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Integral Nulling for Linearly Constrained Antenna Arrays in the Presence of Random Errors
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ABSTRACT

The concept of optimum pattem integral in an linear array with equispaced antennas subject to random variations of array
weight and antenna position has been introduced in a constrained broadband null synthesis problem. To this end, the expected
integration of perturbed array factor and its power response with respect to spatial variable are analyzed and used in finding an
optimum weight vector to eliminate broadband interferences. Geometery of the optimum weight vector is discussed in the weight
vector space. Computer simulation results are presented to show the average array performance for different values of random

Crrors.
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1. Introduction

When random variations of array weight,
element (i.e., antenna) position, or incoming
signal wavefront exist, array performance is
expected to be degraded. It was shown (1,2]
that for an equispaced endfire array subject
to random variations of array weight and ele-
ment position, the expected directivity or sig-
nal-to-noise ratio (SNR) improves as the ran-
dom errors decrease. It was also shown (3]
that the expected power pattern of an arbi-
tray antenna array with directional element.
which is subject to random variations of
weights and element positions above their
mean values, resulted in a nominal (i.e.,
with no random errors) power pattern super-
imposed by a power level which is proportion-
al to the power pattern of directional ele-
ment. This proportionality depends on the
product of the sum of variance of the relvant
random errors and the sum of the squared
value of the expected weights. Using this
result, the problem of maximizing directivity
has been discussed with a constraint to the
susceptibility of the power pattern to the
random errors. Here, it was assumed that the
distribution of the relevant random variations
is statistically independent and normal with
mean zero and spherically symmetric. If the
correlations existing among weights and
mutual coupling between elements are
assumed to be negligible, the assumption of
statistically independence is reasonable (4].

In this paper, a pattern integral is used in
an optimal sense to achieve a broadband gain
response in a linear array with equispaced
isotropic elements which is subjected to ran-
dom variations of array weights and element
positions. The expectation of the integral of

array factor and power response are analyzed

and employed to find an optimum weight vec-
tor which generates a broadband gain
response in a specified spatial region. A nar-
rowband gain within a specified region, pat-
tern derivative or integral as a linear con-
straint may be used (5-7) to achieve a braod-
band gain response. Without loss of generali-
ty, it is assumed that: the expected element
positions are confined to a one-dimensional
space: the directions of incoming signals are
confined to a two-dimensional space: and the
element positions vary randomly in a three-

dimensional space.
2. Randomly Perturbed Linear Array

Consider a narrowband linear array with N
equispaced isotropic elements on the x-axis in
a three-dimensional space. Each element is
followed by a complex weight as shown in
Fig. 1. Assume that the array is subjected to
independent random variations of the array
weights and element positions. Then we have

the array weights and element positions as

W, = Cptx, 6}
and
d, = ndu,te, . for 1<n<N, @

where ¢, are the expected values of randomly
perturbed complex weights w,. ndu, are the
expected element positons: d is inter-element
spacing with no random error: d, is randomly
perturbed element spacings: u, is a unit vec-
tor on the x-axis: p, are independent complex
random variables with mean zero: and p, are
independent random vectors with all having
the same statistical distributions. If the array
is free of random variations of array weight
and element position, the array factor is

given by
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H,(u, 1) = p'c,

where ¢ is given by

c = [Cl c; ° CN]T
and
p= [ il L. emINdu] T

where u = cosf, 4 is the angle from the line

(=)
|

-

Array output

Fig. 1. Narrowband linear array.

nent of the NXN matrix P is given by
(Plyn = €™ for 1<n, msN, )

In practice, some errors by the random
variations of array weights and element posi-

(4) tions are expected due to array imperfections
) resulting from manufacturing process or

external circumstances (8). As a result. the

nominal array factor and power response are

of elements: f is frequency variable: a=27/v,
v is wave propagation velocity: j= ¥~1, and *.
T. and H denote complex conjugate. trans-
pose, and complex conjugate transpose.
respectively.

Also. the nominal power response of the

array is given by
[Hy(u.NH1* = "Pc, (6)

where the nth row and mth column compo-

2714

affected such that the p vector and P matrix
are perturbed in some ways. We assume that:
distribution of p , =(f ,,. P ,,.P ,») is indepen-
dent of n ; its distribution is spherically sym-
metric: and each cartesian component of g is
of independent normal distribution with mean
zero and variance ¢ */3. If random variations
are present with respect to array weight and
element position. the array factor can be

expressed as
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ad afl it b s U
H(u, p= wa,,c At e L (8)
i

[t can be shown that the expected array
factor is expressed in terms of the nominal

array factor as

E [H(uw )l =— i']}"“ H,e, D, (9)

where
§l=e ¢ -1 10

In taking the exepectation of perturbed
power response, we assume that the variance
of x , is proportional to the power of ¢, wih
same raito of ¥ for all n. This implies that if
the element has an ohmic resistance, the
variance of its weight variation is proportion-
al to the amount of power loss consumed in
the element. Thus the variance of x , can be

express as
¢ .,=7"%lc,l? . for 1<n<N. ay

Then the expected power response is given
by

E [H(u, MY = ;L-m,,(u Dit-

1

9

] Bl g

3. Expectations of integral Array
Factor and Power Response

The integral of the nominal array factor is

rafwili, Jupnde
e —p

T iad W
S0

where 1, = cosf, and u, =cosf, are the lower

f H,(u, Hdu= Z Cp™

)

and upper limits of a specified angular °
region. Note that the subscript u denotes the
upper limit. Now, the integration of the
array factor of a randomly perturbed linear
array is given by

f'_‘l{( w, fHdu =

X o Fifndie, 0 g, o G\ )

L My,
7|

‘]‘(I_/’)I(/[ ]+ 0o, + o,

. . i,
"‘](l/l.’('/[ Tiop a4 p u,_f"*‘“‘"
e 7

49

If it is assumed that ¢ ,, and ¢ ,, are small
compared to element spacing d, the denomi-
nator in (14) can be approximated using the
following simple approximation for a binomial

series.
(1+x)'= 1-x for |xI{1. t5)

Taking the expectatoin of the approximated
version of (14), we get the following relation-

ship.
Uy, ' L 1"- 2y
E{ j:” [1( zz,ﬂa’u} = ﬁ;‘m 3 7l ‘{; I{” (1@
(u, Ndu.

Also, the expectatoin of perturbed power
response can be represented as

f{le(u e du] i [ G du
] (e zx;)n?:ilic,,\2

a

where the nth row and mth column compo- -

nent of the P matrix is given by
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(14> e, —2) for 12:=m

2 —
[ [] o sefin =i, Jeefim e
e e .
Jafln—nd(1 4+ 5 7) 18
for 20490 1o, e N,

Based on the above results, we derive an
optimum weight vector for a set of broadband
nulls for eliminating jamming signals with a
constraint gain at the direction of a desired

signal.
4. Optimum Weight Vector

We consider the case of K optimum integral
gains of a; at (u,. fu). 1<k<K with a con-
straint gain # at (u.. f.). It is assumed that
a, and # are positive real numbers with the
range of 0<a,. B<1. The error between the
desired gain and the related array factor at

the kth point is given by

€(Upk. for) = TG ~ Pk W, 19
where
w=lw, wy, - - - wyl" {0
- [ o et ity RIS
AN ) } "" @

for 1 < & % K,

Up = cosb,. 0, is the angluar variable of
the kth optimum integral gain. and ¢ ,,; and
P ..« denote the x and z components of ¢ , at
the kth point, respectively.

The constrained optimization problem of
minimizing the expected integration of the
squared errors within the angluar region of
U,y and U, with a constraint gain # at (u,
f) can be formulated as

. N R -
min . SNy
1;{ > J le Catp, Judl d,
a

C ko0,

subject to /. Mo = | I V)

2716

p.= [eﬁfcdut R e(al‘cNduc]T. (23)

Using the method of Lagrage multipliers (9]
and assuming that ¢ and its complex conju-
gate ¢® are independent each other {10]. we

have the optimum weight vector as

i ) i
I | oy h )
¢ / T n “ 1". e
Vol U0
aolea ety
| o o4
where
v
el ay caa a7, 25
HA [ P Do /"V;AI\'} (2@
sabla,. jorta
ok Japd
T I @
et fNd
.
Pl p ,‘[ 8T
C oVil4s® Lo14a7 )
. o
2, DI
PO
5
2 (e 2) for n- m
» £
o Kl s, ol G
& e o o
i safCa-m)d @
for a2/l 1 <% nsn < N,

and [ is an NxN identity matrix.
It is assumed that P, is nonsingular. It can
be shown that the unconstrained optimum

weight vector is given by
Cop s ™7 "j‘i"‘ 7 ,P“ /‘) LG (30)
Equation (30) will be used to analyze the
geometry of the constrained optimum weight
vector.

5. Geometry of Optimum Weight Vector

The vector space which does not include the
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zero vector is called ‘affine subspace’ . which
is translated by a fixed vector from the ori-
gin (11). To find the translation from the
origin to the constrained surface, which is an
affine subspace, we formulate the following

constrained optimization problem.

min ol
c
subject to flf’czv 1+8°8. (31)

Using the method of Language multipliers,
we get the optimum solution as

ey
¢, = Y1t48 P, (32)

which is perpendicular to the constrained sur-
face. To find the geometrica property of the
optimum weight vector in (24), we denote the
N XN projection matrix as J, i.e.,
N
PR A T o9
be Py b,

It can be shown that J is idempotent, i.e.,
J = & but it is not Hermitian. Thus, J is a
nonorthogonal projection matrix which pro-
jects a vector onto the range of J. If we

define a subspace S, as
S,={c; 5. e=0}, (34)

S, is parallel to the constrained surface S,.

Thus we have the following relationship.
S, = {cte, cES,). (35)

Let y be the range of J. Since y satisfies
b cHy =0, (36)

any vector projected by J is on the S,. Let
d be given by

h.

d = ———7 e N
[)l.”['(r,l N (

Then the constrained optimum weight vec-

tor in (24) can be written as
cc,opl = qu,opt+d- (38)

From (38)., it is shown that the uncon-
strained optimum weight vector is nonorthog- -
onally projected onto the subspace S, by J.
Then the projected vector is added by d to
yield the constrained optimum weight vector.

Since d satisfies the constraint, so does c. gp.
6. Simulation Results

A linear array with equispaced isotropic ele-
ments has been simulated to find the perfor-
mance of the integral null. It is assumed that
the element spacing is half the wavelength of
array center frequency and the frequencies
for the constraint gain and the region of
optimum integral gains are the same as the
array center frequency. Also, It is assumed
that the random variation of the element
positions is small and thus ¢ is negligible
such that sqrtm in (22) is approximated
as 1. The constraint gain is assumed to be -
unit in the direction of a desired signal. Thus
the optimum weight vector is given by

.
Ceopp = —;«{)1;‘1‘7:/)]'{ (39)
Multiple integral nulls are experimented for

the case of three integral nulls at 50°-52°,

110°-112°, and 150°-152° as displayed in Fig.

2 for & *+y * = 0.001. It is observed that the

null depths are approximately-60 d. It is

shown that the null width and depth become
narrower and not deeper as the null gets clos-

er to the location of the constrained direction
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(iie., 8 = 90°).

width 85" each have been formed symmetri-

Two very broadband nulls of

cally with respect to the broadside direction
using two integral nulls over 0°-85° and 95°-
180° in a 4l-element linear array for & *+7y ?
=0.001 as shown in Fig. 3, where the beam
pattern of uniform broadside linear array
with no random errors is overlapped for com-
parison. It is observed that the sidelobe level
has been remarkably reduced by about 23 d
compared with that of the broadside linear
array while the main beam width becomes
broader. The null depth is shown to be
approximately -50 d8 over the angular region
related to the two integral nulls.

Also. the performance of the integral null
has been evaluated by processing a narrow-
band desired signal and two narrowband jam-
ming signals which are assumed to be all
complex. The real parts of the complex enve-

lope representations of the desired and two

o
—i.d

angie (degrees)

Fig. 2. Beam pattern with three integral nulls over 50°-
52°, 110°-112° .and 150°-152° for r=0.001 in an
8-element linear array.
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jamming signals have been generated by pro-
cessing three independent white Gaussian
random sequences through an 8th-order
Butterworth bandpass filter. The lower and
upper cutoff frequencies are 19.5 K and 20.5
H: respectively, when the sampling frequency
is 160 Hz. The imaginary parts have been gen-
erated by performing Hilbert transform on
the real part signals. The complex envelopes

of the desired and two jamming signals are

given by

s(k)=a,(k) ¥/ 4 (40}
and

ri{k)=a, (k) @™*7 4% for i=1, 2, (41

where f, = 20 H, T, is the sampling inteval of
1/160 second, Ela,(k)}=0.01. Ela,’(k)]=0.1,
$.(k) and #,(k), i =1 2 are the phases of
the desired and jamming signals respectively.

and k is a discrete time index. The phases

angis (deprees)

Fig. 3. Overlapped beam patterns for a 41-element lin-
ear array. (a) uniform broadside with no error
(b) linear array with two optimum integral
nulls over 0°-85° and 95°-180° for r=0.001
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. are assumed to be zero in the simulation. The

g
e iR (a)
RN TS T T "n,.y“-'v'.'.—}

constraint unit gain is set at the broadside
direction and a broadband null has been

formed between 48° and 54° using an integral ]
null. The desired signal is incident at the ; = e = i e e e =
broadside direction and two jamming signals . i ;
are incident at 50° and 52" to simulate a ii - - ]
broadband jamming environment. To generate ‘ t (b)
the signals with noninteger samples of time _' ‘ _ ]
delay., the interpolation method in (12] was e e e =omoome =
used. After processing the generated input e :
signals through an optimized 4-element linear :::ffE ~i
array, the real part of the complex output _c ]
signal was plotted in Fig. 4 with that of the .. . . 1@
desired signal and output signal from a a s s DL T T 0T
broadside uniform linear array for & *+7y * =
0.01 and 0.001. The corresponding estimation Fig. 5. Error signals: (a) broadside linear array (b) an
error signals, which are given by subtracting integral null with r=0.1 (¢) with r=0.001
the real part of the output signal from that
of s(k), are shown in Fig. 5. It is observed . - .
‘ z - / ™
"‘:/ ﬁ\' \"/\\i
‘v!‘l_‘;".n.“,,,1-,,1|lfll‘ilx.u.,,, ,,,, : - E[ E i ] ®
TR 5 L]
e @ S P T
mm 2ngic (degress)
1‘ , |||‘|l' .- ty '"\ vy ,‘ ',. « , ;l,l}I;‘;lli.’t’!}‘ ' ‘: _:fl—‘\ /\/ ’m‘
i P o | | s
sema *,
::‘: LA L
angic (dagress)
. e ~N/
VA
L ST TR I SR I ET RIS 3 “ f»!: !‘I ; (c)
e e T - :
) R ey T :
o = ax b2y ax < "= 4 Z £ < & e e W 15 ity
sampics angle (dzgrees)
Fig. 4. (a) Desired signal: output signals by (b) broad- Fig. 6. Beam patterns: (a) broadside linear array (b) an
side linear array (c) an integral null with r=0.1 integral null with r=0.1 (c) with r=0.001
(c) with r=0.0001.
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that the two jamming signals are successfully
eliminated with smaller random errors. The
estimation error decreases for smaller random
error while the array with integral nulls per-
forms much better than the uniform broad-
side linear array. The beam patterns of the
broadside linear array and the array with

integral null are shown in Fig. 6.

7. Conclusions

The pattern integral was introduced in a
randomly perturbed linear array with equi-
spaced isotropic element to synthesize a
broadband null. The effects of random varia-
tions of array weights and element positions
are analyzed with respect to the expected
integrations of array factor and power
response. It was assumed that the random
variation of element positions is small com-
pared to the element spacing and also the
random variations of array weights and ele-
ment positions are independently distributed.
The nulling performance improved as the ran-
dom variations decreased such that a broad-
band jamming signal was successfully elimi-
nated. It was demonstrated that the optimum
integral null performed well in forming a
broadband null to counteract incoming broad-

band jamming signals.
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