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ABSTRACT

In spite of growing importance of input queueing ATM switches, there have been little research on
performance of input queues, of ATM switches, to which combined priority controls of space and time priority
schemes are applied. In this paper, assuming two classes of traffics requiring high and low quality-of-service
(QoS), we analyze a combined priotity control method of partial buffer sharing and general state-dependent
scheduling schemes in the input queues of a nonblocking asynchronous transfer mode (ATM) switch. The analysis
is done in two steps, using a semi-Markov process concept. As results, we show how various system parameters
affect the performances. Particularly, we show how the threshold value and the scheduling parameter of the
combined scheme can affect dynamically the performance differences between the two classes. We further show
how we can adjust the threshold and the scheduling parameter against a wide range of QoS gaps between the
two classes to maximize the admissible load.

I. Introduction digital petworks (B-ISDN) are to be constructed

U4 In ATM networks, all traffics are segmented

The asynchronous transfer mode (ATM) will be into small fixed-size packets called cells and
the basic transmission and switching paradigm, on transferred via a seties of ATM swiiches.
which the emerging next generation multimedia Generally, packet strcams from diverse applica-

LANs and the future broadband integrated services tions require different packet loss and delay
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constraints, or different quality of services (QOSs)
in short. At the same time, ATM networks are
required to be utilized as fully as possible. Thus,
in order to increase the utilization of ATM
networks while meeting the different QOSs,
appropriate priority control schemes are needed at
various points in ATM networks, particularly
buffers in ATM switches.

Many researchers have investigated the
performances of priority control schemes applied
(or which can be applied) to the output queues of
a nonblocking ATM switch. For example, various
time or space priority schemes™” studied in a
single queue (or an ATM multiplxer model) can
be applied to the output queues of ATM
switches. Recently, Cheng and Akyildiz analyzed
a single finite queue with a controlled push-out
scheme and a general state-dependent service dis-
cipline, Using a general service discipline
function, they were able to model several
different service disciplines such as head-of-line
(HOL), shortest line first. Their work was also
motivated by the performance study of an output
queue of an ATM switch.

Meanwhile, only a few studies have been done
on the priority schemes in the input queues of a
nonblocking ATM switch. Chen and Guérin
analyzed the performance of a two-priority input
queveing switch in which only time priority was
considered”, They obtained the saturation through-
put of low prority class in a preemptive HOL
scheduling scheme, assuming that the speed-up
factor of the switch is equal to 1. Gupta and
Georganas analyzed two non-preemptive time
priority schemes for an input queueing packet
switch®, They obtained mean delays of two
priority classes, also assuming the speed-up factor
of 1.

As seen from the above, while most of studies
are restricted to the output queues of switches,
relatively few studies have been done for the
input queues of switches. Moreover, there have
been fewer studies on the combined space and
time priority schemes for the input queueing
switches. In order to deal with QoSs by using
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input queucing ATM switches which are less
complex in hardware than output queueing
switches, however, understanding the performances
of a variety of combined priority schemes for the
input queues of ATM switches is essential.

In this paper, we study input queues of a
nonlocking ATM switch assuming two classes of
traffic (high and low QoS guaranteed ones). To
each input queue, we apply a combined priority
control scheme: the partial buffer sharing scheme
for space priority control and the general
state-dependent  scheduling scheme for time
priority control. The speed-up factor of the switch
is allowed to be greater than 1 in our switch
model. The analysis is cared out in the
discrete-time domain, wusing the semi-Markov
process (SMP) concept. In numerical results, we
show how packet loss probabilities and mean
waiting times of two classes of traffic change
with various system parameters such as speed-up
factor, buffer size, threshold, and sch«;duling
parameter.  Particularly, we show how the
threshold value and the scheduling parameter of
the combined scheme affect dynamically the
performance differences between the two classes.
This implies that by using the combined method
of the two priority control schemes, we can
control flexibly the performances of the input
queueing ATM switch. Also, we show that for a
wide range of QoS gap of the two classes of
traffic, we can maximize the admissible load, by
adjusting the threshold and the scheduling
parameter.

This paper is organized as follows. In Section
2, following this introduction, we describe the
system model in detail. In Section 3, we analyze
the system. In Section 4, we show some typical
numerical examples. Finally, we shall have
concluding remarks in Section 5.

I. System Description

We consider a class of ATM switches as
shown in Fig. 1. The switch consists of N input
queues, N output queues and nonblocking
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switching fabrics inbetween. We assume that the
switch operates synchronously with fixed-size
packets. During each fixed-time interval called a
slot, every input(output) can receive(transmit) one
packet. We assume that each input queue has
buffer spaces of K packets including the HOL
position, The internal speed of the switching
fabrics is assumed to be C times faster than that
of the input (or the output) link. In other words,
up to C packets, among the packets at the HOL
position having the same destination, can go
through the switching fabtics to the destination
output during a single slot. For this reason, C is
referred to as the speed-up factor. In this paper,
assuming two classes of input traffic, we
concentrate on the performance of the input queue
to which we apply a combined priority control of
the partial buffer sharing scheme and the general
state-dependent scheduling scheme and a HOL
packet contention priotity scheme.

K

M 2
—r 1 1 = )—.
A ;
S i G
with
: A vt S :
M
i H I-N N - l_..
HOL
position
input queuca UL quenes

Fig. 1. System model.

We assume that packets arrive at the N input
queues according to independent and identical
Bemoulli processes with probability A, and that
an arriving packet is either a class 1 packet with
probability 7 ot a class 2 one with probability 1
-r. Thus, class 1 and 2 traffics become also
Bemoullis, and the probabilities of class 1 and 2
packet arrivals at each input queue are then equal
to

AA=nand Ap= (1—7)4, (1)

respectively, We will refer to r as the traffic mix
ratio. We assume that the class 1 and 2 traffic
require the high and low QoS guarantees,
respectively,. We also assume that packets are

uniformly  distributed among all outputs and
successive packets are independently destined from
those of previous arrivals.

Now, we describe the partial buffer sharing
scheme. An amiving class 1 packet can always
enter the queue, as long as it finds at least a
buffer space in the queue. On the other hand, a
class 2 packet can enter the queuve, only if it
finds the queue filled with less than T packets
excluding one in the HOL position. Otherwise, it
is lost. The threshold T has an integer value
between zero and K-1.

Next, we describe the general state-dependent
scheduling scheme. First, the class of a packet to
be scheduled (i.c., moved into the HOL position)
next is determined by the scheduling functions,
2.(i,7), e=1,2 which is defined as the proba-
bility that class ¢ will be selected, given that
there are i class 1 and j class 2 packets in the
queve. Then, one packet belonging to the selected
class is moved into the HOL position on a FIFO
basis. Obviously, we should have (i /)+
ay(i,j)=1for i+7>0. And to ensure that the
HOL position will not be empty as long as there
are some packets in the queue, we assume that
a1(5,0)=1fori>0, and a,(0,7)=1 for j=>0.
Using a, we can model various scheduling
schemes. The following are just two examples
among those, which are wused in computing
numerical results in this paper:

i) Head of Line (HOL) Scheduling
o (i,§)=1 if i>0.

i) Bernoulli Selection (BS) Scheduling
e1(,j)=2p if >0and j>0.

Under the HOL scheme, a class 1 packet is
scheduled, if any, irrespective of the presence of
class 2 packets. Therefore, among all possible
schemes using @ the HOL scheme is considered
to give the highest time-priority to class 1 traffic.
Under the BS scheme, a class 1 packet will be
scheduled with probability p and a class 2 packet
with probability 1-p. In the BS schemes, accord-
ing to the value p, the amount of time priority
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divided between class 1 and 2 varies, Note that
when p=1, the BS scheme becomes equivalent to
the HOL scheme.

Lastly, we assume higher priority to the class 1
over 2 in the HOL packet contention. In other
words, when more than C packets at the HOL
position contend for the same output, class 1
packets are selected for transmission before class
2 packets. In addition, packet selections within
each class are assumed to be done randomly.

H. Performance Analysis

In this section, we analyze the input queue
model described in Section 2, following two
steps: virtual HOL queue analysis in the first step
and input queue analysis in the second step. Here,
we assume that the size, N, of the switch goes to
infinity,

1. Virtual HOL Queue Analysis

We consider virtual queues consisting of the
HOL packets heading for the same output port. In
the limit of N-+co, the virtual queues become
mutually independent, since the packet arrival
processes at different virtual queues become
mutually independent in the limit™,

We tag a virtual queuec among those. Note that
the delay of a packet in the tagged virtual queue
is the HOL contention time in the input queue.
Let Py and Py be the steady-state loss prob-
abilities of class 1 and 2 packets at the input
queuve, respectively. Then, we can approximate the
numbers of class 1 and 2 packets arriving at the
virtual queue during a slot time as having Poisson
distributions with effective rates

A =4 (1—Pp) and A3 = 2,(1—Pp), @

respectively. This assumption has already been
used with single priority switches™” for which
the arrival processes at virtual queues can be
shown to in fact tend toward a Poisson
distribution as N— . Similar Poisson approx-
imations have also been used for two priority

switches™, From the HOL packet contention
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assumed in Section 2, the virual HOL queue can
be modelled as having C number of servers with
deterministic service time (= one slot) and such a
service discipline that class 1 packets are served
before class 2 packets and in random order
among the same class packets. We will find the
delay distributions of each class packet in this
virtual queue,

Let I, and J, be the numbers of class 1 and
class 2 packets, respectively, in the virtual queue
immediately after the end of n-th slot. We
assume that selection of packets for transmission
is made immediately after new packet arrivals at
the queue at the beginning of a slot, Then, {(Z,
Jx), n=12,..} constitutes a Markov chain. Let A;
jy:(k. 1y be the state transition probability of the
chain, Also, let a, and b, denote the probabilitis
that n packets arrive at the virtual queve during
one slot time for class 1 and 2 traffic, respec-
tively. Equivalently,

ane ()" nl and b,ae (A" n (3

for n>0. Then, the state transition probabilities
hgjnkn can be obtained as follows:

(a) For i+j<C and i <C,

C—(i+i) m

z: Zanbm—m

m=0 a=0

fork=0and! =0,

CHlm{i4])
tobopi_(izjin)s fork=0and0 <!l < j,
nml}
hanwn = o,

3 anbe i (i ibn) fork =Qand !> j,
n=0

0, . fork>0and0 i<,

fork>0and! > j

@

ks c-ibi-jy

() For i+j > C and i <C,

Cl={i+1)
Gnbostafivjin)y OTE=0andi+j-C<lay

n=0

(a2

Bigrieny = gﬂnbcu—(-‘ﬁﬂ)y fork=0and iz j, (5}
Qe 0mibl-jy fork=>0and!>j
0, otherwise.

3
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(¢) For i+j = Cand i = C,

B (i=e) bi=js fork>i—Candl? j

Bigyeny =
0, otherwise,

©®

This completes the state transition matrix of the
chain defined by H=2[h ;] Let ¢;; be the
steady-state probability that there are i class land
J class 2 packets in the virtual queue. Further,
define el d,...) for i=0 and

Ta(P, ¥,,...). Then, from ¥=7?H and
3.3 ,¢4.,=1, we can compute ¢, for i=0
and j>(. In the numetical computation, we need
to truncate the state space.

Now, we derive the delay distribution of class
1 packets in the virtual queue. Consider a tagged
class 1 packet and let §; be the delay of the
tagged packet in the virtual queue. Note that
since the high priority in the contention is given
to class 1 packets, the delay of the tagged class
1 packet is not affected by the presence of class
2 packets. Let Pnj denote the probability that the
remaining delay is m time slots until the tagged
class 1 packet completes the service, on the
condition that there are k class 1 packets
including itself in the queue immediately after the
arrival instant in a given time slot. Then, P, for

k=1 and m=1 can be obtained as follows:
1, forl<k<Candm=1,

=]

y forlck £ Candm?> 2,

P = %. fork>Candm=1,
k

- C

k

ECYAY]
Pm-l,lc-C-v-je ’]’("\1) , fork>Candm>2.

@]

We can calculate P, for m=2 by recursion

on m. Let sim) be the probability that the delay

of the tagged class 1 packet, S; is equal to m
slots. Then, s;(m) is obtained from

™

Jj=0

k-1 —A’l(,\f )k—‘—

81(777.) ZPmeTI’- 1), )

=0

@

for m =1 where ¢,= 2% ¢;; for i=0.

Similarly, we derive the delay distribution of
class 2 packets in the virtual queue. Consider a
tagged class 2 packet and let S; be the delay of
the tagged packet in the virtnal queve. Let Qunux
denote the probability that the remaining delay is
m time slots until the tagged packet completes the
service, on the condition that there are [ class 2
packets including the tagged one and k class 1
packets in the queue immediately after the arrival
instant in a given time slot. Then, Qmi for m =
1,/ =z 1, and £k = 0 can be obtained as follows:

(a) For m=1,

1, fori+k<C,
C -
Quix = Tk, forl+k>»Cand k< C,
0, forl+k>Candk > C.
9
(b) For m = 2,
0, forl+ k5 C,
iy im0 oo e MUY e (AL
M > S c+~+,.¢—’l(,i-)—
im0 jmi :
,fnrl+k>Candk<C‘
Qumik = { meoket m (A emM
2 ZQmel-ﬁ-j.k-CQ-(_‘_(’:}‘L)__M
i=0 j=0
! fori+k>CandC £k < mC,
0, forl+ k> C and k > mC.
(10)

We can calculate Quir for m = 2 by recursion
on m. Let sx(m) be the probability that the delay
of the taggged class 2 packet, S, is equal to m
slots. Then for m = 1, we have

there are { class 2 packets including the tagged one

#alm) = Z Z Qumik - Prob | and & class 1 packets in the queue immediately after
iml kemD the artival of the tagged one.

PRTe e
= 12-; E% Qmuzzw., (k_‘,_)! 4—(1—;—1)! .

an

2. Input Queue Analysis

Again, as the switch size goes to infinity, ie,
N—oo, each input queue formms an independent
queue. This follows directly from the fact that the
virtual queue are mutually independent in the
limit, Therefore, with the HOL contention time
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distributions of each class packets, we can now
separate each input queue from the switch, and
model it as an independent Geom;, Geom;| G,
G2/ 1/K queue where the service time
distributions of class 1 and class 2 packets are
now s;(m) and s:(m), respectively, obtained in the
previous subsection.

Let K, and L, be the numbers of class 1 and
class 2 packets, respectively, in the queue
immediately after the n-th HOL packet departure.
Then, {(K, L), n=12,.} constitutes a Markov
chain, Let pgp.ep be the state transition
probability of the chain. Before we obtain the
transition probabilitics, we define some notations.
First, let N(k, 1, Ay Ay s(m)) denote the probability
that k class 1 and ! class 2 packets arrive during
the service time of which the distribution function
is s(m) in general. Then, we have

o
Nk, A, Ay, 8(m)) = Z
k!

ML= Ay = )™ s(m),

(12)

m:
Kl {m <k Ty

For example, we can express the probability
that k class 1 and [ class 2 packets arrive during
a service time (i.e., a HOL contention time) of a
class ¢(=1,2) packet as Nk L Ay A Sc(m).
Further, we define, conditioning that k class 1
and [ class 2 packets arrive during a service time
interval, the probability that exactly [’(<1[) class
2 packet arrivals belong to the first T packet
arrivals as P(k, [, T, "). Then, we have

(F)(*157)
U =0
Pk, T, = .
k41
1 13)
Lastly, we use the following elementary functions
for notational simplicity:

1, k=0,

a1, ifk=0,
u(k) = { 0, otherwise.

0, otherwise,

and 6(k) 2 {

Then, using the above notations, the state
transition probabi!ity Pup: & can be obtained as
the following:
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(a) For i=0 and j=0, a class 1(class 2) packet
will arrive and be served next, with
probability r (probability 1-r).

TN (R, Ay Agy1(m)) + (L = PNk, A dausa{m))
fork+1<T,

= =
rY N A Ay () PLR T D+ (1= PN 2 Ay Ag ag{m PR T D),
tral T

il
5 - forT€hk+l<K-land! 5T,
(0,0): k1)

P50 SN A sl m) PV LD

Fmklmt
o =
H( =) 30 DN M A aa(m) PR LT,
==
fork+i=K-1and!<T

(14)

(b) For 0<i=<T and j=0, a class 1 packet will
be served next. Hence, we have

ulk — (§— IDN(E— (i = 110 A Aoy s (m))
fork+ 1T,

-
u(T — (= 1) = DNk — (= 1) A An (M) PR = (= 1R 1T = (- 111
PR = = for T<k+l<K—-tandlgT,

w e
T == =0 T TNELL A A (m) PR T - (- 1,0,
Kmk—(i—-1) i
forh+i=K—landlgT.

(13

(¢) For T<i <K-1 and j=0, also, a class 1
packet will be served next. However, we
have a simpler equation in this case:

0,

fork+!<T,
o
ulk = (F = SO N(E — (= 1), 00 M, A, (m)),
fml
Pliokte) = for T k+l<K—-landl 5T,

o
63 TN M A s (m)),
K=k—{i-1) 'm0
fork+im= K -1andi<T.

(16)

(d) For i=0 and 0<j < T, a class 2 packet will
be served next. Hence, we have

ol = (F— 1NNk 1= (§ = 1), Ay A0 5a(m))s
fork+1<T,

wi-(f=1)) 3 NI a{m)PEIT — (5 - 1) (- 1)),
Pml-(j-1)
Plogutkd) = ’ forT<k+lcK=landlsT,

P
u(l— (G- 3 N A am) PR T — (- 0= (= .
klak bml- (-1}
fork+!= K —-1and{<T.

an

(¢) For i >0, j>0 and i+/ <7, a class l(class
2) packet will be served next with probability
@y, (probability oy 5). Hence, we have
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an(h, )tk = i = 1l - ANk = (= 1),0 = 5 da g, ar(m)
+aald, §)ulk = Oul{l = (§ — DIN(k = i,0 = (5 — 1), Ay, Ag, da(m)),
fork+1<T,
ash,jyull— ST = (i = 1) = 1)
ST (k- (- 1000 g s {m)PCk = G = LT — (845 - 1),0- )
i
+a:£:|:.j)u(l (- T —i-10)
3 Nlk- il g ag(m) Pk =T — (45 — 1= (7= 1),
Pligrien = =i=(i-1)
forT€k+l<K-landlg?,
m“;{)“(l_i)ﬂ(T— li=1)=1)
. Z E NOE P AL Agy sy () PRSP T = (i 4§ = 1 = 5)
K=k—{i—-1) P=i—j
el jyull = (= )T =i = 1)
35 N ey sam) P, T — (4§ — 1= (5= 1),

Mk l—{j—1)

fork+{m K =land! T,

(18)

) For i>0, j»0, T<itj <K-1 and j < 7T, again
a class l(class 2) packet will be served next
with probability a;, (probability a3 ;) as
in (¢). However, we have a simpler form of
equation in this case:

0,
fork+1<T,

ay(f,i)ulk— (i - 1)) = i)iN(k w (i 11 Ay, Ap, a1(m))
P

%
ontidyutk - D6 — (G — DY N (R - 5.0 A A, aatm))s
= 'm0
Plegyet) = - forT<k+{<K—landlgT,
s =

oy -3) 50 YN daa(m))

© Wmkegi=1) im0

ko

Foa(i U= (G~ 1)) T F N E, M Ay sa(m)),
Kmki =0

fork+!=K-landl<T.

(19)

This completes the state transition matrix
defined by P2[peyus] Let x;;, be the
steady-state probability that there are [ class 1
and j class 2 packets in the queuc immediately
after the departure of a HOL packet, Further, let
T2 (m ;0 7y eens Axo1-) for 057 T and T2
(Ho,III,...,IIT)- Then, from J[=1IP and
.X,7,=1, we can compute x,; for
0=i<K-1, 0<j<7, and i+j < K-1.

We now construct an SMP (Refer to [11,12]
for the basic concept) where the state remains at
the same state as one immediatcly after the last
HOL packet departure. It is straightforward to
find the steady-state probability 7z ,, of the SMP.
Let 75,; denote the mean residence time (in slots)
duting which the SMP stays in-the state (,)).
Then, we have

%\-+r5'1+(1~—r)5‘g, ifi=0andj =0,

B = 20)
a1(4,7)81 + o2(3, )52, otherwise,

where 8= oy msi (m) and §,=

S %_ msy(m). Therefore, the  steady-state

probability, 7 ,;, in the SMP is obtained as

Foi= Tij g
W T T K-1-1 ’
Y mhimeg
=0 k=0

for 0<i <K-1, 0<j <T, and i+j<K-1. (21)

Now, we tag a slot arbitrarily and observe the
state, i.e., the numbers of class 1 and 2 packets
in the «queue except the HOL position
immediately after the slot boundary. We want to
calculate the state probability ¢,, at this
arbitrarily tagged slot. Note that at the tagged
slot, the state of the SMP will be one of (i,})
where (<i=<K-1, 0</<7 and 0=i+;<K-1.
These are mutually exclusive and altogether
constitute a total event. Therefore, with the
definition of ¢, (4, /) as the probability that the
state at the tagged slot will be (k,]), on the
condition that the SMP is in the state (i,j), we
can apply the total probability law, i.e.,

T K-1-j

b=, O bealisi)Fi;

j=0 =0 (22)

Thus, we should find ¢, (i, /) to obtain ¢,
Before we derive ¢, (i, /), we define some
notations. Let 7§, be the probability that the

elapsed service time at the tagged slot will be m,
on the condition that the class ¢ (=1,2) packet is
served. Then, we have

3o (m) = “é" Z s:(j), form=0,1,.... @)
€ j=m+l

Also, let 3 pup be Dy a8 in (14)-(19)
calculated with 5, instead of s, ie.,
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. Pay
Pi)kd) = p(i,j):(k.l)lwith substitutions a:(m)=d.(m) for ¢=1,2 +

24

Then, since we do not include the packet in
the HOL position in the definition of ¢, , it is

straightforward to note that for ;+0 or j=+0,
Sra(is 7)) = Bii,jy(ka) (25)
To find ¢, £0,0) defined as

$44(0,0) £ Prob [ (k1) at tagged slot | SMP in (0,0) |,

(26)
we again apply the total probability law, by
further conditioning on whether the system is
being idle or busy at the tagged slot (ie.,

whether the HOL position is occupied by a
packet or not at the tagged slot) to get

$i(0,0) = Prob [ (k1) at tagged slot | SMP in (0,0), Idle |

~Prob [ Idle | SMP in (0,0) |

+Pmb[ (k1) at tagged slot | SMP in (0,0), Busy |
Prob [ Busy | SMP in (0.0) |
@7

where  Probf..)..] denotes the conditional

probability. It is easy to find that

, _ 1/A
Prob[ Idle | SMP in (0.0)] S IATTEI NG 28)

r& + (1= r)52

Prob | Busy | SMP in (0,0) | = A& -5 (29)

and
Prob [ (k,1) at tagged slot | SMP in (0,0), ldle ]
0, otherwise, (30)

_{ 1, fk=0andi=0,

Finally, with the same reasoning used when
obtaining (25), we note that

Prob [ (k1) at tagged slot | SMP in (0,0), Busy ]
= Po,o):(ied): (31)

588

From (27) together with (28)-(31), we can
calculate ¢, 0,0).

Finally, we are ready to get loss probabilities.
Since both class 1 and class 2 packet streams are
Bernoulli, from the BASTA(Bemoulli Arrival Sees

the Time Averages)m}, we have
T
FPn= g_;u PRr-1-1,1 32
and
T K-1-i
Pp = g k;_l Bre )

Recall that the above derivations are based on
the assumption that the packet loss probabilities
of the two classes are already known. This
naturally suggests an iterative solution. Starting
with zero loss probabilities, we can continue to
update loss probabilities iteratively until they
converge.

After the steady-state statistics have converged,
we then find the mean waiting times of the two
classes. Let W, (c=1,2) be the overall mean
waiting time of a class ¢ packet in the input
queve, including the waiting time in the HOL
position. Then, from the Little’s law, we obtain

hh 15 -1

"= A= B (34)

L _
W = 2 + 85 -1,

A2(1 = Fp) (35)

where L; and L; are mean numbers of packets
of each class in the queue except the HOL

0w " — _7

position, ie, L= %} kX Lodnt
K-1 K—h-1 _s\T
k-7 k2ii=g ¢4, and  Ly=231 T
K—1-1

2Tt

IV. Numerical Results

In this section, we present some numerical
results. Specific scheduling schemes used in this
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section are the HOL scheduling scheme and the
Bemoulli Scheduling(BS) scheme.,
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Fig. 2. Performances with varying speed-up factor
C(=1,2,3) for K=10, T=5, HOL scheme and
r=0.5. (a) Packet loss probabilities vs. total
offered load A, (b) Mean waiting times vs. total
offered load A .

The effect of increasing the speed-up factor of
the switch are shown in Fig. 2 (a) and (b). With
the speed-up factor C(=1,2,3) increasing, both
performances are radically improved. With C=2 or
3, the performance can be improved significantly.
This result agrees with previous ones obtained by
other researchers. The speed-up factor can be
regarded as the most influential factor affecting
the overall performance among other system
parameters. We have plotted the simulation results

together with the analytical ones for the
verification purpose. In simulations, a switch
model of 200 input ports was used.

Ka10,15,20.25

Packet loss probebility (P, and P,)
3,

O Lot ot ot ot ot ot o ot ot ot i

r

3

f

r e

[ . 7 K225
[

r

5

0'7
Total offerad load (A)
Fig. 3. Performances with  varying  buffer  size
K(=10,15,20,25) for C=2, T=8, HOL scheme, and
r=0.5. Packet loss probabilities vs. total offered
load & .

Buffer size affects the loss performace only. In
Fig. 3, as the buffer size increases, the loss
probabilities of class 1 packets decrease resulting
in the decrease of the average loss probabilities,
In this figure, we used a fixed threshold T,
resulting in no changes in curves of class 2 loss
probabilities. We also observed that any noticeable
effects were not shown on the mean waiting
times with the buffer size. These facts suggest
that as the buffer size increases, the admissible
load can be increased accordingly due to the loss
performance improvements, but confined even-
tually by the mean waiting time performance.

While the speed-up factor and the buffer size
affect largely the overall average performance, the
threshold T and the scheduling parameter p have
an effect on the performance differences between
the two classes. Fig. 4(a) shows that by varying
the threshold T we can control loss probability
differences very dynamically. The smaller the
threshold is, the larger the loss probability
differences are. The threshold also has a
non-negligible effect on the mean waiting time
performances as shown in Fig. 4(b). Whereas the
mean waiting time of class 1 packets remains
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nearly unchanged as the threshold increases, that
of class 2 packets gets larger at higher loads.
This is due to more class 2 packets entering and
waiting in the input queue instead of being
rejected. However, eventually the mean waitin
time curves of class 2 packets are bounded by
that of the input queue with the scheduling
scheme only (ie., with T=K-1).
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Fig. 4 Changes of performance differences between two
classes with varying threshold T(=2,58,12) for
C=2, K=15, HOL scheme, and r=0.5. (a) Packet
loss probabilities vs. total offered load A. (b)
Mean waiting times vs. total offered load A .

In Fig. 5, we show that by varying the
scheduling parameter p we can also control the
waiting time performance differences flexibly, We
have larger differences as we increase p. As

530

expected, we observed that the scheduling
parameter has an negligible effect on the loss
performance, except only slight increases in loss
probabilities with increasing p.

3

=]

-

Mean waiting time in slots (W, and W,}

o1 4 .
05 0.8 0.7 0.8 0.9
Total offered load (1)

Fig. 5. Changes of performance differences between two
classes with varying scheduling parameter
p(=10,..., 0.5) for C=2, K=15, T=10 and r=0.5.
Mean waiting times vs. total offered load A .

In the next set of figures, we examine the
admissible load. Since it is clear that the switch
can admit more loads by increasing the speed-up
factor or the buffer size, we here focus on the
admissible load change according to the threshold
and the scheduling parameter. From the perfor-
mance controllability with the threshold T and the
scheduling parameter p, as shown in Figs. 4(a)
and 5, we can guess that the admissible load can
be maximized by adjusting T and p according to
the loss and delay QoS of the two class traffic,
With the next two graphs, we illustrate how we
can achieve the maximuym admissible load for a
wide range of QoS gaps between the two classes.

First, in Fig. 6, we show the admissible load
versus the threshlod with varying loss constraints:
four curves for four different loss QoS sets
assuming no delay QoS. We verify that the wider
the loss QoS differences are, the system with the
wider loss performance differences (i.e., the
smaller threshold) accept more traffic. Note that
this graph is drawn for HOL, ie., p=1.0.
However, since loss curves changes only slightly
as the scheduling parameter p changes, as seen in
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the Fig. 5, these four curves will remain nearly
unchanged even if the scheduling parameter
changes. This means that the optimal threshold
value which makes the admissible load maximum
for p=1.0 can be safely regarded also as the
optimal one for any p between 1.0 and 0.5. For
example, for any value of the scheduling
parameter p in the range, the threshold 7=9 can
be considered as optimal for class '1 and 2 loss
constraints of 10® and 10* respectively.

0.9 T T
0.8 - ]
2
o7l
g
i / — 182, 1810
08 P 7 i 1048, 180 ]
Py - - - o4, 1e8
f / — = 105, 107
[
ll /
!
05 L .
0 & 10 15
Thraghokd (T)

Fig. 6. Admissible load(A) vs. threshold (7) with
warying loss constraints but no delay constraints
for C=2, K=15, HOL(p=1.0) and r=0.5.

Once we have chosen the optimal threshold, we
can then select an appropriate value of the
scheduling parameter p. This can be shown by
using Fig. 7. The figure shows the admissible
load versus the scheduling parameter with varying
delay constraints. Here, we again verify that the
wider the delay QoS differences are, the system
with the wider delay performance differences (i.e.,
the larger scheduling parameter) admit more
traffic. For the case of both loss and delay
constraints imposed together, to identify the range
of p within- which the maximum load exists, we
simply extend the value of the admissible load
obtained with the optimal 7, in Fig. 7. For
example, for 10* and 10® of the loss QoSs as
well as 3.5 and 0.5 for the mean waiting time
QoSs, we achieve the admissible load of about
0.79 with T=9 from Fig. 6 and then we extend
this vlaue of the admissible load in Fig. 7 (See

the long dashed line in the figure), to get an
appropriatc rtange of p, ie, 0.7<p<1.0. The
results are vetified by an exact curve drawn for
both QoSs imposed together. Also, the results are
compared from the admissible load curve obtained
with no priority control where most stringent QoS
constraints should be imposed.

e 3.5,0.6

---------- 3.0,1.0

070 -——- 2515

— — extended for 1e-4, 16-8, and no delay constraints
— - - exact for 1e-4, 1e-8, 3.5, 0.5

+---+ No prlority control (1e-8, 0.5)

0.l " L " L A, i
861 -0 0.9 0.8 07 08 0.5

Scheduling parameter (p)

Fig. 7. Admissible load (A) vs. scheduling parameter (p)
with varying delay constraints but no loss
constraints for C=2, K=15, T=9 and r=0.5.

V. Conclusion

In this paper, we analyzed input queueing ATM
switiches with the partial buffer sharing and the
general state-dependent scheduling schemes. The
analysis was done in two steps. In the first step,
we considered a tagged virtual HOL queue and
computed the HOL contention times of two
classes of traffic. In the second step, we separated
an input queue from the switch and analyzed the
combined priority schemes to get loss probabilities
and mean waiting times of the two classes.

From the numerical results obtained after the
recursive computation, we showed the performance
behavior with various system parameters, We
showed that while the speed-up factor and the
buffer size affect the overall average
performances, the threshold T and the scheduling
parameter p affect dynamically the performance
differences between the two classes. We also
showed that for a wide range of QoS gaps
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between two classes, we c¢an maximize the
admissible load, by first adjusting 7' against the
loss QoS and then p against the delay QoS.
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