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ABSTRACT

We propose a method of parameter estimation using order-of-magnitude analysis for optimal boundary

smoothing in Mean Field Annealing(MFA) technique in this paper. We previously proposed two boundary

smoothing methods for consistent object representation in the previous paper, one is using a constrained

regularization(CR) method and the other is using a MFA method. The CR method causes unnecessary smoothing

effects at corners. On the other hand, the MFA method smooths out the noise without losing sharpness of corners.

The MFA algorithm is influenced by several parameters such as standard deviation of the noise, the relative magni-

tude of prior term, initial temperature and final temperature. We propose a general parameter estimation method

for optimal boundary smoothing using order-of-magnitude analysis to be used for consistent object representation

in this paper. In addition, we prove the effectiveness of our parameter estimation and also show the temperature

parameter sensitivities of the algorithm.

1. Introduction

It has been noted that the human visual system
uses two-dimensional(Z—Dj boundary information to
recognize objects since the shape of the boundary
contains the pertinent information about an object.

Hence, representing a boundary concisely and consis-
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tently is necessary for object recognition. In addition,
the boundary-based method has the advantage of
using local information which is less subject to problems
caused by occlusion in recognizing objects based on
shape information in the presence of occlusions.
Corner detection approach is usually used for
boundary representation since it is well known that
the shape information is concentrated at the points
having high curvature{l]. The corners are usually
detected in a curvature function space by capturing

all the local extrema whose curvature values are
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above a certain threshold value. Hence, computing
the curvature function properly is very important for
consistent boundary representation.

The curvature function obtained naively from a
digitized boundary is very ragged due to the discrete
nature of a boundary data and noise. Therefore, it
must be made smooth to be used for further
processing. The computation of curvature involves
the first and second derivatives and differentiating
discrete and noisy data enhances the noise. It is an
ill-posed problem. There are two possible approaches
to compute the curvature function on a digitized
boundary curve in a wide sense:one is performed in a
discrete domain and the other is performed in a con-
tinuous domain. The discrete domain has been used
to compute the curvature function directly using the
concept of k-curvature. We have exploited the con-
tinuous domain by investigating several lowpass
filtering techniques such as mean, Hanning-windowed

FIR lowpass, and Gaussian filters to reduce the effect

curvoture
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Fig. 1-1 Results of Gaussian filter(c = 1).

186

curvature

@
o
o \

{ .

.

(b)

Fig. 1-2 Results of Gaussian filter(s = 8).

of quantization. However, a common critical problem
of the existing methods is the difficulty in determining
a unique smoothing factor. Fig. 1-1 and Fig. 1-2
show examples of the above problem. We had noisy
estimates of curvature with o=1, i.e., they were
undersmoothed as a result of insufficient filtering as
shown in Fig. 1-1. On the other hand, the filter with
o =8 oversmoothed the data as shown in Fig. 1-2. We
can see that the curvature extrema are significantly
attenuated, and poorly localized. Fig. 1-1 and Fig. 1-2
also show considerable changes in its shape as o is
increased.

We suggested two boundary smoothing methods to
overcome the above problem in the previous paper(2].
First, we used a Constrained Regularization(CR)
technique which combines a regularization and a
noise constraint. The regularization technique gener-
ally transforms ill-posed problems into well-posed
problems by introducing constraints such as a

smoothness requirement. It results in a consistent,
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unique and stable solution. The degree of boundary
smoothing is determined by a priori noise infor-
mation. In other words, the noise constraint determines
a correct degree of smoothing, i.e., a unique smoothing
factor. However, the CR method causes the unnecessary
smoothing effects at corners.

Second, we used a Mean Field Annealing(MFA)
technique to smooth out the noise without losing
sharpness of corners. Simulated Annealing(SA) is an
established technique for finding the global minimum
of complex nonlinear functions that have several local
minima[3}. SA is a random process and converges to
a global minimum under special conditions. However,
it converges to the global minimum very slowly.
MFA is an approximation to SA which replaces the
random search with a series of deterministic gradient
descents[4]. MFA solves the simultaneous problems of
noise removal and preservation of corners.

The MFA algorithm is influenced by several para-
meters such as standard deviation of the noise(g), the
relative magnitude of prior term(d), initial tempera-
ture (T,) and final temperature (T';). In this paper, we
estimate the parameters for optimal boundary smoothing
to be used for consistent boundary representation
using order-of-magnitude analysis. In addition, we
prove the effectiveness of our parameter estimation
with order-of-magnitude analysis and also show the
temperature parameter sensitivities of the algorithm in
this paper.

This paper is structured as follows:Section 2 gives
the theoretical background of MFA as well as a
method of optimal boundary smoothing using MFA.
In section 3, we propost a method of parameter esti-
mation of MFA using order-of-magnitude analysis
for optimal boundary smoothing. We derive it math-
ematically in detail in this section. In section 4, we
show some experimental results and confirm the effec-
tiveness of our proposed method. We also show the
sensitivities of the estimated temperature parameters.
Finally, a summary of the important results of this

paper and concluding remarks are given in section 5.

. Optimal Boundary Smoothing Using
Mean Field Annealing Technique

Problems involving the minimization of functions
that have many local minima have been prominent in
various engineering applications. The gradient descent
method is a typical example of a minimization algor-
ithm which may become stuck in a local minimum
depending upon the starting point. Kirkpatrick et al.
[3] developed the simulated annealing technique to
overcome this problem. Geman and Geman[5] used a
Bayesian approach for image segmentation. They
showed that if the image can be modeled as a
Markov Random Field (MRF), there is an equival-
ence between the MRF and the Gibbs distribution.
Hence, the problem of finding the most probable state
in a posteriori probability distribution is converted
to that of finding a global minimum in the energy
function. Once the proper energy function is defined,
the next step is to find the global minimum for that
function. They proposed a procedure called Stochastic
Simulated Annealing(SSA). It converges to a global
minimum under certain conditions. However, it is
extremely slow in practice. Bilbro et al. [4] developed
a mean field annealing(MFA) technique. They sought
a way to smooth out the noise without eliminating
the edges. They accomplished this by using a global
process that combines consistent local measurements
to infer global properties. MFA is an approximation
to SSA which replaces the random search by
deterministic gradient descents. This approximation
makes the algorithm converge faster than SSA.

Since a data point is correlated to its neighbors in
boundaries, we can model the boundary as an MRF.
Thus, we can use the MFA technique for optimal
boundary smoothing. We pose the optimal boundary
smoothing problem as minimization of the sum of a
“noise” term and a “prior” term. Thus, we choose a
Hamiltonian which represents both the noise in the
boundary and a priori knowledge of the local shape
of the boundary data. The noise Hamiltonian (#,,) is:
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[_fe(k)'—_fm(k)]2 =(fe—fm)r (fc_fm)

202 202

Hn(fesfm)=§
1)

where f, and f, are measured boundary and
estimated boundary for unknown original boundary
f and ¢? is a noise variance. The prior Hamiltonian
(H,) represents the measure of a certain property.
This can be written as

1 Ai

Hy(f)=—b }; NG exp (——27:) )

Ay is the operator to the neighborhood of the kth
element. We use the second derivative for A, because
it represents the roughness of data. b is a weighting
factor for the prior Hamiltonian against the noise
Hamiltonian, and T is a system temperature. As T
approaches to zero, Eq. (2) becomes the analytic form
of Dirac delta function. In other words, if A equals
zero everywhere, then H, will be maximum in absol-
ute value (due to the minus sign in Eq. (2)) and will
contribute maximally to making the Hamiltonian (H)
small. We use the discrete approximation of the sec-
ond derivative with three equidistant points. Thus,

the digital approximation of the prior term becomes

—-b
Hﬂ(f.)=§ \/T_T:

=[felk+1)-27(k) +fg(k—1)]2)

exp ( Tx 3)

Minimizing the noise term (H,) ensures that the
unknown boundary should resemble the boundary
data f,, i.c., “closeness of data.” The prior term (H,)
encapsulates a priori knowledge of the boundary
characteristics, i.c., “smoothness of data.”

We choose the mean field Hamiltonian to be

1

Ho(p, fe)=}; ) [p(R)— fe(B)]”. CY

With this choice for H,, the parameter u becomes the
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mean of f,. We already found that the minimization
of the mean field error(Eyy) is equivalent to the
minimization of (H(f,, f,)), (2]. In addition, Bilbro
and Snyder{6] showed that ( H,,) is constant and { H,)
has the following asymptotic behavior:

(Hp):’”p and <Hp>?;) 0. (5)

Thus, minimizing { H )u is equivalent to minimizing

H. Conclusively, we will minimize

Hpu, f)=HKSf), fu)

_lu®—faBP b
=L o NETIR
[l +1)—2p(R) +ule—1)]?
(_ o7 ) (6)

We perform the minimization of Eq. (6) by annealing
on T. That is, we begin with a large T since H,~0
for large T and minimizing the H of Eq. (6) is
equivalent to setting u=f,. Then, we start the algor-
ithm with this initial condition, gradually reduce T,
and at each new value of 7, we minimize H by using
gradient descent or other standard minimization

methods. The algorithm is summarized as follows:

1. Initialize p=f,. Initialize 7° to some 7; (initial
temperature).

2. Lower the temperature (T#*!'=1T* r is the dec-
rement factor).

3. Minimize H at the new 7'# using a gradient descent
method to reach a local minimum.

4, If T*) T, (final temperature), return to step 2.

S. Stop.

. Parameter Estimation

We can see that the algorithm is influenced by the
following parameters from Eq. (6) and the algorithm

summary of the previous section:(s:the standard
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deviation of the noise, b:the relative magnitude of the
prior term, T;;the initial temperature, 7 :the final
temperature). The decrement factor t is also import-
ant. However, it was empirically shown that 5-10%
decrement of the temperature is usually good enough.

Therefore, we use the following annealing schedule:
Toew =0.95 Ty )]

Since a digitized boundary is represented by 8-
neighbor Freeman chain code, the quantization noise
is dominant in the digitized boundary. Thus, we can
easily estimate 0. We apply an order-of-magnitude
analysis to our parameter estimation. For simplicity,
we assume we are working in a small region of the
boundary. In this region, we have zero-biased the
data by subtracting the mean. Therefore, we have
{ f': (k)) = ¢? in this small region, where ( ) is an
operator for the expected value. Applying the order-
of-magnitude analysis, we have

L=/ +0-0fk), 0<(<1. (8)

First, consider the noise term,

([fe(k)_fm(k)]Z)z < [(c_l)fm(k)"‘(l —C)fe(k)lz)
=1 =0X[fe(B—fuBN?)=(1-0)? o2 )

Second, we consider the prior term. By using Jensen’s
inequality, we can examine the exponent of the prior

term,

ALY ={fek+D) =21 (k) +f.(k—1)]*)
+A-D(fk+D =21 (®) +F E—-1)]?)
R ([ fmlk +1) =2 () + frulle—1) + l;c

1)

where p is roughly the local radius of curvature of the
ideal boundary. Eq. (10) may be further simplified by
recalling that we are working in a region where ¢ f,)
~ 0,

-2
(AD) AL (Sl +1) =21 (B) +f,,(k—1))2>~“—p—29~

I —_ 2
~ 6ot + 4= an
P
For a polygon, p— 0. Furthermore, unless o2 is zero
or p impractically small, A, will always be dominated
by the first term. For large values of T, the prior term
is negligible. The prior term begins to be significant
when the exponent is of order one, that is,
[ 6 C 2 g

2
——|=oW. (12)

Since { =1 at high temperature, we start annealing at
T;=0(3 o?). (13)

Thus, the initial temperature is high enough if we
begin annealing at double our estimate, 7;=6 ¢2. The
energy corresponding to f,(k) can be approximated
as

a-0* _ b

_362 0.2)
2 2nT '

E[f.(B)]= T

exp ( (14)

Since the energy is dependent on { we find b by
choosing the { which minimizes E|f,(k)]. Differe-
ntiating E|[ £, (R)} with respect to { yields

....3(2 0.2)

b
=D 4= exp(—7

=0 15)

We want our estimator to be half way between the

original data and the final value at T =342 Hence,
. 1 .
we assign { =-—2— at T= 30?2 As a result of this appro-

ximation, we have

b= “;n e/t

o= 280. (16)

We generally cool down the temperature until the
temperature is close to 0. However, as 7—0, the
prior term (H,) dominates the Hamiltonian (Eq. (6)).
In the limit, the effect of the prior term will be to
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Fig. 4-1 CR vs MFA ; (a) Preprocessed boundary(CR) (b)
curvature(CR) (c)Preprocessed boundary(MFA)
(d) curvature(MFA).

converge to a solution which is locally planar except
for a set of discontinuities between segments. Hence,
overcooling makes curved segments piecewise linear.
Thus, we have too many segments to represent a
boundary. It is essential that we predict a final
annealing temperature to keep curved parts of the
boundary. Bilbro and Snyder[7] discussed this ove-
rcooling effect by considering the algorithm as a linear
filter. They found an approximate range of final tem-
perature. It works fine at near T,=0.01, but not as
cold as T,=0.001. We empirically show that the

above T, works fine in our application.
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IV. Experimental Results

We estimated parameters (T; ~ 60, T,=001, b=2.8¢)
in the last section. We tested the MFA algorithm with
those estimated parameters for a boundary of a real
object. Fig. 4-1(a) is the smooth gun boundary
obtained by the CR method and Fig. 4-1(b) is the
corresponding curvature function. As shown in the
figure, the original boundary was smoothed well
enough to be used for further processing, but some
corners were not preserved. Fig. 4-1(c) shows the
smooth boundary obtained by the MFA method
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based on the parameters estimated in the previous
section. Fig. 4-1(d) is the corresponding curvature
function. We can clearly see that the MFA method
gives better performance. Fig. 4-1(d), when compared
with Fig. 4-1(b), is less noisy and has larger extrema.
In other words, corners of Fig. 4-1(c) are sharper
than those of Fig. 4-1(a) and curved segments of Fig.
4-1(c) are smoother than those of Fig. 4-1(a).
Considering noise and negligibly small changes on
the boundary, it is necessary to give a threshold value
to the curvature, based upon which corners may be
determined. A human recognize slightly rounded
segments as corners as well as sharp corners. Thus,
we proposed a method to mimic a human’s capability
of detecting corners based on the definition of comer
sharpness in the previous paper{2]. Sharp corners as
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Fig. 4-2 Results of MFA method(occluded object); (a)
normalized curvature with threshold value (b)
corners detected by corner sharpness.
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Fig. 4-3 System temperature sensitivity of MFA method ;
(a) High initial temperature effect(T; =120 o) (b)
Undercooling effect(Ty=0.1) (c)Overcooling ef-
fect(Ty =0.001).

well as slightly rounded segments are detected as
corners by the definition of corner sharpness. Fig.

4-2(a) shows the normalized curvature function of an
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occluded boundary between a gun and a plier with
the threshold value for corner detection in the MFA
approach. Fig. 4-2(b) shows the result of corner
detection using corner sharpness in the MFA
approach. As shown in the figure, all the corners
which have very sharp curvature extrema are easily
detected.

Fig. 4-3 shows the sensitivities of the initial and
final system temperatures. We began annealing at an
initial temperature(T;=12006), which is 20 times
higher, to see how it affects. As shown in Fig. 4-3(a),
we have almost the same results as the original ones
(Fig. 4-1(d)). Thus, our estimation of initial tempera-
ture is correct. Fig. 4-3(b) shows the undercooling
effect(Ty=.1). As shown in the figures, the resulting
curvature function is smooth, but the curvature
extrema are not highlighted enough. We can see that
it needs more cooling for the preservation of corners
and the smoothness of curved parts. Fig. 4-3(b) looks
almost the same as the results for the CR method
(Fig. 4-1(b)). Fig. 4-3(c) shows the overcooling effect
(Ty=.001). We can see that we have more curvature
extrema. Thus, we conclude that as we gradually cool
down the temperature(7,—0), the resulting boundary

is becoming piecewise linear.
V. Conclusion

We presented the derivation of the MFA algorithm
and applied it to the optimal boundary smoothing for
curvature estimation in this paper. We found that the
MFA algorithm is influenced by some parameters
(o, b, T;, Tp). Thus, we estimated those parameters
using the order-of-magnitude analysis in this paper.
We confirmed that those parameter estimates worked
well from some experimental results. In addition, we
showed that the MFA method worked better than the
CR method in a sense of preserving corners. We also
showed the sensitivities of the system temperature
parameters of the MFA method. We confirmed that

our parameter estimation was good enough for optimal
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boundary smoothing through the system temperature

parameter tests.
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