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ABSTRACT

This paper presents an Adaptive Time-Delay Recurrent Neural Network (ATRN) for learning and recognition of
temporal correlations of temporal patterns. The ATRN employs adaplive time-delays and recurrent connections,
which are inspired from neurobiology. In the ATRN, the adaptive time-delays make the ATRN choose the optimal
values of time-delays for the temporal location of the important information in the input patterns, and the recurrent
connections enable the network to encode and integrate temporal information of sequences which have arbitrary
interval time and arbitrary length of temporal context. The ATRN described in this paper, ATNN proposed by
Lin, and TDNN introduced by Waibel were simulated and applied to the chaotic time series preditcion of
Mackey-Glass delay-differential equation. The simulation results show that the normalized mean square error
(NMSE) of ATRN is 0.0026, while the NMSE values of ATNN and TDNN are 0.0114, 0.0117, respectively, and in
temporal learning, employing recurrent links in the network is more effective than putting multiple time-delays into
the neurons. The best performance is attained by the ATRN. This ATRN will be well applicable for temporally
continuous domains, such as speech recognition, moving object recognition, motor control. and time-series predic-

tion.
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1. Introduction

Spatiotemporal pattern recognition and temporal
sequence learning are challenging tasks in neural network
researches. Learning and recognition of temporal
correlations are crucial in hearing and vision, motor
control, prediction, and other time-dependency appli-
cations. The key issue in learning temporal sequences
is that there needs to be some means of recognizing
and storing temporal natures of sequences. There are
multiple ways representing temporal information in
the neural network [1]-{6]. These include; (1) creating a
spatial representation of temporal pattern, (2) putting
time-delays into the neurons or their connections, (3)
employing recurrent connections, (4) using neurons
with activations summing inputs over time, and (5)
using combination of the above. The simplest, and
the most common, is to spatially encode the temporal
information, as can be done by using Fourier trans-
form preprocessing. Time-delay networks have shown
great promise in such applications as speech recog-
nition, and are highly competitive with existing
technologies. However, both spatial coding and
time-delay approaches have some inherent problems
with scaling, in terms of how much(or how long) of a
temporal pattern can be encoded. Recurrent networks
are a useful and interesting possibility, and have been
applied to speech recognition and robotic control
tasks [7]. This approach also has problems with stab-
ility, and requires a great deal of training time.

The time-delay neural network (TDNN) proposed
by Waibel has been successfully applied to phoneme

recognition and trajectory recognition [8][9]. However,
a hmitation of the TDNN is its inability to learn or
adapt the values of the time-delays. Time-delays are
fixed initially and remain the same throughout train-
ing. As a result, the system may have poor perform-
ance due to the inflexibility of time-delays, and a
mis-match between the choice of time-delay values
and the temporal location of the important infor-
mation in the input patterns. To overcome this limi-
tation, Lin proposed the adaptive time-delay neural
network (ATNN), which adapts time-delays as well as
synaplic weights during training, to better accommo-
date to temporally changing patterns and to provide
more flexibility for optimization tasks [10]. The
time-delay networks such as TDNN and ATNN can
not recognize temporal patterns which have arbitrary
interval times and arbitrary lengths of temporal con-
text, and these networks can not integrate temporal
information explicitly.

The recurrent network supposes that all temporal
patterns are to be recognized and/or stored, even if
the patterns include redundancy. We present an
Adaptive Time-Delay Recurrent Neural Network
(ATRN) for learning and recognition of temporal
correlations of temporal patterns, which meets the
above-mentioned issues. The ATRN is inspired from
neurobiology : time-delays do occur along axons due
to different conduction time and different lengths of
axonal fibers, and temporal properties such as tem-
poral decay and integration occur at synapses, and in
addition, within areas of the cortex there is a great

deal of feedback between the cortical strata. The
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proposed ATRN has been applied to the chaotic
time-series prediction of Mackey-Glass delay-differen-
tial equation. And the comparision of the perform-
ance of ATRN, ATNN and TDNN is made.

1. Adaptive Time-Delay Recurrent
Neural Network

The network employs adaptive time-delays and
recurrenl connections for processing temporal infor-
mation. The architecture of the ATRN is shown in
Figure 1. The network mainly consists of three-layer
perceptron, and also has an internal state layer. The
activations of the hidden units at time 7-1 are copied
into the internal state units, which integrate the
internal state of the system and act as the additional
inputs at time 7 + D. The ATRN employs modifiable
weights and time-delays along interconnections between
two processing units. and both time-delays and weights
are adjusted. However, the feedback connections from
the hidden unit to the internal state unit are not subject
to training. The configuration of # interconnections,
each with its own delay, from the input unit to the
hidden unit is called a Delay Box which is depicted in
Figure 2. The interconnections between the internal

state unit and the hidden unit, and from the hidden

INTERNAL STATE LAYER
Fig 1. The architecture of the ATRN.
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unit to the output unit have modifiable weights and
only one lime-delay which is depicted as D in Figure
1. Node 7 of layer %-1 is connected to node j of the
next layer /. with the connection line having an indepe-

ndent time-delay ;4 , - and synaptic weights w;; , |

i1 Wians

ie Ny, = i € N,

Jinh-

Wien-1

Fig. 2. Delay Box.

Each node sums up the net inpuls from the acti-
vation values of the previous neurons, through the
corresponding time-delays on each connection line, i.

e.. al time £, unit 7 on the layer % receives a weighted

sum:
Kiia 1
Sl‘h(tn): : : Wiik k-1 az"hfl(tn_fjik.h—l) (])
TEN, kst

where a; ;.. (£, — 1,4 4—) is the activation level of unit
¢ on the layer A-1 al time ¢, —1,5 5,-,. Ny_) denotes
the set of nodes of layer &-1, and Kj; -, represents
the total number of connections to node jlayer &)
from node 7 of layer £-1. Then the output of node j
is governed by a nondecreasing differential function f

of the net input (sigmoidal function is selected in this

paper):
) Fi kS, ) ith=2 (2)
R AN it h=1
where
iy
f‘,»},(x): 1 +iji:;.'r _‘y,'. h (3)

and a; t,) denotes the sth channel of the input signal
at time £, and o, ;. 8, , and ¥, , are real numbers
which define the upper bound of sigmoidal funtcion,
=Y, i, and the lower bound, f#; ,—7; ). and the steep-
ness of £, 4 (x). £, 4,0V =(x, , B, /4.
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An instantaneous error measure is defined as MSE:

E(tn)=L Y @) —a; (1)) (4)
2 JEN

L

3

where L denotes the output layer and d{¢,) indicates

the desired(target) value of output node ; at time £,.
The weights and time-delays are updated by an

amount proportional to the opposite direction of the

error gradient respectively:

_ OE(t,)
dwjy = —1n, V@w,’,-k‘ . (5
0E@,
Adtjig n=—1 _ﬂg'*’)’ (6)
OTjik h

where 1, and 5, are the learning rate. The derivation
of this learning algorithm was addressed explictly in

{10]. The learning rules are summerized as follows:

AW a1 =m0, 4@ty —Tsik 1) (7

At n-1= 1207 D) Wiig p—1 @5l =T n-1) ()

where
(3/, h(tn) =
(d;i@t)—a, (t))f(S; 4t,)), if 7 is an output unit.
Ko
( z;./ Zl Sp n+ 1D Whjy NS, WD) 9)
PEN q=

if 7 is a hidden unit.
and

pi ikt =
=d;(t)~a; () (S; 4t if 7 is an output unit.
Kil-h
(= 2 X ppan Wi NS, 4. (10)
PEN 4y g=1

if 7 is a hidden unit.
[l. Relation to ATNN and TDNN

The ATRN is indeed a generalization of the Adaptive
Time-Delay Neural Network (ATNN) and Time-Delay

Neural Network(TDNN) if the values of certain
parameters of the ATRN are adjusted.

Case 1:1f we set Kj; -, = O(where K, ;- is the num-
ber of connections to the hidden unit 7 from
the internal state unil s) and K, p=n)1
(where Ki; 4 is the number of connections to
the output unit & from the hidden unit ), the
ATRN becomes a typical Adaptive Time-De-
lay Neural Network.

Case 2:In addition to Case 1, if we fixed the time-delay
i n-1 in Equation (1) and applied weight
learning without updating time-delay variables,
it becomes a model of Time-Delay Neural

Network.
IV. Chaotic Time Series Prediction

We have carried out the chaotic time-series prediction
of the Mackey-Glass delay-differential equation:
'-ddlt(!*) =-bx(t) +a ]**jij((t?_l:;a (1
This differential equation possesses many dynamic
properties such as nonlinearity, limit cycle oscillations,
aperiodic wave forms and other dynamic behaviors
{i1], and provides a useful benchmark for temporal
learning. We chose 1=17, @=02, 6=0.1, and
integrated (11) using a four-point Runge-Kutta method
with a step size of =1 up to ¢ = 1000.

To evaluate performances, the ATRN described in
this paper, ATNN and TDNN were simulated. These
networks were trained to predict values 6 time sieps
ahead by using the same training samples and the
same set of initial weights. The training set consisted
of the first three hundred samples (from ¢=1 to =
300), and the testing set included a thousand samples
of the differential equation (from ¢=1 to ¢=1000).
The ATRN, ATNN and TDNN were configured with
| inpul unit, 3 hidden units and | output unit, and

the connection parameters of the simulated networks
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Table 1. The connection parameters of ATRN, ATNN, and TDNN

Network Topology Kiin- Kicw | Kij Total number of weights
ATRN : 4 : 1 | 24
- . - B R . I
ATNN T 3 ; X 8 36
s e 1 e e e o O } - - J‘ ‘ - _ - At, - - . . — R
TDNN i 4 1 ‘ 8 36
# X None

were summerized in Table I, where K;; .. K,
the
time-delays) to the hidden node ;j from the input

hod

represent total number of connections {or
node 7 and from the internal stale node s. respect-
ively, and K, , is the number of connections to the
output node k from the hidden node ;.

We the
(NMSE) to monitor prediction performance. The

NMSE is defined as the following:

used normalized mean square error

E

wpsE =B Zxr]

Elr (0] (12

where x(f) is the original signal and x(1) is the nel-
work prediction value. Figure 3 shows the NMSE
values of the networks during learning. The NMSE
values of the ATRN, ATNN and TDNN were 0.
0026, 0.0114, and 0.0117, respectively.

The prediction outputs of the ATRN, ATNN, and
TDNN are shown in Figure 4. Figure 5. and Figure
6. respectively. As we can observe from these figures,

the ATRN catches the variations of the bumping

Normalized MSE Error

40 50 80 70
Number of training trials*5$

20 30 80
Fig. 3. Learning curves showing the normalized mean

square error {NMSE) of networks trained to predict

the Mackey-Glass signal an interval /=6, nto
future. The solid curve. point curve. and dashdot
curve are for the ATRN. ATNN and TDNN.

respectively.
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peaks better than the ATNN and TDNN do. and the
best performance is attained by the ATRN. These
results indicate thal employing recurrent links in the
network is more effective than putting multiple
time-delays into the neurons for temporal learning

and prediction.

1 T T
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Fig. 4. The simulation results of ATRN (NMSE = 0. 0026).
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Fig. 5. The simulation results of ATNN (NMSE = 0. 0114).
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Fig. 6. The simulation results of TDNN (NMSE =0. 0117).
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V. Conclusions

We have presented an Adaptive Time-Delay Recurrent
Neueal Network(ATRN) for learning and recognition
of temporal correlations of temporally changing
signals. The ATRN employs adaptive time-delays and
recurrent connections. The adaptive time-delays make
the ATRN choose the optimal values of time-delays
for the temporal location of the important infor-
mation in the temporal patterns, and the recurrent
connections enable the network to encode and inte-
grate temporal information of sequences which have
arbitrary interval time and arbitrary length of tem-
poral context.

The ATRN described in this paper, ATNN proposed
by Lin, and TDNN introduced by Waibel were
simulated and applied to the chaotic time-series
preditcion of Mackey-Glass delay-differential equation.
The simulation results show that the NMSE values of
ATRN, ATNN and TDNN were 0.0026, 0.0114, and
0.0117, respectively, and employing recurrent links in
the network is more effective than puiting multiple
time-delays into the neurons for temporal learning
and prediction. The best performance was attained by
the ATRN. This ATRN will be well applicable for
speech recognition, moving object recognition, motor

control, and time-series prediction.
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