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Customised Feature set Selection for Automatic Signature Verification
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ABSTRACT

This paper covers feature extraction for automatic handwritten signature verification. Several major feature selee-
tion techniques arc investigated from a practical perspective to realise an optimal signature verilication system. und
customised feature set selection based on set-to-set distance measurement is presented. The experimental results
have proved the proposed methods to be efficient, offering considerably improved verification performance com-

pared to conventional methods. Also, they dramatically reduce the processing complexily in the verihcation system
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[ . Introduction

Signatures have for centurics provided a primary
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means of legal authorization and personal authenti-
cation. Unhike other traditional identification tools,
such as the fingerprint, signatures have become widely
aceepted and gained respect throughout history.

The recognition of handwritien signatures, however,
still remains o difficult probleny, as, unlike other bio-
metric characteristics such as the fingerprint or retinal
pattern, a signature is a personal representation which

rellects the writer’s own intellectual, psychological
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and physical characteristics, and, hence, the character-
istics may vary depending on his mental state, health
and writing environment at any instance [4, 7. This
causes the main barrier in realising their successful
recognition.

One of the major problems encountered, as in other
ficlds of pattern recognition, is to find the optimal
featurc set which can best represent the characteristics
of the pattern data. Particularly in signature tecognit-
ion, many efforts have been devoted to the problem of
Sfeature extraction, extraction of a feature vector that
contains as much as possible of the significant infor-
mation of a signature pattern. However, a relatively
small number of studies have been carried out for fea-
ture selection, rveduction of the dimensionality of the
extracted feature vector while maintaining all the dis-
criminating power of the original feature set by ex-
cluding or combining the redundant or irrelevant
features in the pattern data. {1, 4, 5, 6, 10, 11, 12, 15,
16, 18, 21, 22].

Feature sclection could play a more important role
than has been anticipated lo data in the context that
reduction of the dimensionality not only has a direct
bearing on the computational demands but also con-
tributes to the improvement in error rate performance
or tolerance towards errors [4, 6, 22].

Most of the work in feature sclection during the
past years has been carried out by heuristic or syntac-
tic approaches, which are basically known to be lack-
ing in objective selection standards, i.c., theoretical
grounds of evaluation criteria for feature selection,
and to have a huge computational complexity in pro-
cessing time.

In this paper, a statistical approach using custom-
ised feature sets with an acceptable computational
latency is proposed. Unlike the previous statistical ap-
proaches, this approach has derived the set-to-set dis-

tance measurement in terms of variances [29], which

does not require the pre-assumption of equal covari-
ances.

It not only provides a feasible methodology to ob-
jectively evaluate each feature’s discriminating ability,
but also maintains an affordable computational com-
plexity as it replaces the exhaustive heuristic searching
processes with a one-time-ranking process for each in-
dividual, in which features are ordered according to
their discriminating power in terms of the correlation

coefTicients 1o the major feature sets.
II. Signature Data Base

The signature data base for this study has been
built from public trials with the KAPPAY signature
verification system [8], covering 8,500 signature sam-
ples: From these samples, 64 individuals who had don-
ated 10 signatures in 4 sessions and had no serious
degree of noise in their samples have been randomly
selected, which constitutes 2,560 samples.

In building this signature data base, the Summagra-
phics Plus graphics tablet with wired pen, which was
interfaced to a standard PC host, was chosen. The
Summagraphics Plus tablet is capable of sampling the
x-y coordinates of a special pen at the rate of 100 Hz
and with a resolution of 100 points per inch, and ad-
ditionally detects paper contact.

The generated information z(¢) from this device could
be easily transformed to a position function, f(x(2),
A1), using Equation (1).

Hx(@®), y)]=20) V't 1)
Where I[.] is the two-dimensional static image, x(¢),
(t) and 2(¢) are the Cartesian coordinates in the time

domain ¢£.

. Feature Extraction

1)KAPPA is a signature verificalion system based on image analysis algorithms developed at the University of Kent, England, and

available under licence from the British Technology Group.
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To define an optimal set of signaturc fcatures, in
the first place, all the primitive features of signatures
which contain significant information should be ex-
tracted. For this, the following parametric features

have been extracted.

Total Duration (TimT): This is the total duration of a
signature signal, which is only applied to on-line sys-
tems. In this study, it was annolated as the variable
name “TimT".

Width (WidT, WidF, Widl.): The width of the signa-
ture image. WidT is for the total image, WidF is for
the first segment and WidL for the last segment.
Height (HigT, HigF, HigL): Thc height of the signa-
ture image. HigT for the total, HigF for the first scg-
ment and HigL for the last segment.

Total Length (LenT):This is the total peometrical
length of the signature.

Convex Length (CVLT, CVLXI1, CVL.X2, CVLX3):
The sum of lengths of convex strokes. CVLT is for
the total, CVLXI1 for the Ist section, CVLX2 for the
2nd and CVLX3 for the 3rd.

Concave Length (CCLT, CCLX1, CCLX2, CCLX3).
This is for the case of concave strokes.

Pen Down Time (PDTT, PDTF, PDTL): The duration
while the pen tip is in contact with the writing sur-
face. PDTT is for the total, PDTF is for the first scg-
ment and PDTL is for the last segment.

Pen Down Length (PDLT, PDLF, PDLL): This is the
case for the gecometrical length.

Height to Width (HtoW): The ratio of the height Lo
the width of the signature.

Width to Height of First Segment (WtoHF): The ratio
of the width to the height of the first segmenl.

Width to Height of Last Segment (WtoHL): The ratio
of the width to the height of the last segment.

Longest Stroke to Width (L.StoW): The ratio of the
longest stroke to the width.

Shortest Stroke to Width (SStoW): The ratio of the
shortest stroke to the width.

Longest Stroke to Preceding Stroke (I.StoP): The ratio
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of the longest stroke to the preceding.

Left to Begin (LtoB): The distance from the left most
position of a signature image to the beginning pos-
ition of the signature wriling.

Number of Zero Crossings (NoCY1, NoCY2, NoCY3):
The number of zero crossing points in the signature,
which is similar to the features “maxima and minima”
reported in some studies. NoCY 1 is (or the Ist verti-
cal section, NoCY?2 is for the 2nd and NoCY 3 for the
3rd.

Sum of Velocity (SMVXI1, SMVX2, SMVX3): The sum
of velocily. SMVXI is for the Ist horizontal section,
SM VX2 for the 2nd, SMVX3 for the 3rd.

Number of Segments (NoST, NoSX1, NoSX2, NoSX3)
:The number of segments for the total, the Ist hori-
zontal section, the 2nd section and the 3rd section.
Number of Junction Points (NoJT, NoJX1, NoJX2,
NoJX3):This is the case for jurction points in the
signalure image.

Number of Points (NoPX1, NoPX2, NoPX3):The
number of pixel points for the horizontal seclions,
These are same as the duration in on-line systems.
Histogram Width to Height Ratio (HWH1, HWH2):
The histogram built on the vectical projection of
signature can be used as a feature. HWHI is the ratio
ol the width of the lett half to the height and HWH?2
is for the right half,

Vertical Density (VDY 1, VDY2, VIY3): These are the
integral values of individual sections of the vertical
histogram. VDY 1 is for the Ist section and so on.
Horizontal Density (HDX1, HDX2, HDX3): These are
for the horizontal histogram.

Fourier Transform Coefficients (FFTI1, FFT2, FFT3,
FFT4):The scquence of x. y coordinale pairs was ap-
plicd as real and imaginary parts ol a Fourier truns-
form function and the cocfficients in the frequency

domain arc used as features.

V. Feature Evaluation

4-1. Heuristic Approach | 4]
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Given an initial feature vector

y=W1, 32, .., ¥p) (2)

where ; is the ' feature of the measurement vector y

of dimensionality D.

To find the optimum set of features

x=(x, %2, ..., Xa) ()]

where x; is the 7™ feature of the measurement vector x

of dimensionality d,

R(X)=max RIVT “4)
. . D
where R(-) is the criterion and T the set of d ] feat-
ures from Y
will be
( D) 2
di) =] (D—ditd
D D

This number of calculations is too huge to be re-
alised in most piactical situations:

In the work by Brittan [4], the number for the casc
of D=20 and d =5, i.e., the case that five {catures 2re
to be selected from twenty features, was calculated as
168 billion combinations for five features, which is com-
putationally prohibitive. Hence, the need for an alter-
native search scheme has given rise to several “sub-
optimal” searching methods as follows: (Nevertheless
these compromises cannot guarantec finding the “op-

timal” set of features.)

e Sequential Forward Selection (SFS)
This method starts from an initially empty feature
vector. Features can be sequentially added to the fea-

ture vector through proving their relative merits in re-

lation to the rest of candidate features in conjunction

with the existing feature vector:

Kn=max"! R(Ks-y +x;) ©

where ;€ Ky~ and 1 <n< D is the size of the selec-

ted feature vector.

» Sequential Backward Selection {SBS)

This is the top-down approach where features are
sequentially eliminated from the initially full installed
feature vector. A feature must be excluded from the
feature vector if its absence has resulted in a better
feature vector than both the existing feature vector

and the results of the rest of the remaining features:

Ko=max22¢ R(K,+) —xi) N

where K;€ K, +y and 1 <n< D is the size of the selec-

ted feature vector.

* SFS-SBS Combined Method

The SFS-SBS combined method is to overcome these
problems by selectively combining SFS and SBS, such
as employing both m features to add and 7 features
to delete to the active feature vector.

The ratio of n to m will depend upon the required
selection approach:

If »n>m, then the feature vector will increase in
size, implying a bottom-up approach.

If »<n, then the feature vector will decrease in
size, implying a top-down approach.

And the magnitude of n and m will refiect the de-
gree of tolerance towards redundance and the proces-

sing requirements.

4-2. Statistical approach

A few studies [15, 17, 20] have applied statistical ap-
proaches to comparison processes (o provide an ob-
jective criterion tool. However, despite all their ana-

lytical merits, they have been, apart from the fact that
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they stil have not resolved the exhaustive searching
complexity, gencrally regarded to have two irrevo-
cable defects relevant to their use for signature verifi-
cation:

I. Contrary to the general assumption in those stu-
dies that the set of features is distributed as a multi-
variate Gaussian density and that the covariance
matrices arc equal, some features have been found
not to satisfy that condition.

2. The lack of a valuable statistical model of true
signatures versus forgeries distribution makes the usc

of statistical feature selection methods impossible [19].
V. Customised Feature Selection

Over the years, many well known statistical appro-
aches have been used in relation to the problem of fe-
ature evaluation: Principal Component Analvsis, Ho-
telling Transform, Karhunen-Locve Expansion, Entropy
Minimisation, FEigenvalue Analysis, Factor Analysis,
Canonical Analvsis, Divergence Maximisation and Dis-
criminant Analysis, ete. [2, 6, 9, 17, 21]. Unlike the
specific studies particularly devoted to signature veri-
fication [15, 17, 28], in which comparison mcthods
using simple distance measurements, such as Fuclidean
distance, Quadratic Discriminant Model, Bayes criterion,
Fisher criterion, F-ratio analysis or Mahalunobis dis-
rance were applied, these approaches have derived the

set-to-set distance measurement in terms ol variances

[21] and have not required the pre-assumption of

equal covariances. Their basic concept is lo analyse
the divergence belween pallerns and to find the most
effective features to discriminate them. Although they
have originated from diffcrent motivations and may
have used different methodologies, all of them are
closely related in the context that they arc based on
the Eigenvalue problem.

Among these approaches, as signature verification
in this study is equivalent to the practical problem of
discriminating between authentic specimens and for-

geries, the feature evaluation problem surcly belongs
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lo the case of Divergence Maximisation or the two
classes-case of Discriminant Analysis.

In this paper, the feature evaluation and fealure
selection processes were mainly performed using (wo-
class-Discriminant Analysis for customised feature set

selection.

* Eigenvalue Analysis |2, 13|
A pattern which has A altributes (features) can be

arranged in the form of a pattern vector:

where x; is the /™ feature of the measurement vector x.

If we assume a set which has M patterns of this

kind, this set can be defined as a matrix:

X X : XN
X2y Xoroot ) TOXoN

[X ] == . P . 9)
Xaro 7 . N T XMN

where x;, is the 7" feature of the measurement vector

x which belongs 1o the 7" pattern.

And the covariance maxtrix between features can

be defined as

i O CIN
O Cn Con

(“¥ Cy O . AR AYY [
Carr 0 0 0 N
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where C;; is the covariance between the 7" and the j
features of the measurement vector x, and Cy; is the

variance of the ith feature of x:

=F {x —m) (x —m) |

] M
= Y ke (x—m) 11
v o= (x — ) (x — 1) an
whcrcm,(:E{X}sL VL X
M O

Then the correlation matrix between features is

Rn Ra2 - + - R
Ry Rn ° : * Raw
R, = (12)
. RU .
Ryi Rya -+ Ry

where R;; =Cijfoio;
re o N =i

where 6;= Vi, 0=V
Consider the vector equation

Rx = Ax (13)

where A is a number.

A value of A for which Equation (13) has such a
solution as A #0 is called an cigenvalue of the matrix
R and there can exist N cigenvalues.

Let these values be Ax, k=1, 2, ..., N, and the cor-
responding eigenvectors e¢, k=1, 2, ..., N.

If we define a matrix A

€
[55]
A=1| - , AT'=(e, e 0n) (14)

€N

such that |l|(> Ilz|> > |ME> > |lN|,

then the largest of the absolute values among the ei-
genvalues of R, |A1, is called the spectral radius of R
and the corresponding eigen vector, ey, is called the
first principal component (axis).

This principal axis represents the maximum diver-
gent axis and is considered to maximally discriminate
the patterns with respect to any other axes.

Each feature has a contribution level to this princi-
pal axis as well as to the following major axes, which
is represented as a correlation coefficient to this axis.

Assume a transformed variable, y,, from the first

cigen vector, ¢;, such that
yi=e X (15)

Then the correlation coefficient for the j'" com-

ponent of x, x;, to the first eigen vector is

Ry= L 16)
050y,

Actually these correlation coefficients in this study
are similar to the coefficients of the eigenvectors in
the matrix A in Equation (14) as the eigenvectors are
calculated from the correlation matrix between feat-
ures, R in Equation (12).

The correlation coefficient represents how much a
feature contributes to the feature set and, hence, can
be regarded as a measurement tool which can evalu-
ate each feature.

Several numerical methods have been developed for
solving this eigenvalue problem and a popular iterat-
ive approximation method, Jacobian lteration, was

implemented in this study.

» Divergence Maximisation {2, 13, 21]

Divergence is a measure of similarity between pairs
of arbitrary distributions and a measure of the diffi-
culty in discriminating between these two distribut-

jons. It can be used to evaluate the discriminating
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power of featurcs and to determine feature ranking.
Let the probability of occurrence of pattern x of
Equation (8) in the multi-dimensional feature space

be represented as:

o) = i i

I
exp ——2~(x—mx)"C"(x—m,)
en?"ic)?

(17

where C is the covariance matrix and mx the mean

vector of this patlern respectively,

Then the probabilities of x to belong to given pat-
tern classes G; and G; are
Px1G) = : )

5N )

@Qm? 1G] *

exp -—-IE (x—m)'Ci" ' (x —m)) (18)

where C; is the covariance matrix and m; the mean
vector of ~lass G, respectively, and

1
PxIG) =

1

|
en? " ic,)?
exp ~—§—(x—mj)”Cj"(x—m}) (19)

where C; is the covariance matrix and m; the mean

vector of class G;, respectively.

The discriminating information for class G; versus
class G; and for class G; versus class G; may be

measured by the logarithm of the likelihood ratio

P(x|G))
o= (20
Uii=In PxIG)) )
and

P(x|G))
i=In ———— 1
Uji=In PIG) (21)
1648

respectively.
Then the average discriminating information for

class G is given by

S PG
fic =] PRIG) In ‘"/’T/\\rlc;,) dx 22)
and
A S Px1G)
/U7, 1):’!‘ Px1G)) m—m dx (3

respectively, also.

The divergence for these two classes is defined as

Joi= 000 VLD

, PG
[ PTG In e —— (dx
. Pixle)

|

tr[{(C —CHC, T N

oo G Dy = m) iy, my) (2

wherce (ris the trace of @ matrix.

In many practical applications, Equation (24) is ap-

priximaled using pooled variance, P, as

Jij=(mi—m)" P 'tm,~m) (25)

and P 1s defined as

|
P (M, -DC, +(M,-1)C (20)
M, a2 M 6 ’
where M, and M, arce the number of members in class

Gy and G| respectively.

* Feature ordering using Divergence

Let A be a transformation matrix of dimension 7 X
N, such that T<N, from Equation (14).

Then the pattern vector x of N dimension can be

reduced to a 7" dimensional vector, y

www.dbpia.co.kr
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y = AX. Q7N

The mean vectors and the covariances of this new

veclor y for the class G; and G; will be

m*=Am;, m;*=Am; 28)
and

C*=ACGA", C*=AC;A’ (29)
respectively.

Under these conditions, the divergence is given by

Ji= wlE)I G HE) TG -T

+,—"Z ) H(CH 185%™ (30)
where
§*=Ad=A(m;—m;) =m,* —m,* €30

Since the trace of a matrix is equal to the sum of

its eigenvalues,

*

1~
Jij* = —2“ Y A H-T+

1 1

= +— A (32)
k1 2Ar +1 2 T

where A; are the eigenvalues of (C;*) 7' (C;*),

Ar +1 are the cigenvalues of (C;*) ' 5*(8%),

and A7+, are the eigenvalues of (C,;*) 7' 8*(5*)".

Then a necessary condition for the divergence J;;*
to be an extremum is that the matrix A satisfy the re-

lation
G= Z (1 —lkvz)(CjA/—'lijA,) ever’
k=1

+E8 A —xr 11 CiAYer v+

+(8 A" ~Ar +2CiA ) er +ae7 42" =0 (33)

where A and e are the eigenvalues and eigenvectors
of (AC;A) 1(AC;A),

Ar +1, er+1 and Ay 42, er 4y are the eigenvalues and
cigenvectors of (C*)"'"(AS65A") and (C;*)"'(ASSA),
respectively,

and 6 =m;—m;j.

In general cases, where C; 7' C; and m; #my;, this sol-
ution is solved by a steepest-ascent approach in which
we lead a set of difference equations to a convergence

by iteration.
Als +1)=A(s) +0G(s) 34

where s is an ileration index and 0 is some suitable

convergence factor.

The solution matrix A of Equation (34) has M eigen-
vectors (canonical discriminant functions) that are rank-
ordered. The first function is the maximum divergent
axis and is considered to maximally discriminate the
two classes and so on.

Again, for practical applications, these eigenvectors
can be derived by solving Equation (26). In this study,
the eigenvectors are calculated from this approximation
using Jacobian Iteration, along with using the well-
known statistical package SPSS as a proofing tool.

Each feature has the pooled-within-groups correlation

to these vectors.

i

Ri.:_.__________
MM, -2

(M;-1DR +(M;—1DR) (35)

where M; and M; are the number of members in class
G; and G;, and R; and R; are the correlation coef-

ficients of class G; and G;j to the function, respectively.

The correlation coefficients R; and R; can be cal-
culated by the similar methods as Equation (15) and
Equation (16).

* Computationai Time Complexity

1649
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Given a feature vector of dimensionality 0, assum-
ing that the maximum dimensionality of the optimum
feature vector is d and the time o caleulate one cri-
terion function is equivalent for all combinations of
features, then computational tme complexity for fear
ure selection can be measured in ferms of the numbes

of calculations for the criterion function, wihich will he
. Optimal hcuristic scarch

| D 1 (36)

| Py

[

. Suboptimal heuristic scarches

DAHD-DHD-2) f A (d + 1) (371

3 Ehe proposed statistical imethod

\l. Experimentation

A ototal of 2000 handwritten signatures from 64
writers Jdurmg b sesstons was subjected to feabinge sele
cion, and 56 paramelne features. wihich mclude 47
amptitude features. > histogram Teatures and 4 trans
torng voetfictent teatures, were mially extracted

Features were then evaluated usimy Diserimunant

Analysts tar both the case of the aniversal fcalure set

and The case ol cach costomised Features el

Fable 1 s the result dor universal feature el

n

Table 1. Pooled-within-groups correlations
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which pooled-within-groups correlations between dis-
criminaling variables canonical discriminant functions
arc listed :

In the first row of the table, the first five major fun-
ctions {canonical discriminant f{unctions) have been
enlisted. Functl is the function for the first principal
axis, Funct2 1s the next, and so on.

In the first column, features are ordered according
to their ranks in terms of correlation coeflicients with-
in major functionss2. The corresponding next five col-
umns arc the coefficients in the five major functions.

These correlation coefficients can be considered as
the indicator to the contribution level of cach feature
as a member of the universal feature set to the Maxi-
mum Likelihood Classifier [10]. Hence, in this context,
the eatures, from the best one, are sequentially selec-
ted for the universal feature set:

They are sequentially fed into the Maximum Likeli-
hood Classificr until the classifier satisties the pre-de-
tined desired conditions in terms of error rates and the
number of features.

The same procedure has been performed for the cu-
stomised fealure set for cach individual class.

Figure 2 is the MLM{Maximum Likclihood Method)

Frorrate s

iR 1

IR RIS

Fig. 2 MLM using the universal feature sets

Table 2

BLIAENH L B AN B AE Y
verification result for the universal feature sets.

The figure shows that reducing the number of fe-
atures does not always degrade the MLM perform-
ance. Rather, the best performance has been recorded
by using 46 features, not using all 56 features.

For customised feature sets, each writer has his own
optimum feature set and, accordingly, the customised
feature sets differ in number between individual wri-
ters. However, the average number of optimum fea-
ture sets was significantly reduced with an impressive
error rale performance improvement. Table 2 shows
the results of MLM for both types of feature sets.

In the table, using customised feature sels has
shown a significant performance improvement, an av-
crage error rale at 0.7 percent with an average num-
ber of features per signer of 30, from the result using

the whole 56 features of an error rate at 2.5 percent.
Wl. Conclusions

This paper has investigated various feature selection
methods from a practical perspective to realize an op-
timal signature verification system, and a statistical
approach using the divergence measurement concept
for customised feature set selection has been propos-
ed. The experimental results show a signilicant per-
formance improvement in terms of error rate. Also
they showed a dramatic reduction in the computa-
tional time complexity as the proposed method repl-
aces the exhaustive heuristic searching processes with
a one-time-ranking process for each individual.

Practically, it often becomes a problem to collect a
sufficient number of samples 1o build a statistical
model. which is equally applied to the heuristic ap-

proach while the result related to this problem is not
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castly exposed in such a black-box type process.
Although future work should seek to solve this issuc.
the proposed method is thought to have provided a
feasible methodology to objectively evaluate the dis-
criminating ability of cach feature and an optimal
personal feature set for cach individual with an uc-
ceptable computational fatency in practical situations.
We are thanksful Ho-Chul Jeon & Scung-Hyub

Yoo for their fine word processing job.
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