DEri=

= 99-24-12A-8

P42 1A] "99-12 Vol 24 No.12A

g AdRelE A% 7ol g 5431 Aok

A of & *

brd =T ~ L

y H O

LIVELOCK-THIN LOCKING PROTOCOL FOR TRANSACTION
SCHEDULING IN DISTRIBUTED DATA NETWORK
MANAGEMENT

Hae-kyung Rhee*, Ung-mo Kim** Regular Members

ABSTRACT

Traditional syntax-oriented serializability notions are considered to be not enough to handle in particular various

types of transaction in terms of duration of execution. To deal with this sitvation, altruistic locking has attempted

to reduce delay effect associated with lock release moment by use of the idea of donation. An improved form of

altruism has also been deployed in extended altruistic locking in a way that scope of data to be early released is

enlarged to include even data initially not intended to be donated. In this paper, we first of all investigated

limitations inherent in both altruistic schemes from the perspective of alleviating starvation occasions for

transactions in particular of short-lived nature. The idea of two-way donation locking(2DL) has then been

experimented to see the effect of more than single donation in distributed database systems. Simulation

experiments shows that 2DL outperforms the conventional two-phase locking in terms of the degree of

concurrency and average transaction waiting time.

I.ME

Although liveness duration might not be a
serious serious issue in the arena of standard
on-line transaction processing, in which trans-
actions are normally expected to finish shortly, it
certainly matters in circumstances where a number
of long-lived ones are supposed to access a
substantial number of data. In case database
correctness is guaranteed by standard transaction
scheduling schemes like rwo-phase locking(2PL)"
for the context of concurrent execution environ-
ment in which short-lived ones are normally
mixed with long-lived ones, degree of concurrency
might be hampered by selfishness associated with

lock retention. This sort of reluctance for early
release of locks is essentially due to their
discipline. Lazy release in turn could aggravate
fate of misfortune for long-lived ones in that they
are more vulnerable to get involved in deadlock
situations. This could the other way around
aggravate the fate of short-lived ones as well in a
way that they suffer from starvation or livelock
affected by long-lived ones.

If long transactions are out-favored, degradation
of concurrency degree with regard to short ones
is inevitable. In case the degree of concurrency
needs to substantially rise, for instance in
multiprogramming environment, this sort of delay
effect could cause domino phenomenon. As long
as long transactions and short transactions live

* ZlojAie Welulcie] An e
= %:99347-0830] 40 2): 1999138 30%]

1891

www.dbpia.co.kr

FHEEA1E R A] "99-12 Vol.24 No.12A

together, we could have to live up with this kind
of dilemma. To reduce the degree of livelock, the
idea of altruism has been suggested in the
literature. Altruistic lockinngJ, AL for short, is
basically an extension to 2PL in the sense that
several transactions may hold locks on an object
simultaneously wunder certain conditions., Such
conditions are signaled by an operation donate.
Like yet another primitive unlock, donate is used
to inform the scheduler that further access to a
certain data item is no longer required by a
transaction entity of that donation. The basic
philosophy behind AL is to allow long lived
transactions to release their locks ecarly, once it
has determined a set of data to which the locks
protect will no longer be accessed. In this respect,
effect of donate is actually to increase the degree.
In order to allow more freedom, an entity of
donation is let continue to acquire new locks,
This implies that donate and lock operations need
not be strictly two-phase.

The idea of donating could further be exploited
to pursue an enhanced degree of concurrency.
Extended altruistic locking®, XAL for short,
attempted to expand the scope of donation in a
way that data to be early disengaged is
augmented by extra data originally not conceived

to be rendered. Example 1 shows this,

Example 1(Not-Allowable Schedule under AL
but Allowable in XAL): Suppose that T1
attempts to access data items A, B, C, D and
E in an orderly manner. Note that data items
F, G and H shall never be accessed by 71 at
all. Presume that 71 has already locked and
successfully donated A and B. TI now is
supposed in the stage of accessing C. Suppose
also that there are three more transactions
concurrently in execution along with TI: T2
“wishing for A and B, T3 wishing for B and F,
and T4 wishing for F and H(Figure 1),

If we apply AL for these transactions, lock
request for A and B by 72 would be allowed
for the purpese of obeying the notion of
serializability. 72 could be allowed to access

1892

since they are already included in the donating
list. However T3 would be rejected because of
the restriction of AL. While T3 experiences
delay, T4 would be permitted to access E and
F because any conflict arises for this access.

Legend -

Data ltem previously used and donated by T v

B
:: Data item corrently used by T)
-
~J

Tiata tlem which {a yet to be uged by T |

Daty jtem which shall never be uged by T f

Fig. 1 Concurrent Transactions Competing for Same Data
Donated

In case XAL is adopted rather than AL, T3
could fortunately be allowed to access B and F
without any delay since B is already included
in the donating list and F also can be included
in the donating list by protocol. 74, in this
case, each wonld proceed in the same manner
as in AL.

Under XAL, T3 can access B which has been
donated by 71, it can access the data item F
which shall not be accessed by 71, Extended
donation gives transactions more chance to
access data items than AL. Furthermore it
may increase the degree of concurrency than
AL,

End of Example 1.

II. Related Work

While the donation of wake is rigid in AL in
terms of fixedness of it size, a dynamic way of
forming a wake could be devised given that
serializability is never violated, This was realized
in XAL by simply letting data originally not
intended to bestowed to be dynamically included
in a wake predefined. The rule is that wake
expansion comes true only after a short
transaction has already accessed data in its

www.dbpia.co.kr

EE AP ARHEE A% 7lotd Fag rEaet

predefined wake list. So, the presumption made
for XAL is that a short transaction still restlessly
wishes to access data of its wake-dependent long
transaction even after it has done with data in its
wake list. The assumption could be called
data-in-wake-list-first/other-data-later access fashion.
XAL therefore performs inevitably badly if
others-first wake-later access paradigm is in fact
to be observed. Example 2 shows this.

Example 2(Delay Effect Caused by Donation
Extension): Suppose that 71 attempts to access
data items, A, B, C and D, in an orderly
manner. Note that data items, E, F, G, and H
shall never be accessed by TI at all. Presume
that TI has already locked and successfully
donated A, B and C. TI now is supposed in
the stage of accessing D. Suppose also that
there are three more transactions concurrently
in execution along with TI: T2 wishing for B
and E, T3 wishing for E and F, and T4
wishing for F and J(Figure 2).

If we apply XAL for this situation, T2 could
in some circumstances fortunately be allowed
to access both B and E without experiencing
any delay.

In case T2 initially requests B first rather
than E, T2 is able to access not only B but E
as well, since T2 is fully in the wake of T1. T2
therefore succeeds to commit. 73 then could
acquire E released by T2. T4 could thereafter
acquire F released by T3.

In case, however, T2 initially requests E first
rather than B, T2 can certainly acquire E but
it fails for B because wake relationship cannot
honor E as a member of the wake list. Once
this sort of wake dependency is detected, T2
can be allowed to access B only after it is
finally released by TI1. T2 in this case is
therefore blocked. 73 must then be blocked for
E to be released by T2, T4 as well must be
blocked for F to be released by 73, forging a
chain of blockage.

End of Example 2.

\J
ONORONO.

Legend-
- : Data item previously used and donated by T '
D + Data jtem currently used by T |
D : Data item which is yet to be nzed by T N
N

+ Data item which shall ncver be used by T '

Fig. 2 Four Transactions, Tl through T4, Competing for
Same Data Donated

To resolve this sort of chained delay, others-
first wake-later approach could be made viable in
a way of including others, not honored before, to
a wake list, This enhancement is one of substan-
ces, made in our proposed scheme, which could
be considered as backward donation, compared to
XAL, which is based on forward donation. XAL
can be viewed as wuni-donation scheme in that it
deals with domation principle involving only one
single long transaction. One other major substance
of our proposed scheme is to let more than one
long transaction donate while serializability is
preserved. The notion of multiple serializability is
thus -developed in our scheme. Our solution,
multiple-donation scheme, allows donation from
more than one long transaction but for the sake
of presentation simplicity, degree of donation is

limited to two in this paper.

Il. Transaction Processing Model

3.1 Assumptions
To describe wake expansion rule in detail,
simplifications were made mainly with regard to

transaction management principle.

1(Donation Privilege): Only long-lived transactions
are privileged to use donate operation.

2(Commit Policy): A long-lived transaction
eventually commits.

3(Deadlock Hanéiling): If a transaction happens to
fall into deadlock situation, that transaction will
be eliminated by using a certain deadlock timeout

1893

www.dbpia.co.kr

FEEA T A '99-12 Vol.24 No12A

scheme.

In this paper, the multiplicity is rendered to the
case of two to measure the effect of donation
variety, Two-way donation altruistic locking
protocol, 2DL for short, can be psendo-coded as
follows(Algorithm Wake Expansion).

3.2 Transaction Processing Model

anzaction

Fig. 3 2DL Transaction Processing Model

3.3 Operation Instance of 2DL

In case donated data items are used under XAL,
it is allowed to request data items which are
donated by only one transaction. Under 2DL, in
contrast, short-lived transactions are treated to be
given more freedom in accessing donated data
items by eliminating the single-donation constraint.
Short-lived transactions can access data items
donated by two different long lived transactions.

2DL alsp permits short-lived transactions request
data items which have been donated by two
different long-lived transactions. A way to conduct
a two-way donation is shown, in Example 3, with
two separate long transactions and a single short

transaction,

Example 3(Allowing Proceeding of Short
Transaction with Two Concurrent Long Ones):
Suppose that T1, a long transaction, attempts
to access data items, A, B, C, D and E, in an
orderly manner. Presume that T1 has already
locked and successfully donated A and B. TI
now is supposed in the stage of accessing C.
Suppose also that there are two more
concurrent transactions in execution along with

1894

T1: 12, long, wishing for data items, F, G, H,
I and J, in an orderly manner and 73, short,
wishing for B, G and K similarly. Presume
that 72 has already locked and successfully
donated F and G. T2 now is supposed in the
stage of accessing H(Figure 4).

: Data item previonsly used and donated by T

yand T

+ Data item currently used by T ,or T,

: Data item which is yettobe usedby T , or T,

+ Dataitem which shull never be used by T | or T,

Fig. 4 Execution of T3 with Two Concurrent Long-Lived
Transactions

If we apply XAL for these transactions, a
lock request for B by 73 would be allowed to
be granted but a lock request G would not
because G has already been donated by
another long-lived tramsaction. Only after 72
commits, G can be tossed to T3.

In case 2DL is adopted rather than XAL, T3
could fortunately be allowed to access without
any delay, This is made possible by simply
including the wake of 72 into the wake of T1,
End of Example 3.

V. Multiple Donation Locking

Short-lived transactions are treated to be given
more freedom in accessing donated data items by
eliminating the single-donation constraint under
2DL. 2DL permits short-lived transactions request
data items which have been donated by two
different long-lived transactions.

Algorithm(Wake Expansion Rule of 2DL)
Input; LT1; LT2; ST
/* ST:short trans;
LT1, LT2:long trans */
BEGIN

www.dbpia.co.kr

i At A AR ek FaE el

FOREACH LockRequest
IF(LockRequest.ST.data = Lock)
THEN
/* Locks being requested by ST already granted
to long trans other than LT1 and LT2 #/
Reply:=ScheduleWait(LockRequest);
ELSE IF(LockRequest.ST.data = Donated)
THEN
/* Locks being requested by ST donated by long
trans other than LT1 and LT2 */
FOREACH ST.wake & LT1 OR LT2
IF(ST.wake = LT1) THEN
/* Donation conducted by LT1? #/
IF(ST.datac=LT1.marking-set) THEN
/% Data being requested by ST to be later
accessed by LT1 ? */
Reply:=ScheduleWait(LockRequest)
ELSE
Reply:=ScheduleDonated(LockRequest)
ENDIF .
ELSE
IF(ST.data LT2.marking-set) THEN
/* Data being requested by ST to be later
accessed by LT2 ? %/
Reply := ScheduleWait(LockRequest)
ELSE
Reply:=ScheduleDonated(LockRequest)
ENDIF
ENDIF
ENDFOR
ELSE
Reply := ScheduleLock(LockRequest)
ENDIF
IF(Reply = Abort) THEN
/* Lock request of ST aborted */
Abort Transaction(Transactionid);
Send(Abort);
Return();
ENDIF
ENDFOR
END

V. Performance Evaluation

In this chapter, we experimented the performan-
ce behavior of 2DL. Performance comparison is
made against 2PL under various workloads. Major
metrics chosen are transactionn throughput and
average transaction waiting time. A simulation
model has first of all been established.

5.1 Simulation Model

5.1.1 Assumptions

To cultivate the model in detail, a number of
assumptions have been brought in.

1(Reliable System Resources): Client machines as
well as the server are perfect in the sense that
they are always operable.

2(Read-Once Policy): A transaction does not read
a data itern again after a transaction has already
read or written the same data item.

3(Fake Restart):
experiences a restart, it is replaced by a new,

Whenever a transaction
independent transaction.

4(Number of Long Transactions): At most one
long lived transaction may be active at any time.
5(Commit Policy): Long-lived transactions always
cormmit,

6(Resource Service Policy): There are two
resource type in our model. One is CPU and the
other is input/output devices(l/O).

5.1.2 Simulation Parameters

The simulation input parameters used, as
follows, are classified into two categories: the
parameters of which values are fixed throughout
simulation and those of which values “‘vary.
+Number of data items in database(db_size)
«Number of CPUs(num_cpus)
+Number of disks(num_disks)
+Mean size of short transactions(short_tran_size)
*Mean size of long transactions(long_tran_size)
*Mean time for creating a transaction
(tran_creation_time)

+Simulation length(sim_leng)

Table 1 Parameters Setting for Simulation

Parameters Values
db_size 100
num_cpus 2

num_disks 4
short_tran_size 2,3, 4,5 6
long_tran_size 4, 5,6,7, 8
tran_creation_time 5

sim_leng 100 - 1500

In case a transaction is exposed to a substantial
delay, even exceeding a certain timeout, once it
has been blocked, it is judged to be involved in
deadlock situations. Deadlock resolution shall then

1895

www.dbpia.co.kr

FHEA18F5) =2 "99-12 Vol 24 No.l2A

be followed.

Values for parameters were chosen by reflecting
real world computing practices. Database size
matters if it affects the degree of conflict. If
db_size is much larger than short_tran_size and
long_tran_size, conflicts rarely occur, To see
performance tradeoff between 2DL and 2PL,
average transaction length represented by number
of operation in transaction were treated to vary.
The shortest one is assumed to access 2 percent
of the entite database, while it is 80 percent for
the longest one.

5.2 Simulation Results and Their
Interpretations

We now discuss the results of simulation

experiments performed for the three different

replication control schemes: 2PL, XAL, and 2DL.

Our simulation experiments were focused on the

effects of sensitive parameters in the performance

indices to measure their performance behaviors.

5.2.1 Effect of Long-Lived Transaction Size

We have found that accessing donated data by
extending to multiple-donation provides better
performance than the other schemes. Accordingly,
we ran the simulation by varying the size of
long-lived transactions to evaluate the performance
under various level of donation. As the size of
long-lived transaction is getting shorter, short-lived
transactions can get more chance to use donated
object. This experiment is used to investigate the
effect of the size of long-lived transaction on the
performance of concurrency control schemes, as
the degree of donations varies. For this
experiment, all the other simulation parameters are
the same as those that we already used before at
Figures 5 and 6 except size of long transaction.

2DL and XAL eventually perform similarly in
terms of throughput and their average waiting
time, from simulation time 100 through 900. 2DL
and 2PL ‘Thowever outperforms XAL from
simulation time 1100.

2PL vperforms best in terms of throughput
however, 2DL performs best in terms of average

1896

Throughput(Size of Long Transaction>=4,]
timeout>30) | —e—2pL ;——XAL ; —4—2DL |

Wﬁ:ﬂzﬂf—ﬁﬁﬁ

S Y R S S [E R E———

100 300 500 700 900 1100 1300 1500
Simulation time

01

L 005

0

Fig. b Throughput with Larger Long-Lived Transaction

Average waiting time(Size of Long transaction>=,
timeout =30"
4~ 2P ; ——XAL; —d—20L|

15

100 300 800 700 900 1100 1300 1500

Sirrulation time

Fig. 6 Average waiting time with Larger Long-Lived
Transaction

waiting time owing to two-way donation which
contributes to give transactions more chance to
use the objects than one-way donation. Overall
phenomenon shows us that the performance of
XAL is the worst than the others since as the size
of long-lived transaction is getting shorter, there
are more donations from the long-lived trans-
actions. Once
established, the short is all of sudden forced to-
wait to be executed even though it attempts

wake-dependency has been

access to data of never antagonistic conflict to
each other. This wake-dependency may cause a
lot of burdens for performing the submitted
transactions. This is because XAL has a certain
overheads to reserve data objects to be accessed.
We presumed a certain value of fimeour in
order to remove the transaction, which is exposed
to a substantial delay, from transaction waiting
queue even exceeding a certain timeout. We do
not investigate to find which one is judged to be
involved in deadlock situation correctly in this
paper. As the rimeout is getting longer, the
unblocked transactions can get more chance to
accessing their jobs since we could not make a

decision with only long transaction waiting,

www.dbpia.co.kr

i) 2Ap) ANBE HE ok S48 e

5.2.2 Effect of Timeout

At a higher range of timeout, 2PL shows a
higher throughput and a lower transaction waiting
time.

Performances of both schemes appear to be
downgrade as the number of outstanding trans-
actions increases, thereby causing congestion.
Throughputs of 2PL and XAL show the same
value from simulation time 100 through 900.
Throughput of 2DL tends in particular to degrade
from the point of 100 in Figure 7 and 2DL
outperforms XAL and 2PL in terms of transaction
throughput until simulation time 900. However,
2PL rapidly increases its throughput from 1100 to
1300 in Figure 8 and we can also observe that
average waiting time curve of 2PL rapidly comes
down from 1100 to 1300 in Figure 8. This
phenomenon shows us higher throughput gives

lower average waiting time also.

Throughput{Size of Long Transaction==6, timeaut=50)

ans —a= 2P M XAL, —a—2DL
004 o -
003
002
oM
0 L . F—
100 300 500 700 200 1100 1300 1500
Sirmulation time

Fig. 7 Throughput with Longer Timeout

Average waiting tme(Size of Long Transaction>=6,
timeout>50) [—e— ppL; —#— XAL; —4— 20L |

0 be- L . .
100 300, 500 700 900 1100 1300 1500

Simulation time

Fig. 8 Average Waiting Time with Longer Timeout

V1. Conclusions

Multiple-donation locking is definitely recom-
mended in particular for environments where

benefit of concurrency degree improvement

exceeds overheads associated with aborts of
long-lived transactions. The two-way donation
scheme presented in this paper can be easily
extended to three-way donation. Four-way
donation could as well be devised on basis of
2DL, but serializability concern could arise due to
complexity of wake-dependency relationships. As
the complexity rises, multiple-donation altruism
could be rendered to a simple-minded locking in
which even database integrity is violated. In this
respect, optimal number of long-lived transactions
to volunteer for donation must be cautiously
sought.

2DL is considered to be a practical solution to
take in real world environment where long-lived

transactions naturally coexist with short-lived ones.

References

[11 P. A. Bemstein, V. Hadzilacos and N. Good-
man, “Concurtency Control and Recovery in
Database Systems,” Addison-Wesley, Massa-
chusetts, U.S.A., 1987,

[2] K. Salem, H. Garcia-Molina and J. Shands,
“Altruistic Locking,” ACM Transactions on
Database Systems, Vol. 19, No. 1, pp. 117-169,
March 1994.

[3] H. Bartley, C. Jensen and W, Oxley, “Scheme
User’s Guide and Language Reference Manual,”
Texas Instruments, Texas, U.S.A., 1988.

[4] R. Agrawal, M. J. Carey and M. Linvy, “Con-
currency Control Performance Modeling: Alter-
native and Implications,” ACM Transactions on
Database Systems, Vol. 12, No. 4, pp. 609-654,
December 1987.

{51 A. Law, and W. Kelton, Simulation Modeling
& Analysis, Second Edition, McGraw-Hill,
1991.

[6] P. Welch, The Statistical Analysis of Simulation
Results, Computer Performance Modeling
Handbook, Academic Press, pp. 267-329, 1983.

[71 A. Pritsker, Introduction to Simulation and
SLAM II, Third Edition, Systems Publishing
Corporation, 1986.

1897

www.dbpia.co.kr

F5FA 83 =] 9912 Vol.24 No.12A

[8] J. Lee, and S. Son, Performance of Concurrency
Control Algorithms for Real-Time Database
Systems, Performance of Concurrency Control
Mechanisms in Centralized Database Systems,
Prentice Hall, pp. 429-460, 1996.

[91 5. C. Moon and G. G. Belford, Performance
Measurement of Concurrency Control Methods
in Distributed Database Techniques and Tools
for Performance Analysis, Sophia Antipolis,
France, pp. 279-296, 1983,

0| 8| Z(Hae-kyung Rhee) 2
1979 24 : gk A
Abekat
1985'] 44 : University of
Ilinois(Urbana-Champaign)
Ak} Aa}
‘ - 1996+ 39~ : A gHhskw
A7 AR FE] T
HRALE
1988 34~1989+d 28 HebRd A ToE A
A A Y7FAL
1992 39~ A A He] 1A
AFRL 2
<FHY Holr 2Rl A#Az], EAldlefere]s,
o] guloejuo] 2

4 2 2(Ung-mo Kim) bk)

T 1081 24 ; AR

s

19864 54 : Old Dominion
University 4}k AAb

1990'd 24 : Northwestern
University 418}t bt

i
#

1997 8%~1998'3 7%: University of California,
Irvine A4+8s} w2

1991d 1€~ BA DA wA 2 53] =gA) fRR
A

1990 3%~ LA TN AR o F
3 e e

<FFy] Fol dlolelnle]y, Webdlojelro] s, 7

A2 DB, =43

1898

www.dbpia.co.kr

