
between y, and y, which is critical since i y,
wins,the system will stop in state 6.
However. correct operationresults if y, wins,

as well as if the race ends in a tie.

Definition 2.4 state assignment

A state assignment is defined that of
assigning statesof binary-valued state vari-
ables (binary vectors) to the states (rows) of

a flow table

2. State Assignments for Asynchronous
Sequential Circuits

This section overviews state assignments for
asynchronous sequentialcircuits.

Having arrived at a flow table that satis-
factorily describes the desired sequential
{function, we must. as the next step in Lhe
synthesis, select a finite set of binary state
variables and assign to each row of the flow
table one or more states of these variables.

Once this has beenaccomplished, it is a

Yy Y,

001

011
101

111

7,
7,
®),
@),

~J S Ov
\]
O - O O

Figure 3. An example of critical race

2158

straightforward matter to obtain truth tab-
lesspecifying the circuit outputs and next val-
ues of the state variablesas functions of the
current values of the input and state vari-
ables.

However. while every state assignment.
which has a unique binary vector for every
internal state of a synchronous sequential cir-
cuit,may yield a correct circuit realization, it
is not a sufficient conditionfor asynchronous
sequential circuit realizations. The state
assignment for asynchronous sequential cir-
cuits must ensurethat no critical races exist
among the state variables.

As a result of the above discussion, it
should be evident that the statecassignment
problem is by no means a simple one. Not
only must each row be assigned a unique
code. but the codes must be so interrelated
that notransition involves a critical race. [t is
desirable to achieve this endwhile minimizing
transition time(that is, the number of steps
for eachtransition), the number of state vari-
ables. and the complexity of the resulting

logic circuit.

3 @
® 4
5 @
G 4

Figure 4. A flow table

Ot > o o

www.dbpia.co.kr

WL/ARZ o] 2XY FYHE o1 EY & X3 ol Feyudy 1 4y 123

State-assignment techniques for asynchro-
nous sequential machines can be classified
intotwo main categories: 1) multiple transi-
tion time(MTT) state assignments and 2) sin-
gletransition time (STT) state assignments.
However, STT state assignments are mainly

concernedin this paper and described here.

Single Transition-Time assignments

Speed of operation is often an important
considerationin the design of switching cir-
cuits, and it is notunusual to pay for it with
significant increases inthe number of compo-
nents used. A key factor influencing the
speed of operation of asynchronous sequen-
tialcircuits is the maximum number of transi-
tion times requiredfor an inter-state transi-
tion(i.e. a transition betweenstates of a flow
table). State assignments for which a single
transition time is always sufficient for any
transition are called single transition-time
{STT) state assignments. STT assignments
may involve simultaneous changes in several
state variables for certaintransitions, where
transitions will occur through noncritical
races among all the variablesdistinguishing
the initial and final states.

The STT assignments consist of unicode STT
assignments and multicode STT assignments.
The unicode STT assignmentswere first intro-
duced by Liu (Liu63] and later further devel-
oped by Tracey (Tra66] in a more sophisticat-
ed way.In these assignments, a single binary
vector is assigned to each state ofthe flow
table, and all state variables which must
change in a given transition are allowed to
change simutaneously without critical races.

A universal unicode STT assignment, also
called the (2,2) separating system, is a way
to give a valid unicode STT assignment to

anyasynchronous sequential machine of an

arbitrary number of states regardless of the
configuration of its flow table. The study
based on the (i, j) separating systems for
constructing universal unicode assignments
originated fromthe work of Friedman et al.
(FGU69). So far, the (2,2) and (2.1) separat-
ing systems were investigated by them
(FGU69). Mago(Mag69), (Mag70), and
Pradhan et al. (PR76).

I[f more than one binary vectors are
assigned to someor all states of a flow table,
it may be possible toobtain STT assignments
with fewer state variables thanunicode STT
assignments, which we refer to as multicode
STT assignments. The multicode STT assign-
ment, tailored for a specific flow table with
fewerstate variables than the best unicode
STT assignment,was originally developed by
Frieds {Ung66). A universal multicode STT
assignment for a specificnumber of states was
given in a rather specialized way by
Friedman et al. (FGU69).

Recently, a method has been given for con-
structing multicode STTassignments which
requires 2 m state variables for 2™ states
under the assumptions that the set of input
states is divided intotwo disjoint subsets and
all allowed input transitions occur from ele-
ments of one subset into elements of the
other subset (KR78].

Reference (Ung69) gives a general back-
ground for this paper.

Multiple Transition-Time assignments

For all transition from a state s; to s; in a
flow table, if it is possible to assigna binary
vector to s; such that the binaryvector is
adjacent to a binary vector of s; ,a state
assignment which has no critical racesis
obtained. However this is not always possible

byone binary vector per state. For example.in

2159

www.dbpia.co.kr

124

AT SR '95-8 Vol.20 No.8

Vi Y2 Ys
YiY2Y¥s Y Y243 L

RN LiL (000
g (000) (000 U

(! (1 00)
g, (110) (110 4

(1 10

(a) (b) (<)

(a)An inter-state transition (b)STT (c)MTT

Figure 5. An example of STT and MTT

the flow table shown in Fig.4, there exist
following transitions: 8(1, X,)=2. 8(2. X,)=3. ¢
(3. Xyp=1. Clearly. it is impossible to assign
those stateswith adjacency ensured, by one
binary vector per state. Hence state assign-
ments in which adjacency betweentransitions
is ensured by introducing transient states are
called multicode transitiontime assignments.
Fig.5 shows an example of STT and MTT.
The binary vector (100} correspond to a tran-

sient state

I The One-Shot State Assignment
Using Graph-Theoretic

1.0ne-Shot State Assignment

The One-shot state assignment is a restrict-
ed class of STT state assignment, having the
added property that only a single state vari-
able changes for each inter-state transition.
The solution having presented is in the form
of a class ofuniversal assignments. The One-
shot feature is significant if some price must
be paid whena state variable changes state,
perhaps inenergy, heat dissipation. component
deterioration, or risk of malfunction. Such an
assignment mightalso have value as a tool in

coping with certaintheoretical questions.

2160

3 1 0 2 |]y,

Figure 6. A universal One-shot state assignment for
four-state flow table

A universal One-shot assignment for an n-
state flow table must imply at least n-1 state
variables,since from a binary vector repre-
senting state 7. it must be possible to reach
any of n - 1 other states by changing a single
variable. These pointsare nicely illustrated by
Fig.6. which depictsa three-variable universal
One-shot assignment validfor all four-state
flow tables(flow table states arenumbered
from 0 to n-1 in this section). A set R;
which is consist of binary vectorsassigned to
state i has two members, located as far apart
as possible, and each binary vector in K; is
adjacent to a member of R; for every i#j The
number of state variables is n-1 and in this
case, it is also the minimum number required
to assign all four-state flow tables even for
assignments notof the STT variety. Hence
this assignment isinteresting and useful apart
from its illustrative value. The generalization
of this assignment to larger tables. with n=2"
is the Hamming universal One-shot assign-
ment described below.

For the benefit of those familiar with
theHamming single-error correcting codes, The
Hamming universal One-shot assignmentmay
be stated that the binary vectorsassigned to

R, are those corresponding to Hamming code

www.dbpia.co.kr

WX/ E oA FYE ol 4Y HA dNF 9w g 1 dd 125

words with no errors and that, for i > 0, R;
consists of those words with errors in position
i

Theorem 3.1 The Hamming assignment
described above isuniversal One-shot assign-
ment.

(Proof)(By(Yaj87])

{11 Any code word (x€R;) is adjacent to x
®e;,eR(i*=0), where e is a binary vector
which contains nonzerodigit in only position i
and zero digit in the other positions. It is
obvious by the definition.

(2) Any code word(binary vector) yER; is
adjacent to y@e, ER; for every i#j where (k]
= [11®B(H. (k) is the binary value of k and &
denotes the addition modulo-2.

It is obvious that both are adjacent.Hence
if y®@eER; is proved, it is sufficient. For
that, show the em syndrome of y®e, is (J.

(H(y®e,)™ = Hy'®He,=(11Bk) = () .

where H is the parity check matrix of the

Hamming error correcting code. Thus,

R,{Be‘(= Rj

2. Unicode One-Shot State Assignment

In this section, we discuss a unicode One-
shotstate assignment referred to as a One-
shotstate assignment with only one binary
vector per state. A necessary and sufficient-
condition for the unicode One-shot state
assignmentis stated, and an assignment algo-
rithm developedin graph-theoretic terms is
proposed. The result of this algorithm mini-
mizes the number of state variables, Besides,
an upper bound on the number of gate inputs
required for unicode One-shot state assign-

ment realizations is shown in this chapter.

2.1 A Necessary and Sufficient Condition

In this subsection, a necessary and suffi-
cient condition for the unicode One-shot state
assignment is discussed.

Consider n state variables, yi,ys. .y ".¥a
,where each y; can take a value of either 0 or
1. Then, the set B of binary vectors of n
bits(y,.y2. . ys) has 2n distinct elements. Two
binary vectors of B are said to be adjacent,if
the two binary vectors differ in exactly one
bit. On the other hand. an n-cube is consid-
ered as a labeled graphsuch that each vertex
of the n-cube is labeled as a binary vector of
B. Namely, the coordinate of each vertex in
an n-cube can be regarded as a label. If two
vertices u and v of the n-cube are adjacent.
i.e., there is an edge(u,v) in the n-cube,
their labels are adjacent. Hereafter. a graph
is considered as an undirected andconnected
graph in this paperuntil otherwise is stated or
implied.

Definition 3.1 Edge index p

Let us consider a labeled graph of which
each vertex is labeled as a distinct binary
vector of n bits. For two vertices x and x’ of
the graph, an edge(x,x’) of the graph is said
to have an edge index p if and only if the
binary vector assigned to x is adjacent tothe
binary vector assigned to x’ and the two
binary vectorsdiffer in the pth digit. Other
edges have no indices. 0

For example, it is easy to decide edge

indices for all theedges of an n-cube.

Definition 3.2 Set of edge indices

Let us consider a subgraph of an n-cubein
which each edge is labeled as an edge
index. For two vertices x and x’ of the sub-
graph, we define E.(x,x’) as a setof edge
indices such that each edge index appears an

oddnumber of times on a path(x,x’), where a

2161

www.dbpia.co.kr

126

BEHERERECEE '95-8 Vol.20 No. 8

path (x.x’) is an alternating sequence of ver-
tices andedges, starting at x and ending at

x’. in which all vertices are distinct.

Notice that E.(x,x") is independent of the
consideredpath. | Ex.x") | is the distance
{(x.x") on the cube, where | T! denotes the
size ofa set T.

For simplicity. a set of ecdge indices {e,.p
o) . Pl 1s often denoted by pp,p. if there

is no danger of confusion.

Definition 3.3 Relative coordinates of the

o1+
0011 0111 \,0101
0100
0010 0000

" a subgraph S of 4-cube

edge indices in 8

12
‘\\

\1{3

- relatibe cordinates of S
Figure 7. Edge indices and relative coordinates

2162

vertices

Let us consider a subgraph of an n-cube.
We consider seme vertex r of the subgraph as
a referencevertex. We then associate to each
vertex x of the graph (x+#r) its relative coor-
dinatewith regard to r- E.(r.x). However the

relative coordinate of r is 0. o

Definition 3.4 Graph associated with a flow
table

An undirected graph associated with a flow

table (i is made as follows: Each vertex in G

corresponds to a stateof the flow table, and

g
a
ﬁ)

a) a connected graph

¢

&
} S
1 ¢

b} a layer representation for a)

Figure 8. An example of the layer representation

www.dbpia.co.kr

B/ o2 £y o8¢ Ha: BRI WY Fugdy 2 Ay 127

each edge of G representstransition between
the two states corresponded to the two end-
vertices of the edge. However self-loops are

omitted. O

Definition 3.5 Layer representation associat-
ed with a graph G

Let r be a reference vertex of G. We gener-
ate a partition of G into an ordered set
ofblocks or layers C;,Cs -, C;, +). so that for
a vertex x of G, x € C; «d(r,x) = I, where
d(r,x) is the distance between r and x.This
partition is called a layer representation asso-

ciated with G. o

Definition 3.6 SA, illustrated in Fig.9 Is

said to be the n—cube checking matrix. 0

Definition 3.7 Extended adjacency matrix

Let A = (ay) be a S| x| T| adjacency
matrix of a bipartite graph G(S, T'E) defined
by

d
S"\m~l 0 2m-2
O d
SAm = d tl:{“l]]
0 g ez
0 d
2"1—'2 e 2
d
SA,-2 O gm-
0 d
SApo = d
l .0 8A,._ e
0 d
Qm-.'i om 3

sni=(44)

Figure 9. Forms of SA,

(1 ifs € Sisadjacent tot; & T
4T { 0 otherwise

,where | x| is the size of a set x.

Suppose that EA is a square matrix made
of A such thatthe number of rows and
columns of EA is to be 2", where 2" (k <2°,
k is the larger one betweenthe number of
rows and columns of A, and n any integer.
For that, 0-row or column vectorsmay be
inserted into in EA. Then EA is said to be
anextended adjacency matrix of A = (ay). 2

I'ig.10 shows examples of the One-shot
state assignmentin which graphs associated
with flow tables are illustrated,and the solu-
tions to the graphs are minimum, taking into
account the number of state variables and
binary vectors per vertex Having less vertices
than the graph of Fig.10(b). the graph of
Fig.10(a) is required more state variablesand
binary vectors per vertex for One-shot state
assignment than that of Fig.10(b). What

makes it possible to perform the unicode One-

000
111

100 110
001 001

00 10

(b)

Figure 10. Examples of the One-shot assignment

2163

www.dbpia.co.kr

128

REA {2 R R CEE "95-8 Vol.20 No. 8

shot state assignment,as shown in Fig.10(b)”
In a viewpoint of graph theory what it is
possible to perform the unicode One-shot state
assignment is the same as it is possible to
embed a graph associated witha flaw table in
an n-cube. i.e. the graph is a subgraph of an
n-cube. Then. several properties concerned
withsubgraphs of n-cube are discussed as fol-

lows.

Lemma 3.1 A graph is bipartite if and only
if all its cycles are even.

(Proof) (By [Har69))

[f G is a graph. then its vertex set V can
be partitioned into two sets V, and V, so that
every edge of G joints a vertex of V, with a
vertex of V,. Thus. every cycle V, V, -V, V)
in G necessarily has its oddly subscripted
vertices in V|, say, and the others in V, so
that its length n is even.

[For the converse. we assume, without loss
of generality, that G is connected(for other-
wise we can consider the components of G
separately). Take any vertex v $, and let
V, consist of v, and all vertices at evendis-
tance from v,, while V,= V-V, Since all the
cycles of (G are even, every edge of G joints a
vertex of V; with a vertex of V,. For suppose
there is an edge joining two vertices of V.
Then the union of geodesics from v, to v and
from v, to u together with the edge uv con-

tains an odd cycle, a contradiction. 0

Lemma 3.2 A graph @ is bipartite if and
only if. a reference vertexbeing arbitrarily
chosen. the layer representation associated
with G has no edge whose ends are in the
same layer.

(Proof) By lemma 3.1 and the definition of
the layer representations associated with

graphs, it is obvious. O

2164

Lamma 3.3 If vertices of a graph, x. x €C,
and x is adjacent to x’ in the layer represen-
tation associated with the graph, then there
exIsts at least one cycle of oddlength includ-
ing edge(x.x’).

(Proof) Note bipartite graphs have no cycle
of odd length If there exist edges whose ends
are in the samelayer of the layer representa-
tion. the graph described by thelayer repre-

sentation is not abipartite graph. O

Definition 3.8 Product of a graph ¢, and
Gyt Gy x Gy

Let (3, and G, be graphs.Consider any (wo
vertices u = {u;.uy) and v = (v, vy) In V= V|
xV, = {(a b)| aV, and bEV,}. where V,; is a
setl of vertices of Gi{i = 1.2). Then u and v
are adjacent in G,x@G, whenever u, = v, and
u, is adjacent to vs. or u; = vy, and u; Is adja-

cent to v, where two vertices u and v are

sald to be adjacent ifthere is an edge(u, v).

Lemma 3.4 There exists no cycle of odd
length in an n-cube

(Proof) Define n-cube @, recursively as @, =
K, and @, = K,;XQ,,. where K, denotes the
complete graph with 2 vertices.Clearly, @, is
consisted of one cycle of even length. Assume
@, is satisfied with this lemma. Then it is
ecasy to show by the definition of the opera-
tion % that @, = KyX@,, has no cycle of odd
length. Thus. there exists no cycle of odd

tength in an n-cube.

Lemma 3.5 If a graph consists of one span-
ning cycle. and thelength of the cycle is
even, then it is possible to perform the uni-
code One-shot state assignment for the graph.

(Proof) By the above lemmas. it is obvious.

Lemma 3.8 If a graph consists of one span-

www.dbpia.co.kr

WX/2WE ol BAQ FUE o] &YW A4 BNF L UL 1 Y 129

ning cycle, and thelength of the cycle is
odd, then it is possible to perform the One-
shot state assignment for the graph, using
two binaryvectors per vertex.

(Proof) Let the length of a spanning cycle
be n. since 2n is even, clearly. there exist
cycles of 2n length in an n-cube. Select a
cycle amongcycles of 2n length, and match
the selected cycle to the graph on keeping the
adjacency relation between verticessuch that
beginning a vertex of the selected cycle
andthe graph. vertices of the graph corre-
spond to verticesof the selected cycle two
times. Then, the One-shot state assignment is

obtained.

Theorem 3.2 The unicode One-shot state
assignmentfor a graph with k vertices is pos-
sibleif and only if the graph is a bipartite
graph G{S,T.E) and an extended adjacency
matrix SA made from G can be transformed
into SA, shown in Fig. 9 by permutations
ofthe rows and columns of SA.

(Proof) Let SA, (see to Fig.11 be the worst
case of SA, with all the d = 1. Then, we
prove that SA,’ is a necessary and sufficient
condition for n-cube.

First, we show that SA,” is made from n-

cube.Consider an edge of an n-cube, and

s

-

~
3

Figure 11. Form of SA,’

remove all the edges paralleled with the edge
from n-cube. Then we obtain two (n-1)-cubes
Gi. G, such that(G, = (54t E'), Gy =
(8. tap) ' E7)). where (sgp 5,E€S, . te€T. p.q
=1.2,.... 2" and sy, t,E€G, is connected
with &,,.5,E€G; by all the edges removed,
respectively. Fig.12 shows G, and G,, and the
matrix form of G; and @G, is illustrated in
Fig.13. The same operation described above is
applied to G, and G, recursively such that if
necessary, the 1's of the matrices of (
(Skp. typ) and (s, t,)) is adequately moved to
the main diagonals, respectively. Thus. we
can obtain the matrix SA,” .

For the converse, in the case that SA, is
given, first 2-cube is made from SA,", and 3-
cube is made by connecting two 2-cubes with
2° parallelededges. Then by applying this
operation successively,we can obtain an n-

cube. o

Corollary 3.1 If a bipartite graph (S, T.E)
with n vertices are satisfied with theneces-
sary and sufficient condition of theorem 3.2,
the number of state variables used in the
unicode One-shot state assignment for the

graph is (log, n), except |S| or | Tl =1.

2.2 An algorithm developed in graph theo-

Gy

www.dbpia.co.kr

5.1 @ LA

S @ ® b
{Skp} {tkp}
{tig } {s1}

G

Figure 12. G, and G,

2165

130

REIZ e A CEE '95-8 Vol .20 No. 8

retic terms

In this section, we show an algorithmfor
the unicode One-shot assignment. whichis
stated in graph-theoretic terms.

An algorithm discussed below permitsus tn
find an exhaustive search procedurefor the
One-shol state assignment. For a givenlayer
of the layer representation for a graph. we
form the product of the possibilities for
eachvertex of the layer. taking into account
theadjacency condition. We also have Lo avoid
thegeneration of equivalent binary vectors
(i.e.. equivalent by permutation of the direc-

tionindices). The algorithm follows in details

step 1 © Transform a given flow table to a
graph (G associated with it

step 2 © Let S be a vertex of G havingmaxi-
mum degree. Generate the layer representa-
tionunder S as a reference vertex.

step 3 @ Assign a relative coordinate 0 to S,
and look for the relative coordinates of ('
layer from C, as follows®

olf x'©C, x€C;, and x’ is adjacent to x,

{tl(i}

then n possibilities for therelative coordinate
of x taking into accountits adjacency relation
with x” will he

plx x=1E(S x VUKD -E(S x)N Lk}

where A-B denoles the set yielded on
removing the element of set B from set A,
and k describes. (1.2, {log, n)). Hence we
chouse one among p(x| x’) for the relative
coordinate of x such that the chosen relative
conrdinateis not used for other vertices.

More generaily, if x is adjacent tothe ver-
tices Xy x2. . X, of . then the possibilities
for therelative coordinate of x taking into
accounlits adjacency relation with x;. x, . x,
are

pix o oxyxg o x)=plx L xDNplx i x) Y Oplx

Y

Xp

step 4 @ If all possible relative coordinate-
sare used until C, then back tracking method
is operated.

An cxample for the above algorithm is
illustratedin Fig 14. Transforming G, shown

in Fig. 14-(a) to a layer representation,

{tkp}

{skp}

{s1q} ®

Figure 13. Matrix form of G, and G

2166

www.dbpia.co.kr

BX/UZ o] 2AQ FHE ol4Y HA Oy O Aeged o 4¥ 131

Gyt
f h b ¢
b L g
d
a a h
C € C e
(a) (b)
b ¢ d h b ¢ d h
a1l 1 10 afl 1 1 0
e|0 1 1 1 fil1 0 0 1
g0 01 1 g0 0 1 1
t|1 0 0 1 el 1 1 1
(c) (d)
1 13
0
123
3 23 . . .
Figure 14, An example of the exhaustive algorithm
(e)
Fig.14-(b) is obtained. So. G, is bipartite with 3 state variables, as like Fig.14(e).
since no edge whose ends in the same layer
exists. Then an extended adjacency matrix V. Upper Bound on the Number of Gate
EA is made as like Fig.14-(c). By permuting Input Required for One-Shot State
the rows and columns of EA. SA,(Fig.14-(d)) Assignment Realizations
is obtained. We see then that the unicode
One-shot state assignment for G, is performed [t is useful to have an easily computed
2167

www.dbpia.co.kr

132

BRI EaimcT '95-8 Vol . 20 No. 8

upper bound on the logic necessary to realize
a given flow table. Hence in this section. the
number of gate inputsrequired for unicode
One-shot state assignment realizations is dis-
cussed.

For the discussion, we will give the four
followingassumptions:

1. The flow table is normal mode.

A normal mode flow table is one in which
any transition leads directly to a stable state
and no output is required to change more
than once during atransition.

2. The next-state logic isimplemented with
a two-stage AND-OR circuit.

3. The NOT inputs are permitted.

4. On the gates. there is no fan-in con-

straint.

Definition 4 1 Gate inputs

In a two-stage AND-OR circuit. inputs of
AND and OR gate are called gate inputs. ©

First at all. the number of gate inputs
required for the next-state function is consid-
eredfor the one-hot state assignment andTan’
s USTT {Tan71). together with that of state
variables required forthe two state assign-
ments.

In the one-hot state assignment. if in a col-
umn [offlow tables, there is a transition
from state p to state g. then we specify the
logic so thatfirst y,(y, is the gth state vari-
able)goes on (y, is of course initially on) and
then y, goes off. The general {form of Lhe
next-state function for y, is Y; = Fit y:[':lg.
The F;-function is a summation of terms rep-
resenting unstabletotal states (i.e., a sum of
unstable states in each input column of flow
tables) which lead to state i. Hence I,
includes a term Iy,. The Fy-function is a sum
ofs terms corresponding to next states reached

from state i. The yiﬁig-termserves to held y;

2168

on until the y-variablecorresponding to the
next state goes on. For the p-—q transition.
F,, has a term y, Each unstable state pro-
duces one component ofan Fj-expression and
adds one literal to an Fy-product. Thus, if m
is the number of input variables, r the num-
ber of states, and u the number ofunstable
total states. then an upper bound on the
numberof gate inputs is
2r+ulm+3)

.an expression arrived at by computing the
termsand literals added to the F,-and Fy,-
expressions be cause of each unstable entry.
The number of state variables required for
the one-hot state assignment is r. Of course.
those components associated withthe state
variables increase in number linearlywith r.
Particularly when the number of unsta-
blestates is relatively small, the amount of
logicneeded in one-hot circuits is usually not
excessive compared with what is needed for
stateassignment requiring fewer state vari-
ables

On the other hand,in Tan’s USTT assign-
ment. the following is a summary of theas-
signment scheme.

1. Order the distinct destination sets D;, of
a given flow table where the set of states D,
= {pld&p [}) = q} is called a destinationset
under input I,

2. Associate a unique variable y’; for each
element D[] in the set of ordereddestination
sets such that y, = 1 for s€Dy{j} and y; = 0
for s & D],

3. For each variable y';, express the next-
state equation as a sum of simple product-
terms(i.e., a product terms such that it con-
tainsat most one state variable } such that a
simple productterm x.y°, is contained in the
equation ifand only if states in D,(t] are

involved in 1-transitions with respect to y;.

www.dbpia.co.kr

W/ E ol EHQ) UL ol 8 Ha ©RE Oy AHuda o HdY 133

The number of gate inputs required for
Tan’s USTT algorithm is

ZDim+m+1) (1<i<my))

.where D; is the number of stable states in
the ith input column(shortly, L D; is called
stable total states), m; the number of input
columns in a flow table,and m the number of
input variables. The bound derived above
increases as a functionof the number of sta-
ble total states of the flow table. It is inter-
esting to compare this bound with that
obtained by the one-hot assignment. Notice
thatthis bound tends to increase as a function
of thenumber of unstable states of the flow
table. Therefore, for flow tables having less
stable statesthan unstable states, the bound
derived in Tan's USTT will., in general. be
better than that derived from the one-hot
assignment. The upper boundon the number
of state variables required for Tan’s USTT
algorithmis d = L D;(1<i<m;). Note that
those components associated with the state
variablesincrease in number linearly d, but
not the number of rows(states)of flow states.

In the unicode One-shot assignment, we

obtain the following:

Theorem 4.1 For a given flow table, if the
following hold, then the number of gate
inputsrequired for unicode One-shot assign-

mentrealizations is less than or equal to
ulk,+M-1)+Zu; (1<i<k,).

u : the number of unstable total states

k; © the number of state variables

M : the number of input variables

u; : the number of ones that are contained
in binary vectors assigned to unstable states
in position I.

(Proof) Each unstable state produces one

product term.Each product term contains M

input variables and k,, state variables. The
equation Y; is consisted of u; product terms.
Therefore. an upper bound on the number of
gate inputs is u(k,+M-1)+ L u; (1<i<k,). ©

Since L u{1<i<k,) can be replaced by u=*
k,, we habe the follwing result.

Corollary 4.1 Given a flow table, the num-
ber of gate inputs requiredfor unicode One-
shot assignment realizations is less than or
equal to

u(2*k,+M-1).

D

Notice that the one-hot state assignment
requires$23-step transition while the One-
shot state assignmentwill result in circuits
operating in single transition time. Therefore,
the One-shotstate assignment will be able to
bring forthgood results for control circuits
thanthe one-hot state assignment even though
there exists no difference between the num-
ber of gate inputs requiredfor the two state
assignments. Remember that why the asyn-
chronous modeis adopted in sequential circuits
like control circuits. Because of the speed of
operation. In Tan's USTT.the number of
state variables is dependent of the number of
stable total states of the flow table.Hence the
number of flip-flops in unicode One-shot
assignment realizations is less thanthat in
Tan’s USTT, since the former is log, n,
where n is the number of states.

For example, the flow table for a simple
counter is illustrated in Fig.15. The one-hot
state assignment will require 2r+u(m+3) = 2
*6+6(1+3) = 36 gate inputs and 6 state vari-
ables. In Tan's USTT, the number of gate
inputs required is d(mtm+1) = 6(2+1+1) =
24, and the number of state variables is £ D;
= 3+3 = 6. However for the One-shot state
assignment developed in this chapter, we
have u=6. M =1, and k, = 3. So the upper

2169

www.dbpia.co.kr

134

HER{ZPAH IS '95-8 Vol. 20 No.8

1
2

@
@
6

®

Figure 15. A simple counter

oy v W [\Dr—l‘Ox
-~ @ @ wO|o
>

bound is equal to ulk,4#M - 1)+ X u, = 6(3+1
~1)+(2+3+2)=25 where X u; is obtained from
aunicode One-shot state assignment for the
flow table.shown in Fig.\ref{fig:unils}.This
result is better than the others,taking the
number of gate inputs and state variables
into consideration.

Besides, the number of gate inputs required
for output-equation in unicode One-shot
assignmentrealization is Z(k,+M). where 7 is
the number of total ones appeared in output
entries of flow table. In multicode One-shot
assignmentper state, the number of gate
inputs required for the next-state equations
is LxulkAM+1)+ Xy, and the number of
gate inputs required forthe output equations
is L*Z(k,t M)

V. Remarks and Discussions
The One-shot state assignment problem f{or
asynchronoussequential machines is consid-
ered. Up to now, the One-shot state assign
ment has only known bythe Hamming univer-

sal One-shot state.

2170

Ny2¥y3 r :Ylgfz):: =1
1 — 000 000 001
2 — 001 011 001
3 — 011 011 010
4 — 010 110 010
5 — 110 110 100
6 — 100 000 100

Figure 16. A One-shot state assignment for Fig.15

The main contributions of this paper are: 1)
A necessaryand sufficient condition for the
unicode One-shot state assignment is pro-
posed. where the condition is provided for the
first time. 2) An algorithm for it is developed
in graph-theoretic terms.The algorithm
requires (logy, n)] state variables for a flow
table with n states for which it is possible to
performthe unicode One-shot state assign-
ment. 3) we present an easily calculated
upper bound on thenumber of the gate inputs
required for unicode One-shotstate assignment
realizations by two-stage AND-OR circuits. It
is shown thatunicode One-shot state assign-
ment realizationsmay be smaller than the
one-hot state assignment realizations.taking
both state variables and gate inputsinto con-
sideration.

For future work, the complexity of the
One-shot state assignment is not yet known.
It is supposed to belong tomore difficult class
than the problem of edge-colorings of graphs
in time complexity. Efforts to clarify the
time complexity of the One-shot state assign-

ment are necessary.

www.dbpia.co.kr

Fwxx/aYE o2 Y FYE o1 &Y H4 dFE oY AugdH 2 d¥ 135

From the practical view point, the imple-
mentation of sequentialmachines in VLSI cir-
cuits design has to satisfy two major require-
ments:

i) regular and structured design that can be
supported by computer-aided tools:

ii) size and performance of the silicon
implementation.

These requirements imply to us to develop a
stateassignment taking the circuit realization
intoconsideration. It is supposed to be very

difficult, however.
Acknowledgment

We would like to thank all the members be
Professor Yajima s Laboratory at Kyoto
University for their useful discusstions and

great supports throughout this research.
References

(AFM68] D. B. Armstrong, A. A. Friedman, and
P. R. Menon. Realization of asynchro-
nous sequential circuits without inserted
delay eleements. IEEE Trans. Comput.,
vol. C-17 : pp.129~139, Feb. 1968.
[Bry86) R. E. Bryant. Graph-based algorithms for
boolean function manipulation.. IEEE
Trans. Comput.., Vol.C-35, 8
pp.677~691, 1986.

{ea83) Y. Tojma et al. Sequential Machines.
Iwanami Syoten, 1983.

(FGU69) A. D. Friedman. R. L. Graham, and J.
D. Ullman. Universal single transition
time asynchronous state assignments.
IEEE Trans. Comput., vol. C-18 :
pp.541~547. June. 1969.

(G70) Mago (3. Asynchnorous sequential circuits

with (2,1) type state assignments. in IEEE
Conf. Rec.. 1970 11th Annu. Symp.

Switching and Automata Theory, pages
pp.109~113, 1970.

(Har61) J. Hartmanis. On the state assignment
problem for sequential machines 1. IRE
Trans. Electron. Comput., vol. EC-10 :
pp.157~165. Jun. 1961.

(Har69) F. Harary. GRAPH THEORY. Addision
Wesley, 1969,

(Huf55) D. A. Huffman. A study of the memory
requirements of sequential switching cir-
cuits. Res. Lab. Electron., M.I.T., Tech.
Rep. 923, Mar. 14, 1955.

(Kar64) R. Karp. Some techniques for state
assignment for synchronous sequential
machines. [EEE Trans. Electron.
Comput., vol. EC-13 : pp.1160~1179,
Dec. 1964.

(Koh70} Z. Kohavi. Switching and Finite
Automata Theory. McGraw-Hill, New
York. 1970.

(KR78] J. G. Kuhl and S. M. Reddy. A multicode
single transition-time state assignment for
asynchronous sequential machines. IEEE
Trans. Comput., vol. C-27(No.10)
pp.927~934, Oct. 1978.

(Liu63) C. N. Liu. A state variable assignment
method for asynchronous sequential
switching circuits. J. Ass. Comput. Mach..
vol. 10 : pp.209~216, Apr. 1963.

{Mag69) G. Mago. Universal state assignments for
asynchronous sequential circuits. IEEE
Computer Group Repository, R-693-6, 1969.

(MIY90) S. Minato, N. Ishiura, and S. Yajima.
Shared binary decision diagram with
attributed edges for effcient boolean func-
tion manipulation. Proc. 27th Design
Automat. Conf., pages pp.52~57, 1990.

(PR76) D. K. Pradhan and S. M. Reddy.
Techniques to construct (2,1) separating
systems from linear error—correcting codes.
IEEE Trans. Comput., Vol. C-25, Sept.

217

www.dbpia.co.kr

136

R RE{E PHEHCEE '95-8 Vol .20 No.8

1976.

(Sas89) T. Sasac. On the optimal design of multi-
ple-valued pla's. [EEE, Trans. Comput.,
vol. 38(No.4), April. 1989.

[Tan71) C. J. Tan. State assignments for asyn-
chronous sequential machines. [EEE Trans.
Comput.. vol. C-20 : pp.382~391, Apr.
1971.

(Tra66) J. H. Tracey. Internal state assignments
for asynchronous sequential machines.
IEEE Trans. Electron. Comput.., vol. KC-
15 : pp.551 ~560, Aug. 1966.

(Ung66) S. H. Unger. Asynchronous Sequential

Switching Circuits. Wiley-Interscience,

& ¥»(Kwon Yong Jin) 339

Kwon, Yong-Jin was born in
Seoul., Korean, in 1964. He
received the B.E. degree in
eletronic engineering from
Hankuk Avation University,
Seoul, Korea, and M.E. and

Ph. D. degrees in information science from Kyoto
University. Kyoto. Japan. in 1986, 1990 and 1994,
respectively. Since 1994 he has been a Professor in
the Telecommunication and Information Engineering
Department. Hankuk A viation University. Seoul.

Korea. His current interests include logic synthesis
of sequential circuits, algorithm design and software
engineering.

2172

New York, 1966.

(Ung68] S. H. Unger. A row assignment for
delay-free realizations of folw tables
without essential hazards. IEEE Trans.
Comput., vol. C-17 @ pp.146~152, Feb.
1968.

(Ung69) S. H. Unger. Asychronous Sequential
Switching Circuits. John Wiley & Sons.
Inc.. 1969.

(Yaj87) S. Yajima. Asynchronous sequential
machines. Lecture Notes in Switching
and Automata Theory [. 1987. in

Japanse.

&BE=(Yajima Shuzo) 3¢

Shuzo Yajima was born in
Takarazuka, Japan. on
December 6, 1933. He received
the B.E., M.E., and Ph. D.
Degrees in electrical engineer-
ing from Kyoto University.
Kyoto, Japan, in 1956, 1958, and 1964, respectively.
He developed Kyoto University s first digital com-
puter, KDC-1, in 1960. In 1961 he joined the faculty
of Kyoto University. Since 1971 he has been a

Professor in the Department of Information Science,
IFalculty of Engineering, Kyoto University. engaged
in research and education in logic circuits. switch-
ing. and automata theory. Dr.Yajima was a
Trustees of Japan and Chairman of the Technical
Committee on Automata and Languages of the
Institute. He served on the Board of Directors of the
Information processing Society of Japan.

www.dbpia.co.kr

