DEri=

M3 98-23-2-20

Analysis of E-Polarized Electromagnetic Scattering by
a Resistive Strip Grating on Dielectric Multilayers
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ABSTRACT

In this paper, the electromagnetic scattering problem by a resistive strip grating on a dielectric layer of the

existing papers is extended to that by a resistive strip grating on dielectric multilayers. The purpose of this paper is

to find out the effects for the relative permittivity and thickness of 3 dielectric layers to obtain the geometrically

reflected and transmitted powers by using the Fourier-Galerkin moment method. To confirm the validity of the

proposed method, the normalized reflected and transmitted powers are obtained by varying the relative permittivity

and thickness of dielectric layers are evaluated and compared with those of the existing papers. The numerical

results in this paper are in good agreement with those of the existing paper. It should be noticed that the sharp

variation points are observed when the higher order modes are transferred between propagating and evanescent

modes, and in general the local minimum positions occur at less grating period according to the increase of the

relative permittivity of dielectric layers.

I. Introduction

Scattering properties of the array of conducting
strip in free space or on diclectric slabs have been
interested in the fields of optics and electromagnetics.
Many analytical and numerical methods have been

devised and employed to determine these properties.
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Richmond [1] added edge mode (to take care of the
singularities) to the Fourier series for the unknown
current density expansion on perfectly conducting
(PEC) strips, and then used the Fourier-Galerkin
moment method (FGMM). The scattering problems
from a periodic array of resistive strips were analyzed
by using the spectral-Galerkin moment method
(SGMM) [2]-[3] and the FGMM [4], respectively.
Electromagnetic scattering problems by a PEC strip
grating over a grounded dielectric layer were analyzed
by using the point matching method (PMM) [5] and
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the FGMM [6, 7], respectively. Volakis et al. [8] con-
sidered TE-characterization of resistive strip gratings
on a dielectric slab using a single edge-mode expansion.
In this paper, the electromagnetic scattering problem
by a conducting and resistive strip grating on a dielectric
layer of the existing papers [1]-[4] is extended to that
by a resistive strip grating on 3 dielectric layers. The
problem of multilayers brings more new parameters
so that it can get possible to obtain the wanted
characteristics. It is solved numerically the E-polarized
scattering by a resistive strip grating on 3 dielectric
layers by using the FGMM. The purpose of this
paper is to find out the effects for the relative permit-
tivity and thickness of 3 dielectric layers. This ge-
ometry of problem has been applied extensively to
polarizers, frequency filters, the design of radar
targets, reflection-type gratings, and many others.
And the problem of resistive strip includes the PEC
strip case as R=0, so the resistive strip case of this
paper can provide more numerical results than the
PEC strip. To explain the sharp variation points, we
considered the relation between the geometrically
reflected power and the reflected power of the higher

order mode.
II. Formulation of the Problem

It is considered for the periodic array of thin
resistive strip grating on 3 dielectric layers illuminated
by a E-polarized plane wave. Fig. 1 shows the cross
section of the resistive strip gratings which are uni-
form in the y direction. E-polarized plane wave with
its electric vector parallel to the edge of the resistive
strip gratings is incident at arbitrary angle ¢. The
regions 1 and 5 are free space, the regions 2, 3, and 4
are dielectric layers, the relative permittivities of the
dielectric layers 2, 3, and 4 are €,;, €,3, and g,4, Te-
spectively. And w and h denote strip width and a half
of strip width(h =w/2).

The incident electric field E° and scattered electric
field E° and total electric field EZ‘,EJ’, Ej, Es’ in the
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Fig. 1. Geometry of the problem

regions 2, 3, 4, and 5 can be written as [9]
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where ky= /€9, ko=2mn/A is wave number of the
medium and A is wavelength, p, and &, are permea-
bility and permittivity in the free space, E, is the magni-
tude of the incident electric field and is set to be 1 in
this paper, k=0 it€&i=ko/6ri, 1=2, 3, 4, Bp=
kysing +2nn/s. A, B,. Ca., and T, are unknown
coefficients to be determined, and the tangential mag-
netic field of each region can be obtained by using
Maxwell’s equation(V X E= —ijE).

Applying the continuity of tangential electroma-
gnetic fields to the boundaries at z=0, £,, and £,, we
can express Cy, in terms of B, as [9]
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Cn2 = an BnZ (7)
where
’ =[ exp(— 27113 83) (w2 +11w3) + Pt U1z — 113)

"2 71 exp( =271 £ Unz +113) + Dy Oz = 1)

exp(=27nm ty) ®)

- [ eXP( =27t £3) (ns = 1) (s = Y) 013 + 110} 1s 1Y)
™! eXPA—27 s 290y + 1) (s =¥} +( "’lu)(’lm Al

exp(— 271, 13). )]
Since the tangential electric field must be continuous

at z=t,, using eq. (7), we can express B, in terms of
A, as

ettt 5 4+ 4,
e‘i'mh -’.—p"z ej'l.ltl

an = (10)
where §,, is the Kronecker delta function.

Let us expand the surface-current density J (x) on
the strips in a Fourier series with unknown coefficient

So J (%) can be written as
J()=a, e hmsind T fogimlk _p<x<h (1)
p=—

From the tangential magnetic boundary condition, we

get

kocos¢e”""°°“— Z {A A 'Inz(ane ot ze;m) - jnmfs

a
=wuy Y, freh —h<x<h 12)
p=—m
Substituting eq. (7) into eq. (12) Substituting eq. (7)
into eq. (12), multiplying both sides of eq. (12) by
e’2™*/s and integrating over the region —s/2 < x < s/2,

we obtain the unknown coefficient 4,, as

A= — komo ,E:‘w f,,( pr;;ﬂ )

+ef"'"°°"( kycosg + Py )é”

Y —pnl (l 3)

434

where

h .
G = j y 2 I1Rplw +nls) gy (14)

" (e‘f’l.z’l_. » ezl"l.zfl...])
pnlz[ 2 . Pur y (15)

e_l'lntl +p”2 el’l.xfl

and ny= \[u;/gis the intrinsic impedance in the free
space.

The resistive boundary condition is
Ei +Es=R J(x), on the resistive strips (16)

where R is the uniform resistivity of the strips, its unit
is ohms per square and suppressed below. From eq.
(1), (2), (11), and (16), we get

e]kot.uoso + Z A e jZmzx/s__R Z fp ejpvrx/h (17)
n= -

We multiply both sides of eq. {17) by ¢~/ /% and

integrate over the region —/4 < x < A to obtain

Z AnGon= Rw Z o Oap—W 8 @7ketrcost (18)
where * denotes the complex conjugate, 8, is the
diagonal square matrix. Let us replace 4,, in eq. (18)
with that of eq. (13). This yields the following system

of simultaneous linear equations.

M
Y f2Zep=V4q=0,1,2, .M (19)
=-M
where
ko?]g N G‘
=Rw i, +—— - vamrenall 164 20
qp W » n“;N( '}’ pn ) pn ( )
) N kocosg + 3
— p iRyl cosd 0 n
V,=e waq+n:\;Na( P )q,]
(1)

To obtain numerical results, we inverse eq. (19) for
unknown coefficients f,, and then we obtain the re-
flection coefficient I',,= 4, from eq. (13). The trans-

mission coefficient T, is expressed as [9]
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T,= 8’1”4 e“f’l-z’z e“i’l-s': (el'koh.wsd 5n+A,,) (22)
(’I'M_‘yn) (e_m"tl +pn2 e”"") pnA pns
where
— Mna : Nn4 N4 +7,,
=g~ Mty — ) ety || — | { AE—2
Pu=€ (1+ "nB) ¢ (1 N3 )( s =7V ) 23
: Nu3 . Nn4
=g~ /nah L stz
pus=e i 1+ - )+ et (14 - Jou @)

. Numerical Results

In this paper, The E-polarized scattering problem is
numerically calculated the normalized reflected and
transmitted powers on 3 dielectric layers by using the
FGMM. The normalized reflected and transmitted
powers are obtained by varying the relative permi-
ttivity and thickness of 3 dielectric layers. And the
normalized reflected and transmitted powers can be
obtained by using egs. (13) and (22), respectively. To
confirm the validity of our numerical results, some
numerical results are compared with those of the

existing papers [1, 2].

- Er'l:" E,3=1. 5(4=1 s 5r2=2' '£,3=1, ‘u=2
"""" e72 e3=1, 725  ——=— .72, g,=1, g,=3

e e 0=2, g% 1, £,23.5

. . T r
O Ref. [2kR=100: e ;= 3% e, = 1

o
[N
3

[

[y

2

(o]

Q.

o 020

L

]

2 o015

[

L.

B 010

N

I T

£ 005}

Soem

Q o

Z 0.00 . 1 n | S i . L
00 05 1.0 15 20

Grating period s {A]

Fig. 2. Geometrically normalized reflected power
(#=30° w/s=0.25, ¢, =0.1, £, =0.07, £;=0.04[2], R=100)

Mode n=-1

. 04 g T T T r T T

14 o <
3

2 o2} i
o F .
L

Q 00 T —
: ]
@ r =1, gq=1, 8, =1

9 02r Tt sgT2eg= 62
__r_q__ S B 8,72, 65371, €,52.5 4
g 04 ———e,=2, 81, £,,=3 -
"5 L H ———— ea=2, gq=1,6,=3.5 ]
Z 0 6 e, 1 ) A | A i "

"0,0 05 1,0 1,5 2,0

Grating period s [A]

Fig. 3. Normalized reflected power of higher order mode n= —1
(#=130° w/s=25,¢=0.1, {,=0.07, t;=0.04[1], R=100)
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Fig. 4. Normalized reflected power of higher order mode n=1
#=30°% w/s=0.25, £, =0.1, £, = 0.07, £,=0.04[A], R=100)
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Fig. 5. Normalized reflected power of higher order mode n= —2
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Fig. 7. Normalized reflected power of higher order mode n= —~3
(#=30° w/s=0.25¢=0.1, {,=0.07, t;=0.04[a], R=100)
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Fig. 8. Normalized reflected power of higher order mode n =3
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Fig. 9. Geometrically normalized transmitted power
#=30% w/s=0.25, £, =0.1, £,=0.07, t;=0.04[A], R=100)

Fig. 2 through Fig. 9 show the variation of the
normalized reflected and transmitted powers for the
relative permittivity of the dielectric multilayers versus
the grating period s[A] for the uniform resistivity R =
100 {Q2/square] and incident angle ¢=30°. Fig. 3
through Fig. 8 show the normalized reflected power
of the higher order mode n= —1, 1, —2, 2, =3, 3, re-
spectively. The sharp variation points of Fig. 2 take
place at the grating periods near s=0.66[A] and 1.32
[Al, respectively. To denote propagating and evan-
escent modes in eq. (3), the values of propagating and
evanescent modes are expressed as positive and nega-
tive values, respectively. It should be noticed that the
sharp variation points of the geometrically
normalized reflected and transmitted powers are
observed when the higher order modes n= —1 and
—2 cases shown in Fig. 3 and 5 are transferred
between propagating and evanescent modes. And in
general the local minimum positions of the geome-
trically normalized reflected power occur at less
grating period according to the increase of the value
of £,4.

Fig. 10 and Fig. 11 show the variation of the

geometrically normalized reflected and transmitted
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powers for the relative permittivity of dielectric
multilayers versus the incident angles for the R=0
[2/square] which is the PEC strip case and the uni-
form resistivity R =100[f2/square]. The white circle
and squares denote the numerical results of the

existing papers Ref. [1] and [2] which treat the prob-

lem of the PEC strip and uniform resistive strip, re-
spectively. These are exactly the same cases as our
multilayers case for €,,=¢,;=¢,,=1. Therefore our
numerical results are in good agreement with those of

the existing papers.
IV. Concluding Remark

In this paper, the electromagnetic scattering problem
by a resistive strip grating on a dielectric layer of the
existing papers is extended to that by a resistive strip
grating on dielectric multilayers. The E-polarized elec-
tromagnetic scattering problem by a resistive strip
grating on 3 dielectric layers is numerically calculated
by using the FGMM. The purpose of this paper is to
find out the effects for the relative permittivity and
thickness of 3 electric layers. To confirm the validity
of the proposed method, our numerical results of the
normalized reflected and transmitted powers are
compared with those of the existing paper, then our
numerical results are in good agreement with those of
the existing paper. The pattern of reflected power in
geometry of this paper can be obtained by adjusting
the uniform resistivity of resistive strips as well as the
relative permittivity and thickness of the dielectric
layers. It should be noticed that in general the local
minimum positions occur at grating period according
to the increase of relative permittivity of the region 4.
And the sharp variation points of the geometrically
normalized reflected power are observed, this is called
Wood’s anomaly, when the higher order modes are
transferred between propagating and evanescent
modes. Therefore it is expected that these results
could be applied to the design of reflection-type

gratings, frequency filters, and so on.
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