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ABSTRACT

The equation error formulation in the adaptive 1IR filtering provides convergence to a global minimum regardless a local mini-
mum with a large stability margin. However, the equation error formulation suffers from the bias in the coefficient estimates. In
this paper, a new algorithm, which does not require a prespecification of the noise variance, is proposed for the equation error for-
mulation. This algorithm is based on the equation error smoothing and provides an unbiased parameter estimate in the presence of
white noise. Through simulations, it is demonstrated that the algoritm eliminates the bias in the parameter estimate while retaining
cood properties of the equation error formulation such as fast convergence speed. the large stability margin, and global conver-

gence.
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I. INTRODUCTION

Over the past decade adaptive IIR filtering
has been studied extensively (1)-(6) and
many application areas have been considered
[7)-(9). Adaptive IIR filtering has a pole-zero
structure whereas adaptive FIR filtering has
only an all-zero structure. Inclusion of poles
in adaptive filtering changes the filtering
problem in many ways and adaptive [IR fil-
tering has many advantages over its adaptive
FIR counterpart. For example, in channel
equalization problems, communication chan-
nels are modeled to have zeros. Thus it is
necessary for an adaptive filter to have poles
to remove distortion caused by the channel.
In adaptive FIR filtering, however, poles are
approximated using zeros since FIR filters do
not have poles. Hence. the number of taps
must be large enough to get satisfactory
results. On the other hand. if we use adap-
tive IIR filtering. the zeros in the channel
model can be exactly countered using poles in
the adaptive filter. Therefore, the number of
taps in the adaptive filter is significantly
reduced and the computational burden is
greatly relieved.

Although adaptive IIR filtering provides
better performances in many applications, it
has a stability problem. In adaptive FIR fil-
tering. instability occurs when the coelfi-
cients get larger without bound due to a large
step size beyond the upper bound. In adaptive
IIR filtering. however. instability can occur
without the coefficients blow-up since the
poles outside the unit circle produce unbound-
ed output. Hence. there are two sources of
instability in adaptive IIR filtering. Despite
this stability problem. adaptive lIR filtering
would be an ultimate way to adaptive filter-

ing since it is promising in many signal pro-
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cessing applications. In general, there are two
approaches to adaptive IIR filtering that min-
imizes the mean square error (MSE). One is
the equation error formulation and the other
is the output error formulation.

In the output error formulation. an adap-
tive algorithm updates the feedback coeffi-
cient directly. Hence it is considered as a
natural generalization of adaptive FIR filter-
ing. The output-error adaptive filter is in a
recursive form in that the filter output is fed
back to the input. Due to this feedback. the
filter output is a nonlinear function of the
filter coefficients and the MSE surface is not
quadratic. This nonlinearity makes the out-
put error formulation complicated than the
equation error counterpart. Further, the MSE
surface may have local minima as well as a
global minimum in some cases. The MSE sur-
face for the output error formulation has
been investigated (10)-(12). The MSE surface
has local minima when the order of the adap-
tive filter is less than that of the signal
model. Moreover. even in the exact order
case, the MSE surface may have local minima
when the input is colored (11]. Some suffi-
cient conditions for the error surface not to
have local minima has been investigated (12].
The necessary and sufficient conditions are,
however. not known to date. Convergence to
a global minimum also depends on the specific
algorithm. No algorithm is known to converge
to the global minimum for all cases. The non-~
quadratic nature of the MSE surface also
makes adaptive algorithms slower than their
equation error counterparts.

In the equation error formulation, an adap-
tive algorithm updates the feedback coeffi-
cients in an all-zero, nonrecursive form. The
feedback coefficients are then copied to a sec-

ond filter implemented in an all-pole form.
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Therefore, the equation error formulation
uses an adaptive FIR filtering technique
directly. Algorithms like RLS and LMS can
be employed to update filter coefficients.
Adaptive algorithms based on the equation
error formulation have many properties in
common with the corresponding adaptive FIR
algorithm. The MSE surface is quadratic with
respect to the filter coefficients. Hence, it
has a global minimum without local minima.
Convergence speed is faster than that of the
output error counterpart. Adaptive algorithm
is in a simple form due to nonrecursive
nature of the adaptive filter. Moreover, it
has the self-stabilizing feature in that the
adaptive filter can remain stable even if poles
are outside the unit circle over a half of the
time (13). Unfortunately. however. its filter
coefficients are biased in the presence of
additive noise (14}. Thus the equation error
formulation has been limited to those where
the bias is not a significant problem.

Bias in the equation error formulation was
investigated by Mendel (14). The bias is a
function of the signal to noise (SNR) ratio.
That is, the smaller the SNR the larger the
bias. He devised an unbiased algorithm
assuming that the variance of noise is avail-
able. Similar approach was used by Treichler
for frequency estimation of a noisy sinusoid
corrupted by additive white noise [15).
However, these approaches require a priori
knowledge on the variance of additive noise,
which is not available in many real situa-
tions. Recently, two bias removal techniques
have been proposed: One is the BRLE algo-
rithm by Lin and Unbehauen (16} and the
other is the QCEE algorithm by Ho and Chan
{17). The BRLE algorithm, however, cannot
remove the bias completely due to stability

problem for some cases. On the other hand,

the QCEE algorithm has ambiguity in the
sign of the coefficient estimates.

This paper explores the bias problem and
proposes an algorithm that provides unbiased
coefficient estimates. The algorithm is based
on the equation error smoothing via a FIR
filter (or smoother) whose coefficients are
derived from the on-line adaptive filter coef-
ficient to be estimated. It is shown that the
smoother can eliminate the bias completely in
the presence of additive white noise.
Simulations are performed to demonstrate
that the new algorithm eliminates the bias
while retaining the nice properties of the
equation error formulation such as high
speed, global convergence, and self-stabilizing

feature.
I. ADAPTIVE lIR FILTERING

Cutput Error Formulation
Assume that the unknown system in Fig. 1
is described by the difference equation

N

(k) = gl_\'(k~t7 + ﬁox(k—i) o))
where a;’s and b/'s are coefficients to be esti-
mated. Throughout the paper, the subscript
‘a” in Fig. 1 will be replaced by others for
convience, For example, ¢, denotes the output
error and e, the equation error.

The output-error adaptive filter is described
in Fig. 2. The output-error adaptive filter
that approximates the unknown system is

governed by the difference equation
N o M
yoB) =2 ai(Bxyk=D+ Eﬂ 5, (k) xlk—~7). (2

The output error is then given by

g,(k) = d(k) - y,(k). 3)
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Here the desired signal d(k) is the contami-
nated version of the output of the unknown

system by additive noise v(k) and is given by
d(k) = y(k)+v(k)

”
= 'E_:]ag'(k-z)+ éob,x(k—/')+1,»(k), (4)

A coefficient adaptation rule that minimizes

the mean square output error (MSOE)
J(k) = Elej(k)} = Eld(k) - y,(k)}* (5)

may be obtained by differentiating the MSOE
with respect to the filter coefficient vector §
(k) defined by

BO=[ a, (B~ avkh bk - Eu(B]. (6)

Equation Error Formulation

Figure 3 shows the adaptive [IR filter based
on the equation error formulation. It is also
called a pole-zero adaptive filter since it con-
sists of two adaptive FIR filters. one for
poles and the other for zeros. The equation-
error adaptive filter is governed by the dif-

ference equation

Input z(k) Unknown

System

Adaptive

Filter

(= E GWdr-0+ T 6Wxte—) ()

which is nonrecursive. By defining
$ (k) = (d(k-1)-d(k-N) x(k)--x(k-M)]", (8)

the output y.(k) in (7) can be rewritten in a

linear regression form as
yelk) = 6 (k) $ (k). (9)
The equation error is then given by
e, (k) = d(k) - (k) = d(k) -6 (k) #, (k) 0

and the mean square equation error (MSEE)

to be minimized is given by

Jo(k) = Elef(k)) = E{d(k) -y (k) . )

Input z(k) _J B(q) Output y.(k)

: e, (k)

Desired signal d(k)

Fig. 2. Adaptive IIR filter based on the output error
formulation.

Additive
notse v(k)

_/

Output Jr/L Desired
yk)y - signal d(k)
-

Error signal e,(k)

Fig. 1. System identification configuration.
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Input z(&)

Output
1 yo(k)

Desired
signal

d(k)

Equation error

- A(q)

Fig. 3. Adaptive IIR filter based on the equation error formulation.

Note that the output y.(k) is a linear func-
tion of the filter coefficients since d(k) and
x{k)are independent of the filter coefficients.
Hence the equation error is also linear in the
filter coefficients and the MSEE is quadratic
in the filter coefficients. The MSEE surface
has a global minimum without local minima.

Using the instantaneous gradients. the
coefficients adaptation rule can be found to
be

6 (k+1) =0 (k) +re,(k) # (k). 12

Equations (10) and (12) constitute the LMS
algorithm for the IIR case. Throughout this
paper, this algorithm will be referred to as
the LMS with equation error (LMS-EE) algo-
rithm.

The LMS-EE algorithm is in fact a direct
extension of the LMS algorithm. Thus many
properties are common to both algorithms.
The LMS-EE algorithm converges faster than
its output-error counterpart due to the qua-
dratic nature of the MSEE surface. Further,
it has the self-stabilizing feature in that the
adaptive filter can remain stable even though
poles lie outside of the unit circle over a part
of the time. The main reason for this self-

stabilizing feature is the nonrecursive nature

of the equation-error adaptive filter. Despite
these advantages of the equation error formu-
lation, it has a major drawback. The filter
coefficient vector #(k) is biased in general in

the presence of additive noise.

. BIAS ELIMINATION FOR THE EQUA-
TION ERRROR FORMULATION

Begin to introduce the bias elmination tech-
nique by defining polynomials

1-A(@) = 1-aiq" - a,q" = anq”

1A (@) = 1- £,(0q" - 8,00 g" ~ - &5 (K) ¢*
B(q) = by+biq'+ byg*+-+ byq™ k)]
B(Q) = boR)+5 (0 g +b ,U g+ +b ylk) g*

where q" is a delay operator for a time vary-
ing process. Then the output error e,(k) in
(3) is given by

e, (k) = d(k) - y,(k) (1)
= d(k) - 7 ,(k) - B (q)x(k)
and the equation error in (10) by
e,(k) = d(k) - y,(k) 1

= dk) - A (q)d(k) - B (@x(k).
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Thus for some L. Note that, for a second order AA

elk)-e,(k) = - A (@LdK)-y, (k) =A (@ek) (8
or

ek = (1~ 4 (@e,(k) w
= 1-A(Qlldk) - y,(k}).

This is the well-known relationship between
the equation error and the output error.

In adaptive filtering. the ultimate goal is to
minimize the MSOE. However. the equation
error formulation takes a round-about
approach. As a result, in the equation error
formulation. the adaptive filter should mini-
mize the MSEE, which is a function of both
the output error and the feedback coeffi-
cients. In other word. the equation-error
adaptive filter should minimize the filtered
version of the MSOE. This filtering of the
noisy process d(k) by the feedback polynomial
1 - AA(q) produces bias. This facts suggests
one bias elimination technique: counterbal-
ancing of the polynomial l—/{(q).

Counterbalancing may be achieved by AR
filtering of the output error e (k) using a
proper polynomial. Clearly. the ideal case is
to use 1 - /i(q). The resulting algorithm will
be very similar to the output-error algorithm
by Feintuch {2}, which may not converge to
either a global minimum or a local minimum
(18). Hence. MA filtering {(or smoothing) is
desirable.

Define
(k) = (1+C(g) e k) (18

where the polynomial 1+ C(q) is chosen as

— 1l . (19
1- Ale) 1+

= 1+ (K)g'+e(k)g?++e(kigh

3524

(q),

1
1- Az h

1
1— g (kz = 4 (kz °

1+ a Bz +{ 4,k

+ 4 (R]a e e

i

and we can take
I+O@=1+aWe +[a D+ a'wla™ 0

using a second order approximation.
Similarly. for a third order /f(q), we may
have
140 = 14 &Re 7+ &b+ &' (B]g?
[ a(B+2 @ (W) @D+ @ We®
22

using a third order approximation.
From the above idea, the LMS-EE algo-

rithm is modified to have the adaptation rule
Blk+1)= B(R)+pel D)3 LB). @

Here e(k) is given by (18) and coefficients
of error smoothing polynomial 1+C(q) are

given by

alky=a,(k

" ) -
c(k)y=a.(k)+ 2_]5-,(/@) a;;(k), for2<i<N, o4

The algorithm (23) with the modified adap-
tation rule (24) will be referred to as the
LMS with smoothed equation error (LMS-
SEE) algorithm. Figure 4 describes the adap-
tive filter based on the smoothed equation
error formulation. It is interesting to see that
the order of 1+C(q) is the same as the order
of 1 - AA(q). Rationale on the order require-
ment will be discussed in the following anay-

sis.
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r Output
Yol(k)

7
Iuput z(k) ;
Bl
T
: +
Alg)
e(k)
Desired 1+ Clq)
signal Smoothed
(](k) error I

—

Equation

error

Fig. 4. Adaptive IIR filter based on the smoothed equation error formulation.

V. BIAS ANALYSIS OF THE LMS-SEE
ALGORITHM

The bias analysis of the LMS-SEE algo-
rithm given in (23) and (24) is very difficult
due to the time varying nature of 1+C(q)
and its correlation with 1 - A\(q)‘ To avoid
these difficulties, 1+C(q) is assumed to be
constant in the following analysis. The dif-
ference between time-varying and constant
1+C(q) in the LMS~-SEE algorithm is dis-
cussed after the analysis. In addition. the
additive noise v(k) is assumed to be white.

With constant 1+C(g), the smoothed error

is given by
N
e(b)=e )+ 2 celk=1. @

Now define

$,(k) = (y(k-1)--y(k-N) x(k)-x(k-M))"
$ (k) = [v(k-1)--v(k=N},0--0)". (26

Then we can decomposition ¢,k) in (10)

into

$.k) = $,(k)+8,(K). en

Now define the optimal coefficient vector as
6 = [21“'3Nb0"'bM]T. (2&

The desired signal in (4) is then rewritten

as
d(k) = $,7(k)8+v(k), 9
Therfore, we can rewrite e, (k) in (10) into
elk) = #7008+ v(k) - ($,00+$,0)8 (k). 60

Substituting (30) into (23) gives

Bk+D)= BB +uld (B +6 (D 6,7 (£)6+1(k)
18,0+, ~ X cf $,7C
k=0 6+u(k=)~[ ¢, (k—1) (31)

+¢,(k—o]’9<k—a]}.

In order to make the analysis as simple as
possible, the followings are assumed (14).

(i) x(k) and v(k) are statistically indepen-
dent.

(i1) v(k) has a zero mean with finite vari-
ance.

(iii) #.(k) and 4 (k) are independent and E
[$,(k) $ 716 (k) is finite and positive defi-

nite.
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Note that assumption (iii) above requires
statistical independence of {14). This requires
that #,(k) and 6 (k) do not contain any com-
mon element, which is clearly not valid. In
[14). Mendel used the decorrelation delay to
meet this assumption. However, it should be
noticed that assumption (iii) is invalid despite
the use of decorrelation delay since y(k-1) is
a function of 6 (k-1) and y(k-2), and y(k-2)
is in turn a function of 8 (k-2) and y(k-3)
and so on. Assumption (iii), however. works
quite well for the unit decorrelation delay,
which is the case of the LMS-SEE algorithm
under investigation. In the analysis of adap-
tive FIR filtering algorithms, assumption (iii)
is accepted as a consequence of so-called
"fundamental assumption” (19].

Taking expectation of both sides of (31) and
using three assumptions (i)-(iii} with white-
ness assumption of v(k) gives

EL8k+ D)= EL 8B +uEle(H) 6,7 ()8

—u( L4, (0 ¢.7 (O] +El¢,(4)

#TRNELBO) +4 Z, cEg,(h

¢, (k=116

i R CES, (0 uk=) )
—u ;:3] o Elg () ¢, (k=1)]

+E ¢k ¢, h=DNEL §(k-D].

Assume that the algorithm converges.

Then, at steady state, it is true

Hn L 8(R) = lim £l 8(k—1), forl<i=N. (3
Lt o

Therefore, taking limit both sides of (32)
and using (33) yields

(Eo 6,701+ Z cBla R 8.7k

lim 1 28] +[ELgu(B) 8.7(B)+ 2 cE16.(0)
B (34
¢ (=0 lim EL8(R) = (Blo(0) 6,7 (]

A ;
+ 260 8,701} + 2 cE16, (0 k=]

3526

Hence, for lim E(f (k) ) =0, it is necessary
that

(Eem 6.7 (014 £ 6.0 6.7 (k0]

. A .
lim ELO] = 2 cBLg(0 ek, o
We mat rewrite (35) as
a ¢
a, -+ ca o)
aztcya;+ o <
a,mL(:,a,\vylir-“~c‘.,~,,al = L,\
: U { (36)
{ (.) i l 0

Therefore. coefficients of 1+C{(q) for unbi-

ased estimates are given by

= ay

i1
a,+ > ca, -, for2<i<N.
=1

3m

i

[eH

Note that coefficients in (37) are limiting
values of (24). If the time varying 1+C(q) is
used. those ¢;(k)’s will be computed using
current coefficients 4 ;(k). 1<i<N. Hence,
for N=2,

alk) = 4 ,(k)

(k) = & (k) +4 *(k) (38)
and, for N=3

alk) = & ,(k)

Cg(k) = 3,\2 (k)+HA 12(k) (39)

clk) = &4(k)+24 (k) & (k) +4 (k).

Notice that these error smoothing coeffi-
cients are the same as those obtained by
inverting 1 - AA(q) and truncating to the
order N as in (21) and (22).

As mentioned in the beginning of the
analysis, the LMS-SEE algorithm employes
the time varying 1+C(q). What will happen
if we use time varying 1+C(q)? This can be
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explained as follows. At time k., coefficient
estimates are affected by filtering of the noisy
process d(k)by feedback coefficients 4 ;(k)'s.
Thus the equation error e,(k) contains the
undesireable component that is caised by the
addtive noise. This component, however, is
canceled through error smoothing using 1+
C(qg). Hence. as § (k) converges to the true
value 8, an unbiased estimate 6 (k) will
result. From this point of view, it is more
natural to use time varying 1+C(q) than con-
stant 1+C(q).

One important thing to mention is the order
requirement of 1+C(q). Equation {36) shows
that the order of 1+C(g) should be equal to
the order of 1—AA(q). This order requirement
on 1+C(q) restricts the applicability of the
algorithm to those where the order of the
adaptive filter is greater than or equal to
that of the unknown system. However, in
many practical situations of adaptive signal
processing applications, adaptive IIR filtering
is not superior to its FIR counterpart when it
is operating in a reduced order [20). On the
order hand, if the adaptive filter is operating
in the overparameterized situation, there will
be pole-zero cancellation, and poles and zeros
in the adaptive filter correspond to those of
the unknown system. Furthermore, the use
of extra poles and zeros has the effect of
reducing the eigenvalue disparity of the auto-
correlation matrix of the input and enhances
convergence and stability of adaptive IIR
algorithms (13].

V. SIMULATIONS

Refer back to the system identification con-
figuration in Fig. 1. The additive noise v(k)
is assumed to be white and is uncorrelated
with the input x(k). Both colored or white

noise are used as an the input x(k). As men-
tioned in section I, a stability monitoring and
projection scheme is required to guarantee
stability in adaptive IIR filtering. However,
if the step size is taken small enough, the
adaptive filter would be stable without the
scheme. All simulations in this section are
performed without a stability monitoring and
projection scheme.

The problem is to identify the unknown

system
- 0.8-1.67""
HAQ) = T 5,0 8150 7 )
using the adaptive filter
by B +b,(Rg "
Hy(g)= ~— Bt hbe (@)

1—a(Bg —akg *"

with the white noise input x(k) at SNR = 0
dB. Both the LMS-EE and LMS-SEE algo-
rithms are simulated. Step size values used
are pp = 0.002 for feedforward coefficients b/'s
and #g = 0.0002 for feedback coefficients a;’s
for all algorithms. It is interesting to note
that #p is chosen much larger than #z. This is
because that convergence of the feedfoward
coefficients tends to stabilize the convegence
process of the feedback coefficients. Figure 5
shows convergence of coefficients for the
LMS-EE and LMS-SEE algorithms averaging
10 independent runs. Clearly. all coefficient
estimates are biased except b,. The bias is
caused by filtering of noisy process d(k)
which is applied to the feedback section of
the adaptive filter. Hence, the bias in the
feedback coefficients is directly caused by the
noise process. This bias in turn affects feed-
forward coefficients via coupling between
y(k-1) and x(k-p)for I { j The coefficient esti-
mate by is unbiased since x(k) is uncorrelated
with y(k-i) for i = 1. The LMS-SEE algo-

3527
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rithm, however, provides unbiased coefficient
estimates for all coefficients as expected.

Last word on this example is speed of con-
vergence. The LMS-SEE algorithm is com-
pared to the LMS-EE and White's algorithms.
Figure 6 shows the learning curves for three
algorithms for SNR = 30dB. The step size val-
ues are set to yield the MSOE of -29.5dB for
all algorithms. The LMS-EE converges very
slowly due to bias. It may not achieve the
target MSOE if the step size values are set
too small. On the other hand, White's algo-
rithm and the LMS-SEE algorithm converge
about the same time. Now the step size val-
ues are set to yield the MSOE of -28.4dB for
all algorithms. Relatively large step size val-
ues are required for all algorithms for this
MSOE. Figure 7 shows the learning curves
for three algorithms. The LMS-EE congverges
first. the LMS-SEE algorithm the second.
White’s algorithm the last. However, we can
see the frequent instability in White's algo-
rithm due to large step size values. This
reveals that the step size values for White's

algorithm should be chosen small enough not

Coefficients
[o)

.2 j
2000 4000 6000 8000 10000

Number of lterations, k

Fig. 5. Coefficient convergence of the LMS-EE(dashed
curves) and LMS-SEE(solid curves) algorithms
for SNR = 0 dB (optimum coefficients are shown
in solid lines).

3528

to cause instability, and fast convergence
may not be achieved in general. The LMS-
SEE algorithm. however, can achieve fast
convergence for all cases. These results reveal
the nice feature of the LMS-SEE algorithm
over the existing LMS-EE and White’s algo-
rithms.

-
[o]

o]

- LMS-SEE

LMS-EE

(%]
(o]

White's

Ensemble-Averaged-Squared-Error, dB
=)

W
o

2000 4000 6000 8000 100001200014006

Number of lterations, k
Fig. 6. Convergence of the LMS-EE. LMS-SEE, and

White's algorithms for SNR = 30 dB with small
step size values.

|

|

]
|
|
J
|
{

White's ]'
% i

LMS-EE }

-
[w]

o

- LMS-SEE

Ensemble-Averaged-Squared-Error, dB
S o

W
o

2000 4000 6000 8000 10000

Number of lterations, k

Fig. 7. Convergence of the LMS-EE, LMS-SEE, and
White’s algorithms for SNR = 30 dB with large
step size values.
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Next example shows the global convergence
of the LMS-SEE algorithm regardless of local
minima. The following example is constructed
by Soderstrom [21). The unknown system is

given by

_ 1
AL = 5 0480 w

and the adaptive filter by

bu( )
1~ak)a —alka™*"

H,(a)= (43)
The input x(k) to the unknown system and

the adaptive filter is colored noise such that
x(k) = (1-0.7¢")*(1+0.7¢ ) ulk) (44)

where u(k) is white noise. The input x(k)
satisfies the persistent excitation condition.
Then the MSOE surface has a global minimu-
mat (a,. a;. by) = (1.4.-0.49,1.0) and a local
minimum at (-1.367,0.513,-0.23). Figure 8
shows the contour of constant MSOE and the
feedback coefficient trajectory. Filter coeffi-
cients are initialized near the local minimum
and it converged to the global minimum.
Another thing we can observe from Fig. 8 is
that the part of the coefficient trajectory is
outside the stability triangle. and the adap-
tive filter remains stable without aid of any
stability monitoring and projection scheme. It
is due to the self-stabilizing feature comes
from the nonrecursive nature of the equation
error formulation. This global convergence
and nice stability property can be achieved by
the LMS-EE algorithm. The coefficient esti-
mates are. however, biased in the presence of
additive noise. Therefore, the LMS-SEE algo-
rithm provides unbiased coefficient estimates
while retaining the global convergence proper-

ty of the equation error formulation.

0.25 \\

Feedback Coefficient a2

0.5 0 0.5 1 1.5 2

Feedback Coafficient a1

Fig. 8. The coefficient trajectory of the LMS-SEE
Algorithm for a multimodal MSOE case.

Simulations in this section show that the
LMS-SEE algorithm eliminated the bias in
the coefficient estimates if aditive noise is
white. Furthermore, it is confirmed that the
LMS-SEE algorithm retains advantages of the
equation error formulation such as faster con-
vergence speed, and a self stability features.
Hence. the LMS-SEE algorithm makes the
equation error formulation viable even in the

presence of the additive white noise.

V[. CONCLUSIONS

This paper studied the bias problem in the
IIR LMS algorithm. The IIR LMS algorithm
produces biased estimates for all coefficients
except the zeroth order MA coefficient if
there is additive noise in the input. An algo-
rithm is devised to get unbiased coefficient
estimates when the additive noise is white.
Simulations are performed to demonstrated
the performance of the new algorithm. The
new algorithm retaines properties such as the
self-stabilizing feature, global convergence,
and fast convergence speed while provides

unbiased coefficient estimates.
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