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ABSTRACT

An Asynchronous Transfer Mode multiplexer having a shared buffer is comsidered, which is loaded with
discrete-time heterogeneous ON-OFF input traffic sources. An asymptotic behavior of the joint steady-state
probability distribution of input process and queve length is analyzed using the asymptotic decay rate when the
buffer capacity is sufficiently large. We prove that under heavy traffic the joint steady-state probability
distribution approximately equals to the product of the two marginal distributions of queue length and input state.

" We also propose an approximation method of obtaining the joint steady-state probability distribution for a finite

buffer case which will lead to the approximate cell loss probability of the individual input source. A numerical

example together with the computer simulation results will be provided to validate this approximation,

I M2

Evaluating cell loss probability in an ATM
(Asynchronous Transfer Mode) multiplexer loaded
with possibly heterogeneous input traffic sources
may be one of the most important tasks for an
effective traffic control. The individual traffic
source or traffic class may have different qualities
of service, Therefore, it is essential to predict
whether an ATM multiplexer can provide the
required. quality of service for each traffic class.
This paper provides a method for obtaining the
approximate cell loss probability of the individual
input source in an ATM multiplexer with finite
buffer capacity and heterogencous input sources.
Only a few studies are available to deal with the
exact analysis of the ATM multiplexer with het-
erogeneous bursty input sources. Among them Bae
et. al[l] analyzed to obtain the individual cell
loss probability using a Markov chain. But the
number of Markov chain’s states to be considered
increases exponentially with the number of input
sources. In general the exact analysis may not be
feasible practically due to the computational com-
plexity and therefore some approximation approach

are often adopted.

This study is based on the asymptotic decay
rate of queue length distibution in an infinite
buffer. As stated in [16), it is known that for a
wide range of queucing systems including GI/Gje,
the distribution of the queve length (or buffer
contents) has a geometric form, ie., for
sufficiently large s and certain positive constants
7 and 7,

Pr{queue length=S}= p*, (1

The constant 7y is said to be the asymptotic
decay rate of queue length distribution. We relate
this asymptatic decay rate of queue length
distribution with that of - the joint steady-state
probability distribution of input process state and
queue length. We prove under heavy traffic
assumptions that the joimt steady-state -probabilicy
distribution approximately equals to the product of
the two marginal distributions of queue length and
input state. Using this finding, we propose an
approximation method of obtaining the joint
steady-state  probability distribution for a finite
buffer case which will lead to the approximate
cell loss probability of the individual input source.
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The complexity of the method proposed in this
paper will be O(N®) regardless of the shared
buffer size when N is the number of input
sources, The previous researches dealing with the
asymptotic decay rate of queue length distribution
like in Eq. (1) can be also found in [9,10,14].
Many papers ([4-8,15]) proposed the exponential
form of the overall cell loss probability. There is
few r1esearch using the asymptotic behavior to
obtain the individual cell loss probability in the
literature known to us.

This paper is organized as follows. In the next
section, the queueing model of an ATM
multiplexer is described. Section III is devoted to
the approximation method to obtain the joint
steady-state  probability  distribution of input
process and queue length. In Section IV, we
provide the approximate cell loss probability of
the individual input source when a buffering
discipline is employed. We validate the result by
using a numerical example in Section V. The
concluding remarks are given in Section VI

I. Queueing Model of an ATM
Multiplexer

We consider the shared buffer multiplexer as a
queucing system as shown in Fig.l. An ATM
multiplexer transmits incoming cells from each of
N bursty input sources onto the outgoing link. All
incoming cells are stored in a shared buffer,
whose size will be denoted by K. A cell will be
lost if it arrives to find the shared buffer full.

| J—
2

, .
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sources ¢

. shared buffer

N

Fig. 1 Our queueing system of for .shared
buffer ATM multiplexer

Let us assume that cells arrive at each input
source according to a heterogencous interrupted
Bemoulli process. The time needed to transmit a
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cell onto the outgoing link is chosen as a time
slot. An input source in a time slot has two
states, ON and QFF. When the ith input source
is in ON state in a time slot, one cell is
generated with the probability of A, from the
input source. When it is in OFF state, no cell is
generated. Suppose that the i-th input source is in
ON (or OFF) state in time slot t. Then, in the
next time slot t+1, it will move to the OFF (or
ON) state with probability ai (or #,), or it will
remain in the ON (or OFF) state with probability
1—a; (or 1—-48,). The transitions between the
ON and OFF states for the i-th input source are
shown in Fig.2. Let Xi(t) be 1 (or 0) if the i-th
input source is in ON (or OFF) state in time slot
t. Also let Yi(t) be 1 if a cell is generated from
the i-th input source in time slot t and zero,

otherwise.

Flg. 2 Transition between ON and OFF
states for the i-th input source

All new cells are assumed to arrive at the
beginning of a time slot and to be immediately
available for transmission in the same time slot.
The cell in the shared buffer, if any, departs at
the end of a time slot one at a time.

Let Q(t) be the random variable denoting the
queue length in the infinite buffer at the
beginning of time slot t before cell arrivals and
let Q be the steady-state version of Q(t). Let =
Xa), Xaoft), , Xn(t)) be the vector of random
variables representing the states of input sources
in time slot t and X = (Xi, Xz, , Xn) be the
steady-state version of X(t). Define

Pols)=pr{Q=s}
Px(X)=p{X=x}
P,oXle)=Pr{X=x1Q=5s}

P« =Pr{X=x, Q=s}
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H. Joint Steady-State Probability
under Heavy Traffic

With infinite buffer assumption, the asymptotic
decay rate of queue length distribution, 7 , can be
defined as follows,

»= lim Pr{queue length=s-1} @)

;==  Pr{queue length=s}

In M/M/1 queue for example, ¥ corresponds to
the utilization p . From other researches dealing
with the multiplexer having homogeneous ([11])
ot heterogeneous bursty input sources ([12,13,16]),
we can expect that the asymptotic decay rate 7y
grows to be 1 as the cell arrival rate increases.
Let us assume that the asymptotic decay rate ¥
of queve length distribution is sufficiently close to
1. As mentioned earlier this' assumption
corresponds to the heavy traffic assumption which
says that the utilization is sufficiently close to 1.
Then the following theorem holds.

Theorem 1

If the asymptotic decay rate ¥ of queue length
distribution is close to 1 and

ox)= lmP y o(x1s) exists, them P(X, s)

can be approximated as follows for sufficiently
large s and all input source state X,

P(x, s)=P x(X)n* ©)

Proof) By the definition of conditional probability,
it follows that P(x, s)=Px,o(X|8)Pqu(s). If
&x)=limP xo(X [s) exists, then we have for

sufficiently large s

P(x, s)=&x)m® @

Conditioning on the state of the input sources
at the t-th time slot and letting t go to infinity,
the following equalities can be derived.

8(x) = lim tlim Pr{X(t+D) =x1Q(t+1) =5}
§=po0 frpem
=Y lim lim Pr{X(t) = y 1Q(t+1) = S}RY-E

y soeat—pee

&)

where R, , is the transition
probability from state y to state x and it depends
only on the transition probabilities

(a;, B)(i=1, 2, ..., N). The first term inside

the summation of Eq. (5) reduces to:

one-step

Lim lim Pr{X(t) =x1Q(t +1) =s}
t—xe

§—tou
— lim Jim PO =2 Q + D=3}
St o Pr{Q(t + 1) = S}

s+] |
X a%)nv‘ PriQ(t+1) =51 X(0) =%, Q) =<'}

= lim lim S==N+
s—pont 300 TI'YS

N i_ N
=8x) lim Ty P % Y,®=nlX(®)=5]
t—yop. i=1

=83 (y,x) . (6)

where

N N
t9=lm Ty PP Y,0=nIXO=xl. (7
{—eon=() i=1

Therefore, from Eq. (5) and (6) we have

8(x) = Z8(YET. YRy
y =T (®)

We sce from Eq. (7) that f(y, ¥) goes to 1
as the asymptotic decay rate y goes to 1. So, we
can conclude that &(x) becomes nothing but

P x(x) since Eq. (8) for f(y, y) represents the
copdition for steady-state distribution of input
source state x. Note that §(x) satisfying Eq. (B)
is unique when «; and @, are any positive real
number and f(y, y) is 1 for all y. By replacing
Mx) with Py(X) in Eq. (4), the proof is
completed.

Theorem 1 implies that the input source states
and the buffer. states behave independently under
heavy traffic when the queue length is sufficiently
large. Let Py(x,s) denote the joint steady-state
probability of .input process and queue length for
finite buffer of size X, which is the probability
of our main interest. To approximate P qy(x,s)
by using P(x,s), the following Lemn:a 2 and
Theorem 3 may be useful.

Lemma 2
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isP(x, i)z }E:P a(X,1) for all s<K—1

proof) For any state of input sources, the queue
length for infinite buffer is larger than or equal
to the queue length for finite buffer. So, the
result follows.

Theorem 3

The joint distribution for finite buffer of size K
can be approximated by the joint distribution for
infinite buffer for al X and sufficiently large K,

ie.,
Iéirme(K)(};, 5)=P(xg,8),s(K-1.

proof) Under the infinite buffer assurnption,
consider a renewal cycle that begins at the time
slot where all the input sources are in OFF state
and buffer is empty. Let us denote by Z(x, s) the
number of time slots where the state vector of
input sources is x and queue length is s in a
renewal cycle. Analogously, with the finite shared
buffer of size K, let us define Zg)(x, s). Then,
using the renewal theory, we can prove the

following for 5 < K-1:

E[Z(x,3)]
P(x,5) = =
= E[renewal cyclelength]l
= lim ‘EIZ(x,5) | queue length is always less than K]

Ko E[renewal cyclelength]
. E[Z(K)(g,s) | queue length is always less than K]
= lim
Ko E[renewal cyclelength]

= lim P(K) (5’ s).
Koo

In above we use the fact that Pr{queue length
is always less than K in a renewal cycle}
converges to 1 as K becomes larger. So, the
proof is completed.

By Theorem 3, the joint probability" distribution
for finite buffer of size K can be approximated
for sufficiently large K as follows.

Pegy (%,5) = P(x,8),s <K ~1

P (K- = YP(x,
o (x 2P ©
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By Lemma 2, the approximate distribution in
Eq. (9) has the larger tail probability for all x
than the exact distribution does. In the next
section, we propose the method for obtaining the
approximate individual cell loss probability using

Eq. (3) and (9).

IV. Approximation of Individual Cell
Loss Probability

Consider the following buffering discipline.
When many cells arrive in a time slot from N
input sources, the highest level priority for being
stored in the shared buffer is given to the cell
generated from the first input source. And the
second highest level priority is given to the cell
generated from the second input source and so
on. Generally, the i-th highest level priority is
given to the cell generated from the i-th input
source (i=1, 2, ..., N). Let L(i,K) denote the cell
loss probability of the i-th input source when the
shared buffer capacity is K. Then, L(1,K)=0 since
every cell generated from the first input source is
stored in a shared buffer with the first level
priority.

Let Y; denote the steady-state version of Yi(t)
(i=1,2,N). Similarly to Eq. (3), the steady-state
probability for the infinite buffer,

Pr{zle=n, Yi=1, Q=5 (than n cells from
the first (i-1) input sources are generated, one cell
is generated from the i-th input source and queue
length at the beginning of a time slot before the
cell arrivals is s) for 2 < i € N and 0 < i-1
can be approximated as follows.

Pr{ zlYi=n, Yi=1, Q-"‘—S] 10
=Pr

{ ey Yimm Y=l }Ws
Then, using Eq. (9) and (10), when the buffer
capacity is K, the corresponding joint steady-state
probability Pr (k){ )ﬂ_lY,:n, Yi=1, Q=s} for 2

<i<Nand 0 £ n £ il can be approximated
as follows,
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i-1
Pl'(K) {EIYJ = n,Yi = l,Q = S)
=

Pr{ZY =n,Y; =1my°, s<K -1
J—l

Pr{);Y =n,Y; = my%!
=1

,8=K-~1
- s an

The next lemma shows that
Pr{ ElY,—=n, Yi:1} in Eq. (11) for 2 <1 <

Nand 0 < n < i-1 can be calculated in O(N).
Lemma 4

Pr{;i_l,lY,-:n, Y1) for 2 <i < Nand 0

< n < i-1 can be calculated in O(N?).
proof) The generating function Gy(z) of Y; is

_ B; R P
GJ(z) { BJ ]z+[l uj+ﬂj7\.1]3—l,2,....,N

So, the generating function G"'(z) of in is
I

: i—t
6@ = MG;(2)
i

H -—E'—}\ +1- B; VESE4
| o+ By +BJ

When G''(z) is arranged in the ascending order

of z, Pr{ S‘Yj=n} is the coefficient of z° of

G'(z) And,

Pr{zY =nY,=1}= pr{);y =n)Pr{Y, =1}

J_
B;
=Pr{3Y,= i
{El VB, B,J

So, the complexity of obtaining
Pr{ i’i_le,:n, Yi———l} for 0 < n < i-1 would

be O@). Since G'(z) = G"'(@)Gi(z) for i=2, 3, ...,
N,for 2 <i <Nand O <1 < il can be
obtained in O(N?).

Using Pr(K){f};lY,:n, Y=1, Q=s] for

finite buffer of size K, we can calculate L(i,K)
for 2 i < N as follows.

L(,K)
E[number of the i - th source cells lost in a time slot]

- E[number of the i - th source cells generated in a time slot]

i-1 K-l
¥ X PT(K){ZY =n,Y; =1,Q=s}
n-ls=K-n
BJ
a; +; A (12

I Pr oo S yv,=n, v=1, Q=s) is approxi-
mated by Eq. (11) and h is replaced by hu which
is suggested by [16], then Eq. (12) is expected to
give a good approximate individual cell loss
probability when buffer size is sufficiently large.
Using Eq. (12), the approximate individual cell
loss probabilitics can be calculated in O(NS).
Overall cell loss probability, if required, can be
also calculated as follows.

overall cell loss probability
N K-l i—1
I X (H*K+S)PT(K){Zle=ﬂ,Q=S)
=

- n=2 g=K-—n+l
NP
s i

i=1(lj+|3j

A (13)

V. Numerical Example

In this section, the approximate individual cell
loss probability described in Section IV will be
validated by comparing with the computer simula-
tion results. Fifteen very different input sources
(N=15) are selected as shown in Table 1. Each
source has been chosen to have similar ON state
probability equal to about 0.093 but to have
different burstiness and different mean cell arrival
rate. The buffering discipline described in Section
IV was used for computer simulation. An input
source with smaller burstiness and larger cell
arrival rate has lower level priority for being
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stored in the shared buffer. Computer simulation
using regenerative process was done during 107
renewal cycles equal to about 6x10° time slots
for each buffer size K. It is believed that
simulation results provide the accurate cell loss
probabilities of the individual input source.

Tabe. 1 Parameters of 15 input sources selected for
computer simulation

input source (i) a; R 7
1 0.00193 0.00020 04
2 0.00207 0.00021 04
3 0.00223 0.00023 04
4 0.00242 0.00025 0.5
5 0.00264 0.00028 0.5
6 0.00290 0.00030 0.5
7 0.00322 0.00033 0.6
8 0.00363 0.00038 0.6
9 0.00414 0.00043 0.6
10 0.00483 0.00050 0.7
11 0.00580 0.00060 0.7
12 0.00725 0.00075 Q.7
13 0.00967 0.00100 0.8
14 0.01450 0.00150 0.8
15 0.02000 0.00300 0.8

Using the method in [16], 7 of 0.9986 and 7,

of 0.0009349 are obtained. In Fig, 3, we compare
the approximated individual cell loss probability
using Eq. (12) with the individual cell loss
probability obtained by computer simulation for
input sources 4, 9, 13, 15 and various buffer
sizes. The ratio of the approximated individual
cell loss probability obtained by Eq. (12) to the
simulation result ranges from 0.52 to 3.37. We
can see that the approximate individual cell loss
probability using Eq. (12) becomes more accurate
when buffer size is larger.
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Fig. 3 Comparisons of approximation with simulation
results of individual cell loss probability

In Fig. 4, we compare the approximated overall
cell loss probability using Eq. (13) and simulation
result for various buffer sizes. The overall cell
loss probability calculated by the heuristic method
in [3] is also given for the reference. The ratio
of the approximate overall cell loss probability in
Eq. (13) to the simulation result ranges from 0.85
to 1.32. It can be also seen that the approximated
overall cell loss probability using Eq. (13) is
closer to the exact one as the buffer size
increases. Moreover, as shown in Fig. 4, the
approximate overall cell loss probability is more
accurate than the result of the heuristic developed
in [3].

B

. i=e=gimulation H
b ppprOXimBtion |
|denmethod In [3] |

a
g

LogiCel Loss Prob.)

su

AP ME W5 Mo um M am MR M N P
K

Fig. 4 Comparisons of approximation with simulation
results of overall cell loss probability

VI. CONCLUDING REMARKS

When the size of shared buffer is relatively
small, the approximation based on Eq. (3) may
give an inaccurate joint steady-state probability
distribution. The log-scaled cell loss probability is
convex function versus the buffer size as shown
in previous study [2]. This implies that the
asymptotic decay rate of the cell loss probability
increases with the buffer size. So, it is expected
that Eq. (12) and Eq. (13) rather give the lower
bounds of the cell loss probability when the
buffer size is relatively small.

We consider the time for transmitting an
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arriving cell onto the outgoing link as a time slot

and assume that cells arrive at each input traffic

source according to a heterogencous interrupted
Bernoulli process. If the actual service rate of the
multiplexer is M (= 1) cells per unit time where
“unit time” is arbitrarily defined, we can set a
time slot to 1/M unit time. Carefully deciding
some parameters of arriving cells for a time slot,

we can approximately describe the actual input

process as an interrupted Bernoulli process.
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