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A New Method for High Resolution DOA Systems
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ABSTRACT

In this paper, we propose a new weighted backward covariance matrix method to enhance the resolution for di-
rection-of-arrival(DOA) estimation. The proposed method (MEVM : modified eigenvector method) is an enhanced
covariance matrix method which is an extended form of the conventional covariance matrix. We analyze the effect
of using the weighted forward-backward covariance matrix on the performance of the eigenvector method(EVM).
By comparing the perturbation angle of the noise-subspace, we show that the spectral estimate obtained using the
proposed method 1s less distorted than the spectral estimate obtained using the conventional EVM.

The simulation results show that the new method is more accurate and has better resolution than the conven-

tional EVM under the same noise conditions.
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I. Introduction
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applications such as sonar, radar, and seismic explo-
ration. Many high resolution algorithms based on the
eigen-decomposition analysis of the observed covari-
ance matrix, such as MVE[2], MUSIC|5], EVM][3],
SNLM[1], and SHIRE[4] have been proposed for
solving this problem. These algorithms emphasize spe-
cific eigenvectors of the observed covariance matrix to
obtain the best spectral estimate which provide the
DOA information.

The quality of the estimation of the covariance
matrix is very important to get the best performance
of these algorithms. Since the observed sample covari-
ance matrix is perturbed by correlated noise, the per-
formance estimate of the spectrum using this conven-
tional covariance matrix is degraded when the signal-
to-noise ratio(SNR) is low and/or the arrival angles
are close to each other. Therefore, Raghunath[11] and
Rao[12] used spatial smoothing to enhance the co-
variance matrix. Moghaddamjoo[10] used spatial fil-
tering and Du and Kirlin[13] used temporal correlat-
ions between multiple snapshot to estimate the covari-
ance matrix. Basically, these methods use a similar
idea. They extracts more information from the given
data set.

We introduce a modified eigenvector method
(MEVM). MEVM uses the weighted forward-back-
ward covariance matrix to improve the estimation of
the covariance matrix. Likewise, this method extracts
more information than conventional method from the
given data set. Furthermore, the proposed method
reduces the phase error of the estimated DOAs.

In this research, we first analyzed the typical high re-
solution algorithms noted above. Then, we evaluated
the effect of using the forward-backward covariance
matrix on the performance of the EVM under various
conditions. Our simulation results showed that the
performance of the EVM was improved for DOA es-
timation when we used the weighted forward-back-

ward covariance matrix.

. Comparison of spectral estimates.

The high resolution algorithms for solving the DOA
problem emphasize specific eigenvectors of the obser-
ved covariance matrix to obtain the best spectral esti-
mate. The estimating spectra for these algorithms

have the following general form:
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Equation(1) shows that these high resolution algor-
ithms have the same general form and the only differ-
ence in each algorithm is a weighting function for the
square magnitude of the product of the steering vec-

tor, a(g), and the eigenvector, vi, Table 1 shows the

different weighting functions.

Table 1. The comparison of weighting functions

weighting function ]
1
MVE w; =~
e
SHIRE | w; = ————
NP VR b P
Ak
SNLM | ;=
MUSIC { w;=0fori=1, -, k,wi=1fori=k+1, - M
EVM | w,=0fori=1, k w.v=—;7 for i=k+1,-, M

The first-term(for i=1, ---, k) of equation (1) relates
to the signal-subspace and the second-term(for i =k +
1, -+, M) relates to the noise-subspace. The eigenve-
ctors in the signal-subspace(signal-eigenvectors) have
the DOA information where the signal are, while the
eigenvectors in the noise-subspace(noise-eigenvectors)

have the information where they are not. Therefore,
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the spectral estimate which is obtained using the
noise-eigenvectors or using the signal-eigenvectors has
better resolution and accuracy than the spectral
estmate which is obtained using all the eigenvectors of
the covariance matrix. Combining the signal-eigenve-
ctors and the noise-eigenvectors degrades the per-
formance because of the complementary relationship
between the two sets of the eigenvectors. Only one set
of the eigenvectors is needed for the best estimate of
the DOA. However, the signal-eigenvectors are easily
distored by the noise[1]. Therefore, MUSIC and EVM
use only the noise-eigenvectors to obtain the direc-
tion-of-arrivals of the target sources.

The comparison of the above algorithms(Table 1.)
is plotted in Fig. . We used the same conditions tor
each algorithm in the simulations. We used a linear
array with 10 elements and uniform spacing of 0.5
wavelength between successive sensors. Two sources
are located at -2° and 3°. The noise is correlated and
the input SNR for the array is 0dB.
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Fig. 1 Performance comparison of algorithms

From Fig. 1. EVM and MUSIC have better resol-
ution and accuracy than the other algorithms. This is
because MUSIC and EVM do not combine the signal-
eigenvectors and the noise-eigenvectors. Only the
noise-eigenvectors are used lo estimate the spectra for

these algorithms. However. even though the EVM
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spectral estimate 1s obtained using the best weighting
of the eigenvectors, it is severely degraded when the
SNR is low and/or the sources are close to each
other. This is true because the eigenvectors of the
observed covariance matrix are severely distorted by
the noise. Therefore, techmques that can reduce the
effect of the noise on the eigenvectors of the observed
covariance malrix are important lo obtain the best

spectral estimate.

. Forward-Backward covariance matrix
method

As discussed in section 1, The eigenvectors of the
covariance matrix are divided into two groups. The
eigenvectors related to the largest K eigenvalues span
the signal-subspace. The remaining M-K eigenvectors
related to the smallest M-K eigenvalues span the
noise-subspace. In the ideal situation, the eigenvectors
have the exact DOA information and they span two
disjoint subspace(the signal-subspace and the noise-
subspace). However, the eigenvectors are often per-
turbed by correlated noise. Therefore, the subspaces

that are spanned by these eigenveclors are also per-
turbed.

In Fig. 2, because of the correlated noise, the eigen-

vector v becomes v'. Note thal, the perturbed eigen-

)
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Y

v

noise-free subspace

Fig 2. The relation between a noise-free eigenvector and no-

ised eigenvector
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vector v’ is no longer in the noise-free subspace. Since
the basis of the subspace is the eigenvectors of the co-
variance matrix, the perturbed eigenvectors span the
other subspace(called perturbed subspace). In other
words, the perturbed noise-eigenvectors are in the
perturbed noise-subspace and the spectrum which is
obtained using these eigenvectors does not have good
resolution and accuracy.

In this paper, we develop a new subspace which is
less perturbed by the correlated noise. Even though
this is an empirical results, the spectral estimate which
is obtained using the eigenvectors in this subspace has
better resolution and accuracy than the spectral esti-
mate which is obtained using the eigenvectors in the
conventional subspace. This is because the eigenve-
ctors in this subspace are less perturbed than those in
the conventional subspace under the same noise con-
dition. We get this subspace from a weighted for-
ward-backward covariance matrix. --*

The weighted forward-backward covariance matrix

has the following form:
C=wR+(1-w)P RP @)

where, w is a weighting coefficient, R is the conven-
tional covariance matrix, R is a complex conjugate of
R, and P is an inverse diagonal matrix. Note that,
when w=1, C becames the conventional covariance
matrix R. Therefore, the weighted forward-backward
covariance matrix can be thought of as a generaliz-
ation of the conventional covariance matrix.

We used a perturbation angle to represent the
quantity of the distortion of the eigenvectors. The
perturbation angle is the angle between the noise-free
subspace which is spanued by the noise-free eigenve-
ctors and the noisy subspace which is spanned by the
noisy eigenvectors. It is clear that small perturbation
angle represents a small distortion of the eigenvectors.
Therefore, if we can find the eigenvectors which have
a smaller perturbation angle for the same noise con-

ditions, then the spectral eslimate obtained using

these eigenvectors will have better resolution and ac-
curacy. We simulated the perturbation angle of the
eigenvectors of the weighted forward-backward co-
variance matrix with various values for w to find the

best w. The results are plotted in Fig. 3.
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Fig 3. The perturbation angle when w varies. The smallest
perturbation angle is obtained at = —l;

In the simulations, the different correlated noises
were used with the SNRs equal to —10dB, 0 dB, and
10dB. Fig. 3 shows the perturbation angie between
the noise-free subspace and the noisy subspace when

w varies. From Fig. 3, the smallest perturbation angle
. . 1
is obtained when w = 5 regardless of the SNRs. No-

te that, the perturbation angle at w =1 is the same as
the angle of the conventional covariance matrix and

the perturbation angle is large at this point. There-

1
fore, we choose w = -

Z

V. Result of simulations

We compared the perturbation angle for the for-
ward-backward covariance matrix(C) and for the con-
ventional covariance method(R). In the simulations,
as discussed in section I, we used a lincar array with

10 elements and uniform spacing of 0.5 wavelength
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between successive sensors. One source was located at
3°. The noise was correlated and the SNRs were 5dB,
0dB, —5dB and —10dB respectively. We collected
one hundred snapshots of data and used in each
simulation run. We ran the simulation one hundred
times for each SNR. Fig. 4 shows the comparison of
the perturbation angles of the eigenvectors of C and
the eigenvectors of R. It shows that the perturbation
angle of the eigenvectors for the forward-backward
covariance matrix are always less than those for the

conventional covariance matrix under the same noise

conditions.
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Fig 4. The eigenvector perturbation angle when SNR = 5dB
and 0dB
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Table 2 shows the mean-values of the perturbation
angle for the noise-subspace(simulation results). The
value, meanl and mean2, are the mean values of the
eigenvector perturbation angles for the conventional
covariance matrix and for the proposed enhanced co-
variance matrix, respectively. Table 2 shows that the
noise-subspace using the forward-backward covari-
ance matrix has a smaller perturbation angle than
that for the noise-subspace using the conventional co-

variance matrix.

Table 2. The comparison of the eigenvector perturbation angle.

SNR(dB) I Mean 1 (degree) Mean 2 (degree)
5 0.5925 04448 |
0 1.7041 0.9278
-5 4.3134 2.6881
-10 16.1729 1 8.8334

We performed several computer simulations to exa-
mine the performance of the our new method which
we call the modified EVM(MEVM). We considered

two separate conditions:

1. When the input SNR to the array is low, and

2. When two sources are close to each other.

—- The conventional method
1}~ - The proposed method 3

o
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Normalized Spectral Estimate
o o
a o

0.2p

-2 ] 2
DOA (dagree)

Fig 5. The comparison of the spectral estimates when SNR
=0dB, two signals are at —2° and 3°. Both methods
detect the DOAs.
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Fig 6. The comparison of the spectral estimates when SNR

= —5dB, two signals are at —2° and 3°. Only the
MEVM detects the correct DOAs.

For the first condition, Fig. 5 shows the spectral
estimates when the input SNR is moderate(0 dB). Bo-
th methods detect the DOAs for moderate input
SNR. Fig. 6 shows the spectral estimate when input
SNR becomes low(—5 dB). Only the MEVM detects
the correct DOAs when the input SNR is low.

For the second condition, Fig. 5 shows that both
methods detect DOAs when two sources are —2°and

3°. Fig. 7 shows the spectral estimates when two
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Fig 7. The comparison of the spectral estimates when two
signals are at —2° and 2°, SNR =0dB. The conven-
tional EVM becames unstable.

sources are at —2°and 2°. The spectral estimates for
the conventional method merge into a single estimate
while the MEVM still detects the correct DOAs. Fig,
8 shows the spectral estimates when two sources are
closer(—2°and 1.5°). The MEVM still detects the
DOAs even though two sources are very close to each
other. Therefore, the MEVM has the better resolution
and accuracy than the conventional method under the

same noise conditions.
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Fig 8. The comparison of the spectral estimates when two

signals are at —2° and 1.5°, SNR =0dB. The MEVM
still detects the correct DOAs.

V. Conclusions.

In this paper, we proposed a new method which
not only uses the best weighting for the eigenvectors
of the covariance matrix but also enhances the esti-
mate of the covariance matrix to obtain the best spec-
tral estimate.

We evaluated the performance of the MEVM and
compared the results with the conventional EVM
method. Our results show that the MEVM has better
resolution and accuracy than the conventional covari-
ance matrix method when the input SNR to the array
is low and/or the sources are close to each other.

The superiority of the MEVM has been shown by

our simulation results.
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