DEri=

X 98-23-8-11

Algorithm-Based Fault Tolerant Vector Convolution on Array Processor

Gi-Yong Song® Regular Members

WA 2A AR A d3eE|F Zgk 2SS WY AW T4
A3 F 7 &

ABSTRACT

An algorithm-based fault tolerant scheme for the vector convolution is proposed employing the positive and neg-
ative checksum vectors that are defined in this paper based on the encoder vector. The proposed scheme is imple-
mented on the array processor, and then the amount of redundancy is examined through the complexity analysis.

2 o

B =Rode olan WeE|(encoder vectone] ztdle] <k & A=A wE](positive, negative checksum vector) &
Ae)sta, o}& e AHFA (vector convolution)o] 2-8-3ted dmelF W AHEEHE& We] AHFH Wa-g A
eratdch =3 At WE WA P BT #HME i F7t 2ld YA (redundancy) o] TEE

AE3IHC

I. Introduction

The rapid progress in VLSI technology has re-
duced the cost of hardware, allowing the application
of the multiple copies of low-cost processor to the
scientific and engineering problems which require a
large amount of computation. For applications invol-
ving such a large computational capability, an array
processor[1] is a good example of those machines

that have been conceived and implemented as a high-

* FEOista e gt
YR - 97335-0919
XN 0 19974 9)] 19N

performance, low-cost architecture. An array processor
is a regular array of simple processing elements that
have nearest-neighbor interconnection patterns. The
simplicity, modularity and expandability of an array
processor make it suitable for area-efficient layouts.
In an array processor, communication between proces-
sing elements is regular and local, massive parallelism
is exhibited, and a relatively low number of /O oper-
ations is required. These properties limit its practical
use to that of solving only regular, computebound
problems with a high degree of parallelism; those
involving vector and matrix operations are typical(2).

In addition to achieving high system performance
with the use of multiple copies of identical processor,

1977

www.dbpia.co.kr

HEEE SR 98-8 Vol.23 No.8

it is also important to ensure the correctness of re-
sults computed by such complex systems which are
extremely prone to transient and intermittent failures.
As the number of processing elements increases, the
probability of anyone of them failing becomes quite
high and, for problems taking a long time to solve,
it is rather unlikely to get error-free operation for
such a long period. High reliability could be achi-
eved be adopting such a fault tolerant technique as
triple modular redundancy[3], quadded logic[4], and
recomputing with shifted operand[S]. These techniques
have usually been general ones that can be applied
at the module level in a system. The generality makes
them applicable to most problems, but they also
suffer from the requirements of a large amount of
overhead. In the context of array processor targeted
to perform special purpose computations, it is often
possible to derive some special techniques for achi-
eving error detection or fault tolerance concurrently
with normal system operation through on-line checks
on the results of the computations. The algorithm-based
fault tolerance[6-8] is a novel technique to deal with
precisely those issues: designing schemes for fault
tolerance specific to the algorithms being executed.
The method encodes data at a high level, and the
algorithms are designed to operate on encoded input
data and produce encoded output data. This technique
has been applied to vector and matrix computations
which form the basis of many computation-intensive
tasks. The concept of algorithm-based fault tolerance
has also been applied on algorithms for solving such
problems as sorting and evaluation of arithmetic ex-
pressions and polynomials[9].

In this paper, a fault tolerant vector convolution
scheme is proposed on the basis of algorithm-based
fault tolerance method. Then, it is implemented on

the linear array, and the complexity is analyzed.

. Fault-tolerant Vector Convolution

We need to determine the encoding scheme to im-

plement algorithm-based fault tolerance in a specific

1978

algorithm. Based on the concept of an encoder vector
{10], in which the information contained in a vector
is compressed into a single element and preserved
during computations, two types of checksum vectors
are defined, and then the fault tolerant vector convol-
ution scheme is proposed on the ground of the check-

sum vectors defined earlier.

Definition 1 : The positive checksum vector, a,
of a vector @ having » clements is an z-element

vector with each element ¢ generated as
a; = ’21 a, for 0<j<n—1

Definition 2 : The negative checksum vector, a,
of a vector @ having # elements is an #-element

vector with each element (7,- generated as

\,=2a,— ST e for 0sjsn—1

=1 1=+ 1

We will take a brief look at the convolution of

vectors[i1]. Let a and b be two n-element vectors.

a=(ay, a5,,a,)

b= (bo» by, ..., bnw)l

The positive folded convolution, denoted by PCON

(a. b) is a column vector
PCON(a,)= r= (v, 7, ..., 7u-1)’
where, for 0<md{n
Y'm = ﬁa/'bnrj'l— El a/‘bn+mv/
7=4 j=m+l

Likewise, the negative folded convolution, denoted by

www.dbpia.co.kr

WX/ M Z2AA M dxelE 2 ZEEE Wy du sl

NCON (a, b) is a column vector
NCON(a, b) = r=(rg, 11, ..., 7o)’

where, for (<m<{n

Ym= S d,‘bm—,‘ -

byt m-
7=0 mer 7 ntmey

Definition 3 : The convolution sum, r, is a inner

product of the convolution vector and an #n-element

vector (1,1,...,1).

For the positive folded convolution,

r = PCON(a, ®'-(1,1,...,1)

= Zo [go @jbm-; + jgﬂ @by m-;]

For the negative folded convolution,

r = NCON(a, 5'-(1,1,..., 1)

= 'rg() [120 aibm_j - i;imll aibn+m—j]

Definition 4 : The convolution checksum, 7, is a

inner product of the vector g and a permutation of

the checksum vector, —b(B).
For the positive folded convolution,

N>
|

= (aov a,, ---ran—l) ° (bn—-]v 5'1—2’ ---»B())

= E:l Am 5n—m»~1

m=0

For the negative folded convolution,

r =(a0,a1. ...,a,,_l)' (B,,Al, 5,,_2. ...,50)

= ’il Ay Bn—m«l

m=0

The fault tolerant positive/negative folded convol-

ution of vector @ and b is formally described in

Algorithm FT_P/N_CON (a, b) below.

Algorithm FT_P/N_CON(a,b)

1. if positive

/* Generation of positive checksum vector */
2. then for m< () to n—1
3. do for j<—{} to n—1
4, do by poy e Bpom-yt+ b,

/* Compute positive folded convolution */

5. for j—0 to m

6. do r,<—7r,+ a;*b,.,

7. for je—m+1to n—1

8. do 7, v+ a;* bpip-,
/* Compute convolution checksum in positive convolution */

9. e Tt A by
/* Generation of negative checksum vector */

10. else for m«(Qto n—1

1. do for j—(Qto n—-m—1

12. d0 by oy byt b,

13. for je—n—mto n—1

14. do by oy byt b,
/* Compute negative folded convolution */

15. for je~0to m

16. 4O 7T — Q¥ byim-,

17. for j—~m+1to n—1

18. do 77— a;*byim;
/* Compute convolution checksum in negative convolution */

19. re Tt amby
/* Compute convolution sum */

20. for m<0to n—1

21. do r—r+r,

22. if 7+ 7 then return(“false signal”)

Each line is self-explanatory. Two quantities, 7,
derived from the checksum vector in line 9 (19) and,
7, obtained from the convolution output in line 21
are the objects on which the equality test is to be
performed. The fault tolerant capability of the proposed
scheme is established from the following theorem,

Theorem 1 : Assuming that multiple errors do not

cancel one another while the computations proceed,

1979

www.dbpia.co.kr

EEEE S eI 98-8 Vol .23 No.8

the FT_P/N_CON (@, &) can detect any error that
may occur during the process of convolution as soon

as the convolution output is generated.

Proof : Let b(}B) be the positive(negative) check-
sum vector of the input vector 5. Then the convolu-

tion checksum, f, is the inner product of input vector
a and (b, |, b,_s, ..., by) in positive convolu-
tion or (5,_,, 5,_2, ..., by) in negative convolu-

tion respectively. Let » be the inner product of the
convolution output vector and an n-element vector (1,

1, .., 1), then for the positive folded convolution,

= go T'm
;ZO[Z:D ajb""j + i§+l aibn+m—j]
- ;20 Gn=m=1 ',2:) bi

E am_brr» m—1

m=0
. a,,f]) ¢ (5,,71, 6,,‘2, ey bo)

=(ay, ai, ...

~

-7

and for the negative folded convolution,

m=0

= ’gol gb @jbm-i =
= zo @n-m-i [go bi- i
'21 am5n~m~l

m=0

=(CZ(), ay, ..., a,,_l) . (5,,—1, bnA-g, PR BQ)

igﬂ @ibns ;]
P

=m+

=7

Therefore, an inconsistency on the values of two

quantities, 7 and », happens if and only if some
errors occur on the computations of convolution which

do not cancel one another. O

1980

By checking the integrity of computations with two
theoretically identical quantities, the correctness of the
convolution output is verified as soon as it is pro-
duced.

II. Implementation and Complexity analysis

The convolutions constitute some of the most com-
pute-intensive tasks in signal or image processing.
Though computationally demanding, convolution is ne-
vertheless a highly regular computation. Therefore, by
exploiting the regularity inherent to the computation,
cost-effective high-throughput array processor structure
can be built to perform vector convolution, as argued
in some articles[12-14]. The linear array for compu-
ting the positive/negative vector convolutions consists
of four identical linearly-connected processing elements.

as depicted in Figure | for n =4.

Fig. 1 Linear array for computing vector convolution

The input data are arranged in a staggered form
in order to synchronize the flow of output operands
with the arrivals of respective input at each entry
point. The multiplication of input pairs and the ad-
dition of its result to the output operand which flows
into the current processing element from left neighbor
are performed repetitively until all of the input data
arc consumed. Once the rightmost processing element
has completed operations on its first input pair, an
element of the convolution output flows out of the
array at each unit delay. The internal structure of pro-
cessing element is shown in Figure 2.

The adder is to execute addition or subtraction de-
pending on the type of convolution, positive or nega-

tive, under the command of master control unit. The

www.dbpia.co.kr

/A ZRAM A LaelF 7 AeEE dE A e

Fig. 2 Cell structure

processing of vector convolution with fault tolerant
capability needs generation of checksum vector and
operations associated with the correctness verification
as well as the functions performed in the original
array. Each element of the checksum vector, which is
often assumed to be given along with the input
data[6], is computed in its corresponding processing
element because the assumption that the checksum is
given requires a separate preprocessing with extra time
overhead of ((z). This requirement of performing
normal procedure and computing the checksum con-
currently in each processing element needs some extra
functional units. Also, an extra processing element is
required to perform the correctness checking by com-
paring outputs from two different data paths. The
linear array for vector convolution with fault tolerant

capability is shown in Figure 3 for n=4.

-
P
o
PR
-
Nt
cookbnn
b— o oo Fry

K‘-‘ﬁwov

o

Tyt 1, 1 — <Lu] '&lv"*L}'f"(L- SFaise signal

Fig. 3 Linear array for the fault tolerant vector convolution

.

Let us examine the intemnal structure of the proces-
sing element. All of the processing elements except
the rightmost extra one have the same internal struct-
ure as is shown in Figure 4.

An adder, multiplexer and checksum buffer are
combined with the original structure to accommodate
the checksum computation. When positive convolution
is involved, the datapath for checksum successively

adds the incoming vector element to the accumulated

sum to form the positive checksum vector while other
part is executing the routine procedure of computing
convolution. In the case of negative convolution the
datapath repeatedly adds or subtracts the incoming
data to or from the accumulated operand, resulting in
the negative checksum vector. The internal structure
of the rightmost redundant processing element perfor-

ming the equality test is depicted in Figure 5.

ok E:QV_
I .G & }

e [

Fig. 4 Cell structure of the fault tolerant array

Fig. 5 Redundant cell structure

The equality test is done on two quantities, the ac-
cumulated sum of the elements of convolution vector
and the incoming checksum-based quantity, to verity
the correctness of the convolution outputs. The linear
array with fault tolerance requires one more proces-
sing element than the original array which needs »
processing elements to process the instance of input
size of 7. The redundancy in the number of proces-
sing elements caused by fault tolerance is always one
regardless of the instance size. Also, each processing
clement but the extra one in the array with fault
tolerance has more complicated internal structure than
its counterpart in the original array because of the
hardware requirement for the checksum computation.
In order to reflect the real hardware cost, we should
take these two factors into account; the extra proces-
sing element and modification upon the original pro-

cessing element. We will adopt %, &, as a propor-

1981

www.dbpia.co.kr

HERESEREE 98-8 Vol.23 No.8

tionality constants of hardware complexity among three
types of the processing elements; one in the original
array, one in the array with fault tolerance, and the
extra one. Although the exact values of £ s depend
on the design methodology and implementation tech-
nology of the processing elements, we will only
consider the relative magnitude that can be applied to
any case without loss of generality. Let %, be the
ratio of hardware complexity of processing element
in the array with fault tolerance to that of original
array, then k; becomes slightly larger than 1 taking
into account the multiplier unit and the number of
buffers in the original array. If we estimate the value

of k; at circuit level with typical values for the

number of transistors in each logic gate, the value of
k) teaches about 1.17 for the 8-bit data flow path
structure with array multiplier adopted. When we de-
note with k; the ratio of the hardware complexity of
the extra processing element to that of the original
array, k, has magnitude far less than i. This reason-
ing can be regarded as an appropriate one based on
the internal structure of each processing element. This
hardware complexity of each case is listed in Table 1.

The constant z represents the hardware complexity
of a processing element of the original array. Regar-
ding the time overhead, first, we assume the unit
delay, ¢, which includes logic delay, bus propagation
and latch delay, then the unit delay represents the
minimum clock cycle time that guarantees proper
operation of the array. Since the operations for proces-
sing the ordinary procedure and those for computing
checksums are performed in fully overlapped manner,
there is no time overhead due to the fault tolerant
capability except for the delay caused by the cxtra
processing element. The analysis of time complexity
is also listed in Table 1.

V. Conclusions

The positive and negative folded vector convolution

with fault tolerant capability is presented on the gro-

1982

Table 1. Complexity comparison

Hardware Time ﬁ‘
Original array nu nd
Array with (kyn+k)u
) (n+1Dd
fault tolcrance (k> 1, k1)

und of algorithm-based fault tolerance method, and im-
plemented on the linear array. The complexity analy-
sis shows that the overheads on hardware resources
and time are allowable without requiring excessive
redundancy. The correctness of the output convolution
vector is verified as soon as it is produced from the
array, and in case of the occurrence of an erroneous
output, it can cause special routine to start instead of
going through successive process that would be per-

formed on the erroncous data otherwise.

References

1. Subrata Dasgupta, Computer Architecture; A Mo-
dern Synthesis, Volume 2: Advanced Topics, pp
242-246 John Wiley & Sons, New York, 1989.

2. P.Banerjee, J.T.Rahmeh, C.Stunkel, V.S.Nair, K.Roy,
V. Balasubramanian, and J.A.Abraham, “Algorithm-
based fault tolerance on a hypercube multiproces-
sor,” IEEE Trans. Comput., Vol 39, pp 1132-1145.
September 1990.

3. A Avizienis, “Fault-tolerance: The Survival Attri-
bute of Digital Systems,” Proc. IEEE, Vol66,
pp.1109-1125, October 1978.

4.).G.Tryon, 'Quadded logic’, in Redundancy Tech-
nigues for Computing Systems. Wilcox and Mann,
eds., Washington, D. C.: Spartan Books. pp.205-228,
1962.

5. J.H.Patel and L.Y.Fung. “Concurrent Error Detect-
ion in ALUs by Recomputing with Shifted Oper-
ands,” IEEE Trans. Computers, Vol.C-31, pp.589-595,
July 1982.

6. K.-HK Huang and J.A.Abraham, “Algorithm-Based
Fault Tolerance for Matrix Operations,” I[EEE
Trans. Computers, Vol.C-33, No.6, pp.518-528,

www.dbpia.co.kr

W/ AEEZZMA A dnElE ZIN 2gE S qe Ay

June 1984.

7. A.Roy-Chowdlhury and P.Banerjee, “Tolerance De-
termination for Algorithm-Based Checks Using
Simplified Ermor Analysis Techniques,” Proc. of
1993 International Symposium on Fault-Tolerant
Computing: FTCS-23, pp.290-298, June 1993.

8. F.T.Assaad and S.Dutt, “More Robust Tests in Al-
gorithm-Based Fault-Tolerant Matrix Multiplication,”
Proc. of 1992 International Symposium on Fault-
Tolerant Computing: FTCS-11, pp.430-439, July
1992.

9. P.Banerjee and J. A Abraham, “Fault-secure algor-
ithms for multiple processor systems.” in Proc.
11th Int. Symp. Comput. Architect.,, Ann Arbor,
MI, June 1984, pp.279-287.

10. V.S.S.Nair and J.A.Abraham, “General Linear Co-
des for Fault Tolerant Matrix Operations on
Processor Arrays,” in Proc. Int. Symp. Fault-Tol-
erant Comput., Tokyo, pp.180-185. June 1988.

11. S.Lakshmivarahan and S.K.Dhall, Analysis and
Design of Parallel Algorithms, pp.195-198. Mc-
Graw-Hill Book Co., 1990.

12. HTXKung, “Why Systolic Architectures?”, Com-
puter Vol.15, No.1, pp.37-46, January 1982.

13. JMXKim and SM.Reddy, “Easily Testable and
Reconfigurable Two-dimensional Systolic Arrays,”
Computer System Science and Engineering, Vol.7,
No.3, pp.160-169, 1992.

14. HT Kung, L. M.Ruane, and D.W.L.Yen, “A Two-
level Pipelined Systolic Array for Convolutions,”
in VLSI Systems and Computations, H.T.Kung,
R.F.Sproull, and G.L.Steele, Jr.(eds.), Carnegie-
Mellon University, Computer Science Press, Oct.
1981, pp.255-264.

I & 7] 2(Gi-Yong Song) 3|4
19743 ~ 1980\ : A &1, Eohe}
' DA Foh,
199513 :Univ. of Southwestern
. Louisiana 1 AHg 8HHEAL
19831 ~ & A FRoEtw 2o A
FeIFE A3

=S
PP Fof: 485 8- Computing, HFE] 7, =#

AAE

1983

www.dbpia.co.kr

