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ABSTRACT

A blind equalization algorithm may be switched to a decision-directed(DD) scheme in order to speed up the
convergence rate. In this paper, we propose a new blind equalization scheme that automatically switches to the
DD mode. The proposed scheme operates in two tmode: blind equalization mode and a DD mode. The mode is
determined by the region in which the equalizer output lies, and the region varies as a function of the estimate
value of the error variance. From sitnulation results, it is shown that this scheme can achieve faster convergence
and small MSE,

I. Introduction

The blind equalization is an important technique
in digital communication systems in which
sending training signals is inappropriate. After
Sato’s pioneering work'!, many techniques have
been developed to improve its performance™.
However, compared to the conventional equali-
zation techniques, the blind equalization schemes
have very slow convergence rate. In order to
speed up the convergence process, it is necessary
that a blind equalizer switch over to the

Decision-Directed(DD) equalization mode once the
error level is reasonably low. But considerable
attention has to be paid in determining the point
at which this switch-over is made to avoid the
error propagation effects associated with the DD
equalization technique or a long delay in the
CONVErgence process.

A few techniques with an automatic switching
from the blind startup mode to the DD
equalization mode have been reported in the
literature. Benveniste and Goursat” combined
Sato’s idea with DD algorithm, and Weerackody™
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presented dual-mode techniques which may be
switched to DD equalization mode. Picchi and
Prati’” introduced a “Stop and Go” DD blind
equalization that uses a stop-and-go adaptation
rule based on a Sato-like error signal. Another
_ practical DD blind equalizer was named as the
Maximum Level Emor(MLE) algorithm®. It also
uses a stop-and-go adaptation rule. In this
algorithm, the data signal constellation is divided
into two regions by a threshold boundary
determined by the outermost symbols. The
adaptation stops if the equalizer output falls
within the threshold boundary, and it continues if
the equalizer output lies outside of the threshold
boundaty. For the latter case the sign of emor of
the DD scheme is almost always correct.
Therefore the MLE algorithm updates the filter
taps in the correct direction most of the time, but
its disadvantage is that the frequency of update is
small because most of the equalizer output fall
into the region within the threshold boundary.
And Ross and Taylor” modified the MLE
algorithm. The soft decision-directed equalization
algorithm™™) or blind clustering algorithm, was
proposed. In this algorithm the equalizer output is
modelled by M Gaussian clusters, of which mean
is the symbols of the constellation set.

We propose a new blind equalization scheme
that smoothly switches to a DD mode. We set
the region of high confidence as in the MLE
algorithm, and we calculate the variance of the
error using the signal that lies in that region. The
proposed scheme operates in two mode : a blind
equalization mode and a DD mode. The mode is
determined by the region in which the equalizer
output lies, and the region varies as a function of
the estimated variance of error. This scheme can
achieve faster convergence and small MSE. We
applied this technique to the Generalized Sato
Algorithm(GSA). The remainder of this paper is
organized as follows; In section II, we explain
the system model. In section III, we explain the
proposed algorithm. In section IV we present
64-QAM
constellation set, and section V concludes this

some simulation results with
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paper.
I. System model

Consider the bascband model of a digital
communication channel characterized by a finite
impulse response(FIR) filter and an additive white
noise source as depicted in fig. 1, The received
signal is given by

WH = Hidak-—b + wH, W

where L is the length of the channel impulse
response, and h(i) is the complex channel impulse
response. The complex symbol sequence a(k) is
given by a(k)= a,(k)+ja(k) and assumed to be i.
i. d,, and n(k) is a complex Gaussian white noise.

ri{k)

Information | 2% | channer | k) Equalizer
Source H(z) w(z)

Fig 1. The equivalent baseband communication system,

To remove the intersymbol interference caused
by channel distortion, an equalizer is employed.
The equalizer has a FIR structure, and its output
is represented by

KB = S wkBatk=0 = WHXB, @)

where y(k) =y(B+jy{(k) is the output of the
equalizer, and W(K)=( w_(£), ---, w(B)7 is the
equalizer tap weight vector, and X(kK)=(x(k+N),
-+ x(-N))7 is the equalizer input data vector.

In the data-aided equalization, the adaptation of
the equalizer taps is carried out by minimizing
the mean square value of the difference beiween
the equalizer output and the desired symbol,
which is made available from a training sequence.
However, in blind equalizations the receiver does
not have any knowledge of the transmitted
symbol. Under this equalization scheme the
equalizer taps are updated by an algorithm that
minimizes a certain error function, which is
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formed by observing the equalizer output and by
employing some a priori information of the
transmitted data constellation statistics. The error
function used in the Generalized Sato Algorithm
(GSA) is similar to that wsed in a
decision-directed equalization scheme but has a
coarser quantization of the equalizer output to

L0

accommodate  the “closed eye situations
encountered in blind equalization. The error

function in the case of the GSA is given by

E{4R)} = E{ly,(B—ysen(y, ()] +
[v:(B) — 7 sen (v, ()1},

where 7 is a suitably chosen constant. By
considering the stochastic gradients of the above
error function with respect to the tap weight
vector W(k), we have the following algorithm

WMe+1) = WA—d (y,(B)—7sen(y, (DN + @
Kyi(B)=rsgn (v, (ANIX (B,

where o is the step-size parameter and
superscript * denotes the complex conjugate. The
value of y can be evaluated considering the
steady states of eq. (4), and is given as[2]

E{|a(R)%

E(la B}
IC RS

77 TE(Ta RN

l. The proposed algorithm

A. The estimation of the error vari-
ance

In blind equalizations, in order to speed up the
convergence process, it is necessary that a blind
equalizer is switched over to the DD equalization
mode once the error level is reasonably low.
Switching may be occurred according to the
convergence rate, which can be estimated by the
variance of the error signal. However, because the
receiver does not have the knowledge of the
transmitted  symbol, the estimate of the error
variance cannot be obtained. The receiver knows
only the estimated value 2(%=D(y(k)), which is
the decision device’s estimate of a(k) given y(k),

and the estimated emor, (&) = (B — 2(k).
Therefore, we may calculate the variance of the
error with the equalizer output having a high
confidence.

During the startup phase of the blind
equalization, if the output of the equalizer is
smaller than the caution level, the decision based
on the equalizer output is most likely to be
incorrect due to the effect of the random noise
and the channel distortion. Therefore the
confidence in the correctness of the sign of the
decision directed error is lower. Otherwise, higher
confidence exists when the output of the equalizer
is larger than the caution level,

Fig 2. Decision region and caution level for the

proposed algorithm,

Fig. 2 illustrates the caution level for 6§4-QAM.
When the equalizer output lies to the right side
or to the left side of the constellation, that is,
| ¥, 1> caution level, it can be assumed that high
confidence in the correctness of the sign of the
real error exists. Similarly, the equalized data
lying in the areas above or below the constel-
lation, that is, |y;|> caution level, generate error
signal with high confidence in the correctmess of
the sign of the imaginary etror. In [6], the
caution level was set to the outermost signal
magnitude. In [7] the caution level was placed to
the just slightly beyond the outermost magnitude.
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Here we set the caution level as the magnitude of
the outermost symbol, Thus for the 64-QAM the
caution value is 7.

We estimate the etror variance using the
equalizer output which has larger magnitude than
the caution level. That is, if the output of the
equalizer falls in the region of the high
confidence, we calculate the variance of the error
of the decision directed mode. In order to make
an estimate of the error variance, we define the
time-averaged variance as

var(k) = E[|a(k— (&)
~ 1 S am -l

©

An alternative approach is to filter the squared
magnitude of equalizer output error by a lowpass
filler and use the output of the filter as an
estimate of error variance. A simple lowpass filter
for the error variance yields as an output

var(k) = Bvarlk—1)+(1—-B| a(B-wBI: (D

where the choice of (=<g<] determines the
bandwidth of the lowpass filter, When 4 is close
to unity, the filter bandwidth is small and the
effective averaging is performed[12]. Therefore,
the variance of the error signal can be calculated
as

var B = Puar(k=1) + (1-H| a,(D—y(B)
if |v,|> caution level
var{k) = Buar{k—1) + (1-B)| a;(H—ydB|

if |¥;|> caution level .

The etror variance is estimated using eq. (8)
only when the real part or the imaginary part of
the equalizer output is larger than the caution
level. Otherwise, The estimated error variance
does not updated. At this point, the decision
device decide the equalizer output as the
outermost one. Since the decision error may

occur, the estimated value of the emor variance is_

smaller than the actual one. We use this
estimated error variance as a criterion to
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determine the decision region of the dual-mode
algorithm,

B. The switching over technigue to
the DD mode

The proposed algorithm switches the usual blind
equalization scheme to the DD mode gradually.
We use the equalizer output model of the blind
clustering algorithm. The equalizer output can be
expressed as a(m)+ W(»), with (x) following
approximately probability  density
function (pdf). For w(n) is the convolutional
noise, and if the number of multipath of channel

Gaussian

is large enough, by the ceniral limit theorem the
distribution of convolutional noise can be assumed
to have Gaussian distribution[10]. Thus when the
equalization is accomplished, the output of
equalizer can be modeled approximately by
Gaussian processes with mean a(k), which is the
value of the transmitted symbol.

If we model the equalizer output as Gaussian
clusters, the conditional probability & G(&=
a(Bly(A}is high in the region around the data
point. So we devised a technique which, when
the probability is larger than arbitrary value §
(0= g<1), forces the blind equalization algorithm
to operate in decision directed mode. For the
simplicity of the explanation, without the loss of
generality, only the binary case is considered, that
is a(#)==1, and assuming z(£)=1. The condi-
tional probability P(a(R)=1 | (k) is given by

Ha(B=1|xB)=
k

k) =
P(XE)

A | a(B)=DPa(k)=1)+
1

" =T ©
B0 1 ab=1)

As  mentioned above, if we  model
Py(R) | a(B=1) as a Gaussian distribution with
variance ¢, then

HKa(B=11x#)

1
LT EXP{[— (& + 1)+ (&) - DT/

[
1+ EXP[ —4y(k) /o*]
' (10)

www.dbpia.co.kr



7 B4 49E M E €F BE Heldle §3

If we set an arbitrary value §, then the set of
y(k) satisfying eq. (11) becomes the decision
region in which blind equalizer operates DD
mode,

1 5 6
1+EXP[ —43(£ /)

(11
LRV S
¥k > 4 In( 1-6)"8a2

Since for the QAM constellation in-phase and
quadrature-phase component are independent of
each other, each component can be considered
respectively, Suppose that D, are the decision
region enclosing the data points of the QAM
constellation and consider the GSA described by
eq. (4). We choose a square size of 4,(k) X d(k)
enclosing each data point in the QAM
constellation as the decision region D, as
depicted in Fig. 2. In general, for an M-QAM
constellation there will be M such square regions.
As noted previously, in the decision regions, the
estimated value, z(®=D(y(k)), is given by the
data point enclosed by the decision region D;. In
the proposed technique, if the variance gets
smaller, the decision region becomes wider. Thus,
we have approximated the relationship between
the decision region and the variance as follows.

d R
dk)

1 — &var k)

10

I

1 — &vardk)

Higher value of & corresponds to the higher
value of § The proposed algorithm employs two
mode of operation: the decision directed mode in
the decision region, and the wusual blind
equalization mode in other regions. Then the
proposed algorithm operates as

We+1) = WH-d (3, (B— a2,
+i(y: (B — a;(NX(B),
WMe+1) = Wh—a (v, (B —7san(y, (k)

+ iy (B — 7 sgn (:(ANIX*(R), if WReD,,
an

if W(B)sD,

Initially the decision regions do not exist, that
is, df{0)=d(0)=0. Therefore, at first this
algorithm operates in GSA mode. As the
equalization process continues, the decision regions
become wider. That is, the algorithm comes to
operate in the dual mode, and finally switches to
the DD mode. The proposed algorithm can be
regatded as the dual mode algorithm[4] with
variable decision region,

In the case of var{k)=0, the proposed
algorithm leads to the conventional decision
directed algorithm. Since the decision-directed
algorithm converges to the minimun mean square
error when the eye pattern of the equalizer output
is opened to some extent, the proposed algorithm
has small mean square error(MSE).

IV. Simulation results

We have performed several simulations using
64-QAM data constellations with the channel
whose impulse response is shown in [2]. We
have used equalizers of the length 11. In all
sitmulations the center-tap initialization strategy is
used. The coefficients are initially set to 0+j0
except for the center tap, which is set to 2+j0.
For the parameters in the proposed technique, £
is set to 0.9, and initial value of the variance is
set t0 10 for both real and imaginaty part. The
signal to noise ratio is fixed at 30dB. The SNR
is computed at the input to the equalizer and is
given as the ratio of the received signal power to
that of the additive Gaussian noise component. As
the measure of performance, we used the MSE at
the equalizer output,

To show the validity of the estimation of the
error variance, we compare the MSE curve with
the estimated variance, Fig 3. shows the MSE of
the proposed algorithm and the estimate of the
error variance. In fig. 3, MSE curves are the
ensemble averaged values (over 500 independent
rials) for  64-QAM  constellations, where
y = 5.25, and the step size is 0.0001. We can
see that the estimated value of the error variance
follows and is smaller than the real squared error,

317

www.dbpia.co.kr



TTEA 8887 '99-2 Vol.24 No2A

Fig. 4 shows the convergence curves obtained
from ensemble averages over 500 independent
runs. Each curve represents the performance of
the proposed algorithm with the values of the
parameter, &=1, 0.84, 0.64, 0.3 respectively, The
step size is set to 0.0001, As the value of &
decrease, the switching to the DD mode occurs
earlier, and the convergence rate gradually
decreases and then starts to increase, because too
many errormneously detected symbols are being
used to update the equalizer.

the learning curve of the praposed algorithm

.
Ll

10 the estimatad variance

MSE(dB}

-15
-20

=25

=30

1 5000 10000

Fig 3. Comparison of leaming curves of the proposed
algorithm and the estimated variance(SNR=30dB,
2=0.0001, & =0.64.)

——

MSE(dB}

9 " 5000 10000

Fig 4. Learning curves for the proposed algorithm(
a=0.0001, §=1, 0.84, 0.64, 0.3.)

In Fig. 5, the proposed algorithm is compared
with the dual mode algorithm, Sato algorithm, and
data-aided LMS. For the dual mode algorithm the
step size is 0.0001, d=0.65. The proposed
algorithm has faster convergence rate than the
dual mode algorithm with the same step size.
Initially this algorithm operates as Sato algorithm,
and is switched over to the DD equalization
mode gradually. Once the equalizer converges, it
has the same steady-state performance as that of
the LMS with training sequences because the
automatic switch-over to the DD mode is
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accomplished.
5
0
5 )
& dual made tgorithm
2 the proposed algorithm
g Sato algarithm
-15
-20
25 L

1 5000 10000

Fig 5. Leaning curves for 64-QAM. SNR=30dB.
For dual mode algorithm : d=0.65, «=0.0001,
For the proposed algorithm : §°=0.64, @ =0.0001,
For Sato algorithm: y=5.25, @ =0.0001,
For lims algorithm: o =0.0001.

Next, we consider a switching channel in order
to show the validity of the proposed algorithm.
For this experiment, the channel impulse response
is initially set to that of shown in [2] and forced
to switch into the following channel response
after 10000 symbols are received.

{0.0485-j0.0194, 0.0573+j0.0253, 0.0786-j0.0282,
0.0874-j0.0447, 0.922+j0.3031, 0.1427+j0.0349,
0.0835+j0.0157, 0.0621+j0.0078, 0.0359+j0.0049,
0.0214+j0.019}

As shown in fig. 6, we can see that when the
channel is changed abruptly, the proposed
algorithm is automatically switched to blind
equalization mode because the estimated error
variance enlarges, And as the equalizer converges,
the proposed algorithm operates again in DD
equalization mode.

channel switching

the proposed algorithm

dual made algorithm dual moda algorithm

MSE{dB) -

the propoged algorithm

1 10000 20000

Fig 6. Leaming curves for 64-QAM under a switching
chamel(SNR=30dB).
For dual mode algorithm : d=0.65, 2=0.0001,
For the proposed algorithm: §"=0.64, a =0.0001,

Finally, we extended the proposed algorithm to
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The channel
impulse response used in this simulations is as
follows : [11}

the decision feedback structure.

{0.041+j0.0109, 0.0495+ j0.0123, 0.0672+j0.0170,
0.0919+j0.0235, 0.792+j 0.1281, 0.396+j0.0871,
0.2715+j0.0498, 0.2291+j0.0414, 0.1287+j0.0154,
0.1032+i0.0119}

The proposed algorithm with decision feedback
structure was compared with the dual mode
algorithmm with decision feedback structure. The
proposed algorithm has faster convergence rate
than the dual mode algorithm in this case too.
And decision feedback equalizer has lower steady
state MSE as shown in fig. 7.

—]

the praposed algorithm without of

MSE(dB)

dual mode algorithm with df ®

the propozed algorithm with df

1 5000 1000

Fig 7. Learning curves of decision feedback equalizer.
For dual mode algorithm, d=0.65, @ =0.0001,
For the proposed algorithm, &'=0.64, 2=0.0001,

V. Conclusion

the decision
dual-mode algorithm become
to the

The proposed
of the
gradually  wider

algorithm make
regions
according estimated
variance of the equalizer output error, resulting in
smooth and automatic transition from blind
equalization mode to the DD mode. Once the
equalizer converges, it has the same steady-state
performance as that of the LMS with trainning
sequences, In order to esimate the variance of the
error, the equalizer output with high confidence,
which is larger than the caution level, is used.
This technique is applied to the GSA blind
algorithm to give a smooth transition toward the
DD mode. The proposed scheme can achieve
faster convergence and small MSE.
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