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ABSTRACT

Several image coding algorithms have been developed for the telecommunication and multimedia systems with
high image quality and high compression ratio. In order to achieve low entropy and distortion, the system should
pay great cost of computation time and memory. In this paper, the uniform cubic lattice is chosen for Lattice Vec-
tor Quantization (LVQ) because of its generic simplicity. As a transform coding, the Discrete Wavelet Transform
(DWT) is applied to the images because of its muitiresolution property. The proposed algorithm is basically
composed of the biorthogonal DWT and the uniform cubic LVQ. The multiresolution property of the DWT is ac-
tively used to optimize the entropy and the distortion on the basis of the distortion-rate function. The vector
codebooks are also designed to be optimal at each subimage which is analyzed by the biorthogonal DWT. For
compression efficiency, the vector codebook has different dimension depending on the variance of subimage. The
simulation results show that the performance of the proposed coding method is superior to the others in terms of

the computing complexity and the PSNR in the range of entropy below 0.25 bpp.
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I . Introduction

The demand for data transmission at low bit rate
and high accuracy requirements has been increased
day by day, according to the development of mobile
and multimedia communications. Therefore, the re-
search on the development of data compression for
digital communication system has been actively going
on. The new image compression algorithms based on
the fractal theory, the model based coding theory, the
object oriented coding theory, and wavelet transform
theory have been developed. Specially, the wavelet
transform has recently become quite popular and its
main property is multiresolution, or multiscale view
of signal analysis [1]. The concept of multiresolution
analysis was introduced by Mallat who viewed the
orthonormal bases of wavelets as a vehicle for
multiresolution analysis [1]{2]. Daubechies achieved
the construction of orthonormal wavelet bases by
combination of Mallat’s idcas and restrictions on
filters {3]. On the other hand, the pyramidal lattice
vector quantization (PLVQ) has good performance in
terms of MSE (Mean Square Error) and complexity.
Of course, the non-structured VQ based on LBG
(Lide, Buzo and Gray) algorithm [4] was proven to
take a good performance in MSE but this algorithm
is computationally expensive and hard to implement
in real time image processing. The PLVQ overcomes
this shortcome because it does not need the training
that yields sometimes local optimum VQ codebook.

This paper proposes a new compression scheme
using wavelet transform and LVQ which has more
powerful performance in computation time and dis-

tortion than other compression algorithms [5}{6]{71{17]
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below 0.25 bpp. The uniform cubic lattice (Z7) is used
as the basic lattice for LVQ because it can be
implemented with simple archilecture. Section 11 deals
with DWT (Discrete Wavelet Transform) using biortho-
gonal wavelet basis. In section III, pyramid VQ and
the uniform cubic lattice are briefly reviewed, and
encoding/decoding algorithms are described.

Section IV presents simulation results and compares
with other algorithms in terms of entropy, distortion

and complexity.
II. Wavelet Transform

Transform and subband coding of image are widely
used in image compression. The DCT (Discrete
Cosine Transform) provides good energy compaction,
but it suffers from blocking artifacts that become
more pronounced at higher compression ratio. The
DWT, which is closely related to subband coding, has
a muliresolution property and is more efficient in
describing the abrupt changes of edges. The quanti-
zation of the transformed coefficients can be realized
in consideration of the human visual system because
the scale of multiresolution basis function varies in

logarithmic scale [8].

1. DWT (Discrete Wavelet Transform)

By the paraunitary QMF (Quadrature Mirror Filter)
bank, the DWT can be realized easily [9]. A basic
structure for biorthogonal wavelet transform is shown
in Fig. 1 [10}{11). The biorthogonal basis is used in
this paper and there are two pairs of filters:One pair
is #ln] and glnl, which are typically lowpass and
highpass filters for signal analysis, respectively. The
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other pair is A*[n] and g*[n], which are dual basis of

hln] and g[n), respectively used for signal synthesis.

The wavelet coefficients obtained from a two-channel

filter bank with filters A[n] and gl#l, followed by

down-sampling by 2, are given as follows,

wnl=Y k2n—klx k] m
P’

xInl=% gl2n—klx|k] )]
)

where x,[n] is input signal, x,[n] and x,[»] are the

channel signals depicted in Fig. 1.

xafnf _1 !
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Fig. 1 Basic structure for biorthogonal wavelet transform

If the relationship between analysis and synthesis

filters are given by

g2 nl=(-1D"* h[-n+1) &)
2 m=(-1" h*[-n+1] )
S hinlk*[n +2k =51k (5)

the perfect reconstruction can be realized as
2l =% (h*[n—2k] 2, [kl +2* [0~ 2k) (kD = x[n] (6)

In our simulation, Daubechies97 filters (analysis filter
with 9 taps and synthesis filter with 7 taps) are
adopted [12]. For 2-D DWT, 1-D filters are applied
to 2-D image. At first, apply lowpass filter 2 [#] to the
original image along the horizontal direction and then
filt the left half plane of the transformed image with
the filtered outputs, and apply highpass filter k[n] to

the original image along the horizontal direction and

fill the right half plane of the transformed image with
the filtered outputs. So, the new transformed image is
created, which consists of the lowpass filtered outputs
on the left half plane and the highpass filtered ones
on the right half plane. After this processing in the
horizontal direction, apply lowpass filter g[#] to the
new created transformed image along the vertical
direction and fill the upper half plane with the filtered
outputs, and apply highpass filter g[#»] along the ver-
tical direction and fill the bottom half plane with the
filtered outputs. Therefore, four kinds of subband
images are created, denoted by HH, HL, LH, and

LL, as shown in Fig. 2. The same procedure above is
repeated four times on the subband image LL in our

simulation.

. Pyramidal Vector Quantization and
Uniform Cubic Lattice

1. Pyramidai Vector Quantization

In the paper written by T.R.Fisher[l13], when the
transformed coefficients have an independent, identically
distributed multivariate Gaussian distribution, the
surfaces of equal probability for multidimensional
vector are ordinary spheres when the components of
the vector have no correlation with each other.
Whereas in the case of Laplacian sources, those are
pyramids. The PVQ uses codewords corresponding to
points in the cubic lattice that also lies on a particular

pyramid.

2. Uniform Cubic Lattice
The uniform cubic lattice (Z”) is used as the basic

lattice for PVQ which is written as

"={Y =¥ Y2, Vul ¥: € Z)} @)

where Z is the integer space. Let us define n-D

hyperpyramidal surface, S (n, m), as follows

S(n, m= X:.}_:] |x,-|=m} (8)
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Fig. 2 Subband images and vector assembling scheme

where n is the vector dimension and m is the radius N, m)=Nn—1,m+Nmn—1, m—1) +N(n, m—-1),

of the hyperpyramidal surface. Let N(n, m) be the forn>2 m=2 ©)

number of lattice points on S(», m), then the recur-
sive formula proven by Fischer [13] is used to calcu-
late N(n, m) as follows,
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Fig. 3 Overall block diagram of the proposed encoding and decoding system
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IV. Proposed Alogrithm

Since the source image coefficients can be well
transfomed to the coefficients in the several subimages
with the Laplacian distribution by the DWT, n-D
vector of coefficients in the subimage is mapped into
n-D space with pyramidal distribution. The n-D vec-
tor is quantized into unique lattice points on n-D
hyperpyramid surface, where the dimension is decided
by the allocated bitrate of the subimage.

The overall block diagram of the proposed encoding
and decoding system is shown in Fig. 3. The encoding

procedure is described as follows;

1. Encoding Algorithm
Step 1:The original image is decomposed into
subband images through the multi-level wavelet tra-

nsform.
Step 2:The DC coefficients, which are lowest

subband image, are so important that the lossless
compression method is adopted. The DPCM (Differ-
ential Pulse Code Modulation) method is applied to
DC coefficients, whereas PLVQ (Pyramidal Lattice
Vector Quantization) is applied to AC coefficients of
the other subband images. The AC coefficients, X, .
(Z, j), are assembled to vectors X, which have the
given dimension n. The pixels in real image have high
correlation with neighborhood pixels. The coefTicients
in transformed image have still some correlation with
the neighborhood pixels although the transform
makes the coefficients decorrelated. For this reason,
the vector formatter assembles the dimensional vectors
like Fig. 2 so that the components of vectors have less
correlation with each other.

Step 3:Determine the optimal scale factor, a, with
a given compression ratio and image quality. The
compression ratio can be adjusted by changing the
scale factor a. Every vector in subband images of LH,
HL, and HH in Fig. 2 is scaled with the factor of « as
follows,

Xon=0X, (10)

Step 4: If the scaled vectors X, are outside of the
maximum pyramidal surface, that is, the value || X,

s

|xs| is greater than the maximum radius M,

L]

i
then those vectors are projected on the pyramidal sur-
face S(n, M) by projection theorem [14). In this case,
the maximum radius M should be determined for op-
timum compression performance. Therefore, all the
scaled and projected vectors X, are on or inside the
hyperpyramidal surface S (2, M).

Step 5:Every component x,; of vector Xp, are
rounded to ¥; so that y; has only integer value. These
quantized vectors are denoted by Y, =¥, ¥2,..., ¥):
Y EZ}.

Step 6:For the quantized vectors Y ,,= {(y,, Yarees V)

> Iyl =m> , there are N{n, m) lattice points, which
i

can be calculated from the equation (9). One to one
mapping is possible between the vector Y,, and an integer
in the range [0,..,N(n, m)—1]. Therefore, the unique
indexing can be performed [13].

Step 7:Those index values are entropy coded and
transmitted through the communication channel.

2. Decoding Algorithm

Decoding procedure is given as the following steps:

Step 1:The received bit streams through the com-
munication channel are entropy decoded to the vector
index values.

Step 2:The decoded index values are converted to
the corresponding vectors

1
Step 3:Rescale the vectors using rescale factor o

Step 4:The rescaled vectors are deassembled to the
corresponding subband images. The DC coefficients
are decoded by DPCM. The reconstructed image is
obtained by inverse DWT of the deassembled subband

images.
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3. Vector Dimension and Bitrate

The performance of Z” LVQ is affected by the
dimension of the vector. Therefore, the dimension is
decided by the bit allocation algorithm. The optimal
bit allocation of each subband images is determined
by the variance of subband images in order lo
approach the target bitrate. The relationship between
the variance and optimal bit allocation is given by
[15]

1 o;
7:(6) =max | 0.0, — log, (—-—)] 49
2 f
where g; is a variance of 7,;, subband image and 0 is a
variance to be adjusted until the following equation is

satisfied.

3L

Rr=7r4+2 7,(0) (12)
in

where L is the multiresolution level, Ry is the total
target bitrate and 7,4, is the bitrate at the DC subband
image. The variance of the DWT coefficients increases
for lower-frequency subband images, which means
that the coefficients at the lower frequency is more
important. Therefore, the subband images which have
higher variance are assigned higher bitrate than those
have lower variance under the distortion restriction.
The bitrate is increasing as the codebooks dimension
is decreasing. The bitrate range corresponding to the

dimension n of Z” are summarized at Table 1.

Table 1. The bitrate range for the dimension n of Z"

Lattice VAN A z*4 z?

Bitrate |0 bpp~ |0.4 bpp~ [0.7 bpp~ |above
04bpp |0.7bpp [l1.4bpp 1.4 bpp

IV. Simulation Results

The Lena image, whose resolution is 512 X 512,
was used for comparison study of PSNR (Peak Signal
to Noise Ratio) and entropy. The proposed algorithm
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Fig. 4 PSNR of the proposed and the referenced algorithms

was compared with the CVQ (Classified VQ) [6], D*
LVQ and SA-W-VQ [17]. The PSNR of the proposed
algorithm is better than the D* LVQ and superior to
the referenced CVQ as shown in Fig. 4. The SA-
W-VQ is better than the proposed algorithm at the
entropy above 0.25 bpp. However, the proposed
algorithm is optimized at the entropy below 0.25 bpp
for the real time video processing at the very low
bit-rate communication network. By these reasons,
the computation complexity is importantly considered.
To measure the computation complexity, the number
of operations per vector (0.p.v) is counted. The num-
ber of o.p.v is computed for one vector of dimension

as follows.

i) The analysis of the LBG complexity

nL. differences +nL squares +(n—1)L sums= (3n—1)L
(0.p.v).

where L is codebook size, and n is the number of vec-
tor components.

ii) The analysis of D™ LVQ complexity

n roundoffs +n—1 sums +n differences (to find J)
+n absolutes (to find absolute value of §) +n—1
differences (to find maximum value of the absolute of
&) +1 round off (to find the integer of the component
having absolute value of é) +2 modulations +1 test
(to find the even value) =4n +1 (o.p.v).

iii) The analysis of SA-W-VQ complexity

Because the SA-W-VQ uses the lattice A ,,, 4n +1 +32

www.dbpia.co.kr
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Fig. 5 The complexity results by the calculation of O.P.V
(log scale) (O.P.V: No.of Operation Per Vector)

adds +1 multiply =4n +34(0.p.v)
iv) The analysis of Z” LVQ complexily

n roundoffs = n (o0.p.v).

Fig. 5 shows the computation complexity by the
measured o.p.v. This complexity measure is just the
operation number of one vector, whereas the extra
computation for the LBGs training operation is not
included in this o.p.v. In the CVQ, its vector dimen-
sion n is 4 and codebook size L is 256. In the D*
LVQ, its vector dimension n is 4 and 16 in case of the
SA-W-VQ. On the other hand, the average vector
dimension n of the proposed algorithm is 7.5 for Z*
LVQ.

V. Conclusions

In this paper, a new image coding algorithm was
proposed, which is based on the theory of the wavelet
transform and the lattice vector quantization. The
DWT-based coding has better performance than the
block DCT-based coding in terms of the blocking
effects and the image quality. Also the VQ has good
compression performance by Shannons information
theory. The LVQ is the most efficient algorithm for
implementation among several VQ algorithms. The

proposed algorithm employed the uniform cubic lattice

VQ to reduce the computation complexity. Finally the
proposed algorithm improved the compression perfo-

rmance, computation complexity and storage cost.
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