DEri=

=& 99-24-12T-19 254183 =2 7] °99-12 Vol24 No.12T

Mode matching®i$ A-&3F 44
THEsLZ] 34

GO 2 e B B

Analysis of dielectric rectangular waveguide structures with
mode matching methods
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ABSTRACT

A dielectric waveguide structure using rectangular dielectric strip is analyzed directly in terms of the wave
equation for quasi TE and quasi TM modes. This problem can be solved, with no approximation in the wave
equation for the electric field E and magnetic field 7 inside and outside the dielectric rectangular waveguide
matching the boundary conditions between interfaces. This leads to an eigenvalue problem where spurious modes
do not appear. Dispersion characteristic examnples are presented for square and rectangular waveguides. The formula-
tion is general and can be used for comparison with other methods such as FDM or FEM in various structures.
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I. Introduction

Dielectric rectangular waveguides are the most
useful structures that are used to confine and guide
light in the guided-wave devices and circuits of
integrated optics "M,
waveguide is, of course, the optical fiber which

A  well-known dielectric

usually has a circular cross-section. In conirast the
guides of interest to integrated optics are usually
planar structures such as planar films or strips.

The study of dielectric rectangular waveguides
and their properties is often useful in gaining an
understanding of the waveguiding properties of
more complicated dielectric waveguides. Dielectric
rectangular waveguides are not only useful as
models for more gemeral types of optical wave-
guides, but they are actually employed for light
guidance in integrated optics circuits ',

This problem can be solved, with no
approximation in the wave equation for the
electric field F and magnetic field 7 inside and
outside the dielectric rectangular waveguide
matching the boundary conditions between
interfaces. The ability to generate, guide, modul-
ate, and detect light in such thin film
configurations opens up new possibilities for
monolithic “optical circuits”

I. The slab waveguide

Dielectric slabs are the simplest optical
waveguides. A dielectric slab waveguide is shown
schematically in Fig 2.1.

The figure shows a slab waveguide as it would
be used in a typical integrated optics application,
The core region of the waveguide is assumed to
have refractive index », and is deposited on a

substrate with refractive index #,. The refractive

index of the medium above the core is denoted
by #y. The typical film thickness is from 0.2 um

to 1gm. Light is confined by total intemal
reflection at the film-substrate and film-cover
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interfaces, In order to achieve tme mode
guidance, it is necessary that », be larger than

n, and n;. We will assume that s<n,<n; M)

X Z
fi
x=0 > y
n
i
%=-d
My

Fig. 2.1 A dielectric slab waveguide

In case my#my;, the slab waveguide is

asymmetric. Modes of asymmetric slabs become
cutoff if the frequency of operation is sufficiently
low. Like all dielectric waveguides the asymmetric
slab supports a finite number of guided modes.
We start with Maxwell’'s equations (in MKS
units). With p=0, J=0 and substituting jw for
% , Maxwell’s equations can be written in the
form

v.D=0, v:B=0
V><_E‘=—1lw#7;, VX71'= Z'CUE_E" 0y]

where e£=gy¢, is the dielectric permittivity and
u=ou, 1 magnetic permeability of the
materials. We do not consider lossy and magnetic

materials in this paper so that the use of constant
uo is sufficient. The index of refraction of the

medium will be denoted by »n=Ve,uz,=Ve,. Let
Tq'=(kx,ky,kz) and pA=%,. A mode of a
dielectric waveguide at a frequency o is a

solution of the wave equation

VH 4 #H,=0
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where #=nfbi=o’ue. It is possible to
express the transverse field components in terms

of the longitudinal components )

oH,
TOHT Oy )

_ i , OE
Ey_ kz_ﬁz(}-’ ay

_ i , 0B, ,9H,
H,= kz_ﬁz( we 3y +4 ax )

— i 0. aEz aHe
Ex— kZ_Bz(P A + oy 3y )
g 3E, ., oH,
Hy'-'"_ kz““BZ(wE o +B ay ) (2)

We simplify the description of the slab
waveguide by assuming that there is no variation
in y direction, which we express symbolically by

the equation —c%; =0 or k,=0. The modes of a
slab waveguide can be classified as TE or T™M

modes.

2.1 Guided TE modes
We start with the analysis of a transverse
electric (TE) wave with the electric field polarized

along y, transverse to the direction of
propagation, the z— direction. The wave equation
becomes

-‘3-2~I?[—2+(k2~ AH,=0

axl z

TE modes have only three field components :
E,, H, and J7,. It is assumed that the slab is
infinitely extended in the yz plane and omit the
e~ term which describes a wave traveling in
the positive

v,= --gﬁi . For

sinusoidal in region 1, but is exponential in

z—direction with phase velocity

ky, ko< B<k,, the solution is

region 2 and 3. This makes it possible to have a
solution K, that satisfies the boundary conditions

while decaying exponentially in region 2 and 3.
The energy carried by these modes is confined to
the vicinity of the guiding layer 1 and we will
refer to them as confined, or guided, modes [z,

For 0(f8<k,, k; the solution becomes sinusoidal

in all three regions. These are the so-called
radiation modes of the waveguides,

The problem of finding the TE modes of the
slab waveguide has thus become very simple. We
only need to find solutions of the one-dimensional
reduced wave equation. The only remaining
complication is the requirement that the solutions
should satisfy the boundary conditions at the two
interfaces at x=( and x=—4. The boundary
conditions require that the tangential E and H
fields be continuous at  the  dielectric
discontinuities. With E,=0, E,=0 and H,=0,

we obtain at — Jd=x=<0

H3= A Sln(k,‘JC'l"' 61)

E,= z'A—‘;;H- cos (kx4 6))

H,=— z'A-/% cos(kx+ 61) 3)

where k= @’pe,=k+ 5 and pote that

E

Frpm —— = W
5 _Hx B

At x<—d, B=d'pe=—ad+f

ay(x+d)

H,=— Asin(k,d— 9)e

The E, and H, can be derived by Eq (2). At
0=x, k§=m2ﬂ53=—a§+ﬂz
H,=Asinfe ™.
The other components can be derived by Eq
(2). We must require that components E, and

H, are continuous at x=0 and x=-—4 and

vanish at x=+oo. Then the other component
H, is automatically matched at x=0 and

x=—d. From these boundary conditions

tan 6, = 5> @
_ kx( ayt aa) 11
tan = 200 U, %)

With 2= ki—F, we obtain
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==K+ F=K- K-k 6
d=— M+ F=H-H-F 0]

By substituting o, and g, into the eigenvalue

equation (5), we have w

kx( 44 + ag)
E—aay

tank,.d = F(k.d)

®
_ kd(ayd+ asd)
T (kP —(apd - a1d)

This equation is used to obtain the eigenvalue
g for the confined TE modes. An example of
such a solution is shown in Figure 2.2

i e aned F(gd)

Fig 2.2 Graphical solution of the eigenvalue. The
crogsing points of the solid and dashed lines
correspond to solutions where x¥=2,1 and
ni=ni=1.0.

The parameter «, becomes imaginary as §g
becomes smaller than 4,. At the cutoff point
where @,=0 (or B=4k;) we see from the field
expression that the field extends undiminished to
infinite distances below the waveguide core, if
o;=0. When ¢, becomes imaginary the evanes-
cent field in the substrate region turns into a
radiation field, and the wave is no longer guided
by the dielectric waveguide. The cutoff condition
can easily be shown to be identical to the
condition for the loss of total internal reflection
from the diclectric interfaces at x=( and
x=—d which means that the critical angle
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_ 1, H
8.= cos 1(-'}‘%)=cos. 1(72) UL The constant,
1

A, is arbitrary, It is advantageous to define A
in such a way that it is simply related to total
power in the mode. We choose A so that the
field E£,(x) corresponds to a power flow in the

mode. For the slab with its infinite extension in y
direction, P is actually the power per unit
length. The power is obtained by integrating the
z component of the Poynting vector :

S.=% R(ExH) - 2 .

over the infinite transverse cross section of the

waveguide.
P N S I 2
P=—+ [ EHan= T [ VB
and
2
A2= 4kaD[l0P (9)

| 8] [d+——+-L1 k4]
as ay

2.2 Guided TM modes

The derivation of the confined TM modes is
similar in principle to that of the TE modes. The
wave equation becomes

3°E, 2 o
o +(k—B)E.=0

TM modes have three field components : E,,
E, and H, With H,=(¢, H,=0 and E,=0,

we obtain at — g=<x=<0,
E.,=Asin(k.x+ 6)
Ex=—iA—k'B— cos (kx+6s)

we)

H,=—iA z cos (k,x+6y) 10
where k=@ us=k+7 and tan02=%-%3—.
3 x
Note that
Z _Q___L
™MTH, T we
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The field components E,, £, and H, are

continuous at x=( and x=-—d. The eigenvalue
equation can be written :

koe(ase+ aey) m (an

tank,.d=
¥ Flesey — ayaset

. The dielectric rectangular
waveguide

The dielectric slab waveguide is a useful model
for complicated waveguide structures. However, in
most practical applications more complicated
waveguides are used . The waveguides used in
integrated optics are usually rectangular strips of
dielectric material that are embedded in other
dielectrics. The rectangular strip is embedded in
the material of the substrate of the integrated
optics. We analyze a structure that is more
general. Instead of assuming that the waveguide
core is embedded in th material of a substrate,
we allow the materials on all four sides of the
rectangular core to be different "%, This
geometry is shown in Fig. 3.1

¥= My Y=

Fig 3.1 The five dielectric regions of a dielectric
rectangular waveguide, The field in the shaded
regions is ignored in this paper.

An exact analytical treatment of this problem
has not yet been proposed ULZHBT Only approxi-
mate analytical approach which was developed by
Marcatili ®' was reported. The Marcatili’s method
assumed E,=0 and H,=(0 for the case of Ej},

modes and E, =0 and H,=( for the case of
E}, modes. Other approximate solutions by

numetical methods have been obtained that can be
made as accurate as desired MM If the mode
is not very close to cutoff, its field is confined
almost exclusively to the region of the core, and
only very little field emergy is carried in the
surrounding media. The ray angle ¢ is small for
well-guided modes, so that the propagation
constant A= n,k. Because £ is a large quantity,
thus we have k<a, and k,<€e;. From Max-

well’s equation, we have

04 0y (- =0, (12)
ox ay

where ¢=E, or H,. The oscillatory solutions
in the core must be matched to the exponential
solutions outside at the boundary of the dielectric
waveguide, The boundary conditions are the
continuity of normal 7 and D and tangential E
and FH, rather than the vanishing of normal B
and tangential E  appropriate for hollow

B4 Because of the more involved

conductors
boundary conditions the type of fields do not
separate into TE and TM modes. In general, axial
components of both E and F exist. Such waves
are sometimes designated as HE modes or quasi

TE or TM modes ©,

3.1 The Asymmetric waveguide
Let's assume nz=n,+u3#n,¢{n; . The following

set of field components satisfies the reduced wave
equation (2) in region 1 with

B=otpe =K+ B+ &
E,=Ae M1 B ML gt 4 Dot
Hl=Ame—l'k_,x—x’k,y+Bme—ik,x+ik,y+Cmeih,r—ikyy+bmeik}+ib,v

E, = k—;?[ (Bl A+ apk,A e~ *
7
+(BEB.— wph,Bye ™™ L (= ph,Cot apk, Cohe ™™

+(— BkoD,— wpk,Dye ™ *]
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o, =";?:';lﬁz"—[(wslkﬁe+ﬂkyz’lm)e" iz thyy
(w61 kB~ Bk, Bade "N+ (— weik,Cot B, Co)e M
+ (= we kD, — Bk, Dp)e ™' ]
£ = ﬁlﬁ[ (B, A~ ok Ae "
—(Bk, Bt wph Boe” * M4 (8,C ot wph, Coe ™™

+ (= By Do+ wpky Dye ™

H,

=

=_-2__]“"-"[(—w€1k_w4‘,+;9k,A,,,)e_“"' iy
-4

= thet ik ikgx— ik

+ (we, kB, + fk.B,)e —(we  k,Cot PR, Cple

+(we kD, Bl D e T

On the outside we must require all field
components in region 2-5 to vanish at infinite
distance from the core. We are thus limited to use
decaying exponential functions that lead away from
the region 1. The field components in these regions
are chosen similarly to the field in the core, with the
additional requirement that the electric field
components E, and the magnetic field components
H, are continuous at the boundary, We thus have

in region 2 with A =oue, =— b+ K+ 4

E, =[(A.e™+Coe™"Ne ™™
+(B.e ile,d+Dpe —z'k,,d)e ik,y]e x4 d)
H; — [ (Ameik,d+ Cme —ik,,a')e — iR,y

+(B,e ™+ Dpe FhHe B et

E. = ?_1?[ {iBaf A ™+ Ce ™9
+ wpk A e ™t Cpe ™ N ™R
+ {iBay(B.e ™+ D.e ™™

_ a)/.tky(B,,,e ik,d+ D¢ —ik,d)}e ik,y]e alx+d)
H, = ﬁ[ {iwesan( A e ™+ Coe ™%

+ﬁky(Ameik,d+ C,,,e !l',d)}e—ﬂcyy

+ {iwe,0.( Boe ™+ D,e
_ ﬂk_y(B,,,e ik,,d+ Dme —ikxd))e ik,y]e ax+d}

ikt x'k,d)

B, =gzl (A ™ D™

— jwpa( Ame ™+ Cre TN e ™™
(B, (Bue Mt Dye T

+ twpa Be * 4 De e Mo D
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H, = 721;]?[ {— wezky(Aeeik‘d-i- Coe ™9
7

+ifaAne hd Cue —ikxd))e — iy
+ {wezky(Bse ikXd"i' Dee - I*Ad)
+ifay(Bpe ™+ Do ") e Wt
The field in region 3 is similarly with
k=o' pey=— b+ Ko+ B

E,=[(A+ Cle ™ +(B.+D)e™)e ™ ™"
H,=[(A,+Ce ™ +(B,+ Dye e ™
E.— W—lﬁ - iBr( At CO+ apk(An+ Cle ™
+{—ifay(B.+ D) w/xky(Bm+Dm)}em‘y]e s

H,= E—F [{— ivesay At C) + BR( A+ Codte ™
+{—iwesas(Bot Do) - Bh(Bu+ Dp)le ™l ™

E,= _]F [ (ng_v(Ae+ C)+ iw#ﬂ’:a(Am'-}— C)le” kv
+{— Bk B.+ Do) — iwpay( By -+ Dyyte ™ e ™

H,= k'z_ & [{— wek (A A+ C)—iBaA,+Cle by

u ) .
+ {wesk(B.+ D) —ifa(By+ Dy)le i e
In region 4 with A'=o’pe,=FK—al+F we

have

E,= [ (Aﬁ,e ik_\b+ Bge ilr,b)e —ikxx+(cee —ih,‘bn# D,e va)e x‘)c,.x]e ~ay(y= 8
I’;=[(A..;E:’ —ik,‘ll_,_ Bmeikyb)e i&,x+(cme ik,h+Dmeik,b)eM,x]e—m(_v— ]

E, = ﬂ__ [{8k(Ave ™"+ Boe ™) — iopai(Ane” ™ + Bue e ™"
4

— kb

— {8 Coe ™ 4 Doe™) +iopa Cue "M+ Dye ™))e Mo TP

Hy, =g Hosk(Ave ™™+ B ™) —ifa(Ane "+ Boo™)e ™
Y

_ (me( C,e_'M"FDee'u)+iﬁa‘(C,,e_m"h+D,,eW”h))eiu]e_“'(y B

E, = ']jef-l [(—iﬁa;,(A,e_wb+B,e“’b)—w;1/ex(Ame_M"b-f-B,,.e'k”b))e"*'x
i~ F

+{ - {Aa,(Coe 'ik’b-%-l)‘,e “hy ok (Cme M+ Do ™)) g #4e ~0

hy

H, =g tarllea(Ae ™+ Be™)+fh(Ane ™"+ Bre™)e ™™
4

+ {iwesay(Coe ;k,n+[)e(? ik,h) — Bk C e _‘M-f-Dme '.'\b))e'.k"']e aly—h

Finally in region 5 we have with
k= 0’ pgg = B ad+
E.=[(As+BJe ™ +(C+D)e" ™

H,=[(A,+Bye ™ +(Cpt Dye e
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E, =L g UBh(Act B) +iopas(Ant Ble ™

+{— B Cot D)+ iwpas( Co+ Dy e *1e

H, = ﬁ[ {wesk (A + B+ ifes( Ayt By)e ™

+{— wesk( CoF D)+ ifas(Ct Dde ™ e ™

E, =L [iBas(Aut B — wphi( A+ B,)Ye ™
H—F

+{iBas{ Co+ D)+ 0k (C,,+ D) }e 1™

H, = 75‘—_137-[ {— iwesas( Ayt By + Bh Ap+ B,) e ™

+ (= iwesay( Cot Do) = Bl Cot Do) Ye "1™

3.2 Quasi TE Mode and Quasi TM
Mode

The boundary conditions should be matched at

x=0, —d. The components E, and H, have

already been matched by the proper choice of the
field amplitudes at the interfaces. It is required
that the components H, and H, pass continuou-

sly through the core boundary at x=0, —d . This
requirement also causes E, and E, to be

continuous as required. With the notations

2= ol (B— ek, + ik~ Desay)]

2,= ol (K— ek, + i — fDezas)

2= (B — Ok, + ik — BPa,

2= (B — Bk + ik~ Py (13)

ay= wphk,(& — &)
ay=wpk(e— &)
as=— Bk (K~ k)
ay=—Bh(K— k) (14)

we have the following matrix equation :

EN ay 0 0 E ay 0 0
1] [ 2 —ay 0 ( —zy —ay ‘g‘
2™ g™ 0 —me™™ ge™™ &
0 0 23e™ ae™ 0 0 e " * g D: =0
a EA 0 0 a —xy 0 0 Au
o0 w o 0 0 o g || B
ae ™ ™ g 0 ae ™~ 0 o
0 o tnt thad e e 0 0 e whod 24 ird .

(15)

This equation represents a system of homogene-
ous simultaneous equation. A solution is possible
only if the determinant of the equation vanishes.
We thus obtain the eigenvalue equation by using
equation (13) and (14)

A cos 2k,d+ Bsin 2k, d= C (16)
where

A= (Bd— B K — BE) — Eaa( B+ B+ #)

B — kay (K + )(ak ~ BB ) — koas (I + B i — 3D

C= (B — B — B — B — Kayey)

Eq. (16) has two possible solutions. One is a
TE mode solution and the other is a TM mode
solution :

BV R+ AT C*
A+ C
=k;§%:§3) - - TE mode  (17)

x 263
btk Ba;+ Kia;)
B 20y M T
kel — g

tan k.

I

«+ +TM mode

We recognize these equations as the eigenvalue
equations of TM modes (11) and TE modes (5)
of the infinite slab respectively. It means that we
can have quasi TE modes or quasi TM modes
depending on the status of the boundary
conditions at y=0, 5.

For quasi TE modes, we can obtain the
following two reduced matrix equations from the
above equations (15), (16) and (17)

.
a3 —Z 4] A,, -2
L]
Z3 @ 23 C.l= —a |A.
ikd —ikd —itd| | € o ikd
a,e —2ye a.e " —zs€
(18)
and
*
B | ] B, -2
*
23 —da — &3 D,|= a |B. (19)
ikd —ihod —-ikd| | D Wik
ase e e m, e

By solving these two simultaneous equations,
we can have

211
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C. ew‘A{
D.=c%B,

we ky

k (a’z + a’3) ay

where t =—5—~—== and t ==
an kxd ki — ayay an 01 k:r

are used.
For quasi TM modes, we can have the
following coefficients exactly the same way

C.=—e™A,

D,=—e**B,

Am=%%Ae
Br(Fas+ Hay)

where tan k.d= and

KRk — Klasay

tan 6, = ?23 are used. We know that the
dhx

eigenvalue equation can be used to determine %,
because we gan express g, and o, in terms of

ky !
o= K~ B~ k= (ni— nDk— &
o= ki~ ki~ Ki= (ni= nk; ~ K

Then 4, is the only unknown quantity in

tan kxd=M,a_3) and
kr—aza
212

Kk iy + Ksay)

o e e — K asa

At the core boundary in region 4 and region 5
we require that the electric field £ and magnetic
v=0, 5. The
components E, and H, have already been

field B be continuous at

matched by the proper choice of the field
amplitudes. It is required that the components H,

and H, should be continuous through the core

boundary at y=0, 5. This requircment also

causes E, and E, to be continuous

automatically. Let’s use the notations
z1=af (B~ Berk,+ ilki— fesas)]
zy=al (K~ Bak,+ ki~ ey
23=(Ki~ Bk, + ik~ BFas
2= (K — Bk, + i K — By (20)
a,=— whk,(& — &)
ay=—wpke—ey)
ay= Bk, (K — k)
a=— Pk =KD, 20n

Then we can obtain the following matrix equation

awe” zie g™ g™ o 0 0 0 /Bl"
0 0 0 0 @ N @ C:

0 o 0 [1] age *H ne ape e wh D - 0
-2 ay 2 ay i 0 0 o An
—ze M e T e ™ g™ 0 0 0 0 g"‘
] 1] [\ [\] -z} - z —ay o
0 0 1] 0 P T i "

(22)

This  equation represents a  system  of
homogeneous simultaneous equation. A solution is
possible only if the determinant D of the
equation system vanishes. We thus obtain another

eigenvalue equation
A cos2k,b+ B sin2k,b= C 23)

where

A" = (K — B e — ki) — B auas (R + EDOE + D)
B =~ kay(K + k) klaf — 4D — hyas(hl + ) Ko — KiK)
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C =k — Bk~ DB~ £~ Bayas)

There are two possible solutions. One is a TE
modes solution and the other is a TM modes

solution :
tankp =-BLIB A4 =C
_ kgaﬁas) « v« « TE mode (24)
k—ajas

Eh(Fayt Ba)
Kk — klayas

+ o+ TM mode

We recognize these equations as the eigenvalue
equations of TM modes (11) and TE modes (5)
of the infinite slab respectively in y— direction. It
means that we can have quasi TE modes or quasi
TM modes depending on the status of the
boundary conditions at x=0, —d. For quasi TE
modes, we can obtain the following two reduced
matrix equations from the above matrix equations
(22) and (23)

z3 a — 2 A, —a

ay 2] a3 B, |= 2] A,
) bt _ _+ ws|| B hyb

2, aze”™” —zje m —age

and
z - —2; Cm a,
.

—az 4 —as D.|= - C,
Zit.b o« itd|| D = kb

z,e — e’ —zie m ase

By solving this simultancous equations, we can
have

B,=e %A,
D.=e %",
A =_&£LA
m oy k, ¢
B =_:..‘3._/2Le_’29!A
m w# kx [
C =Lﬁﬂc
" Wi k a
k., _
D,,,=~fﬁ—kfe e, ©5)
_ k(o tey) _ a5
where tankb= - tya, and tangy= s are

used.
For quasi TM modes, we can have the
following coefficients exactly the same way

B,=—e¢ %A,
D,=—e **C,
_wEy ke
Am_ .B kv Ae
_ —we ke -2
B, = 2k, e ‘A,
= YE1 Ry
Cn= gk, C.
D, =213 7o, 26)
¥

Bh(Fas+ Ba)

— 1
where tan kb= m and

14
tanf, = —== are used.
4 Esky

We know that the eigenvalue equation can be
used to determine %, because we can express e,

and ¢; in terms of &, :
ai= K~ K~ K= (n}—n))i; — ¥}
A= K~ K~ K= (ni— ndK— &,

Then 4, is the only unknown quantity in

tan f,p= Sy 2aF 00 (a¥89) g

ko—a,as

Kk (Bas+ Kay)
t k bz_.;
A Kk — Hagas

3.3 The Wave Equations of Quasi
TE and Quasi TM Modes
For quasi TE modes we can determine Ay

from o=k —(kK+ ) where we get k, and
@

kx( ay+ a’a)

5 and
k- ey

ky from tan k,d=

tankyb=—@H respectively. The following
vy

first set of field components which is continuous
at x=(, —d satisfies the Maxwell’'s equation
and describes the QTF, modes in region 1.
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E,= Ayleg— cos (bt 6,) cos (kyy— 63)
H,= A, sin(kx+ 6))sin(kyy- 8y)

E,= iAy—‘};‘i cos (k,x+ 8))sin(kyy— G4)

2
H,=— iAy]/:B cos (kx+ 61)sin (k,y— 63)
H,={A, /9 51n(k,,x+01)cos(kyy s)
E.=0 27

where  tan 01—% and tan 0"_-/?,_5' The wave
X v

impedance Zgry is defined by ZQT,_.-———HZE# =

%ﬁ%. Note that if Fopsii—k with K0,
17 frg

T

then Z,r, becomes Z;z. If 4, becomes o as

k,~0, components E, and H, become 0. Then

the above wave equations are exactly those of
slab dielectric waveguide’s TE mode (6).

The QTE, mode which is continuous at
y=0, & and satisfies the Maxwell’s equation is
the following set of wave equations

E,=— A2 cos (ko 61)cos (kyy— )

_kaon
* kBore
H,= A, sin(kx+ 8)sin(k,y— 6;)
E,=0

H,=iA cos(k,,x-i- 8 sin (k,y— 63)

* /3
=— iAx-%ﬁi sin(k,x+ 61)cos (k,yv— 63)

H——iA M sin (kyx+ 0)cos (k,y— 6 (28)

x ky,lg
where tan 01:%3— and tan @, = ZE

For quasi TM modes we can determine Byny
from AL, =K —(ki+#) where we get k, and
Bh (B + Hay)

k, from tank,d= W — B, and
2 2 2
_ Riklkiast B5e) e gollowing first set
kb kik%kﬁ"‘k?azﬂs ' wing s
214

of field components which is continuous at
=0, —d satisfies the Maxwell’s equation and
describes the QTM, modes in region 1.

E.= B, sin(k,x+ 0,)sin(k,y— 6,)

k
——_pg L
H, Bkﬁ'

cos (kx+ 8y)cos(kyy— 6y)

E,= Z'Bym sin(k,x+ 04)cos (k,y— Gy)

H.=0

Bom B, R o (et By)sin (ko )
== B, cos (kux+ fy)sin(kyy— 6,

H,=—iB,—~— k L cos (kx+ 8y)sin(k,y— 6,)

kza; ko
where  tan 6, = ké k: and tand,= kéki . The
. . . E,
wave impedance Z,p, is defined by Zoru=31-
¥
Ak N et if BnsK~k with
BQTM‘UEI ! QTM 1 x

k=0, then Zgy becomes Zpy. Since 6,

becomes -72—T with k,%0, H, and E, become 0.

Then the above wave equations are exactly those
of slab dielectric waveguide’s TM mode (10).
The QTM, mode which is continnous at

y=(, b and satisfies the Maxwell's equation is

the following set of wave equations

E,= B,sin(k,x+ 6,)sin(k,y— ;)

H, = Bx"z-" Bwel cos (kyx+ B)cos(kyy— 6y)
Bk
E, __ZB"MNB sin (k. + 0;) cos (kv 6,)
H,=iB,—— k L gin (k,x+ G4)cos kv~ 6,)
E,=iB ”/9 cos(kx+02)sm(kyy 8,)
H,=0
Ko, Kas
where tan 92=ﬁ and tand,= kéky

Now let’s compare above equations with the
following equations which are the approximated
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Marcatili’s E}, modes (4, With
tan kd= k"g“?—“’“) and
k x ol

Bk klas+ Bay)
tan kyb=—rroy A 4
Y KoKk — Klagas

k
E4=A?'ngg- cos (k. x+ 8))cos (k,y+ 6,)

H,= Asin(k.x+ 6;)sin(k,y+ 6,

2_ pl
E,= z'A—";}T:X cos (kyx+ 6,)sin (kyy+ 6,)

¥
H,=— zA—iﬂ cos (k.x+ 61)sin(k,y+ 6,)

E~(=— iA—a]f;—l sin (k,x+ 8 cos (b, v+ 8,)
H,=0

a ek
where tan6 =7 and tang,=-="2 are used.
x 1tg

Since 4, becomes 0 with &=0, al

E,,H ,E,,H ,E and H, arc 0 as %,
becomes (.

For the case of Marcatili's approximated Ej,
mode equations (e by using

k?k,‘.( ké y + k% 0'2)

and
kzk%kg - k? oy

tank,d=

k +
anbm bt e
v T Ay ag

E.= Acos (k,x— 05)cos (k,y— 63)

Hz=-—Ai/:y' Cgfl sin (k.x— 2)sin(k,y— 65)
* n
E =)=~ MFI?- cos (k,x— G sin(k,y— 6,)
™
H.=0
Bk
E,=iA~—% sin (k,x— 8y)cos (kv — 65)

ks

H,= M-E;;—l sin (k,x— ) cos (k,y— 63)

where tan62=63—k" and tandy=-7* are used.
13144 ky

Since 4, becomes —g— with k=0, all

E,,H ,E ,H ,E and H, ae 0 as

k,~=0. This result came from those Marcatili’s
approximation E,~0 and H,=( for the case of
Ej, modes and E.~(0 and H,=0 for the case

of E3, modes. "M,

V. Propagation Constants and
Comparisons with E), and Ej,
Modes

We have evaluated the results of the exact field
analysis and compared them with the Marcatili’s
results "™ and the results of Effective Index
Method(EIM) "), 1t is likely that we can have four
sorts of solutions ; 8 ore, Boms A and g5 "L

But only two kinds of solutions can be accepted :
the quasi TE Mode Porz and quasi TM Mode

B qmu. The other solutions g% and g;, should be

discarded because of above discussions where
Bore=\ i — Kirg— K'yrp
B o=V k% — K xTM kaTM
Br=V k% - kszE“ kaTM
B =V K~ Ky~ kzyTE .
To facilitate the comparison, the normalizations

g and V for the propagation constant and the
frequency, respectively, are used.

Prepogulion Constonts

b-1d

Hzerrali

; ; —— e Y 2Ei=lf, of LIM
i/ 4 £, nf Fi
: 5 TEz
0. ' i . ZM‘HE
- v e wm == EhyeEd—Eyp af FIM
/, / Lg;m?zm

an 4.0 8.0 t20 16.0 200

Fig 4.1 Propagation constant 2 as function of

the normalized frequency V for dielectric
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rectangular  waveguide. =21,

ny=ny=n=n;=1.0 and b=d. The normalized

_ L2
B=§: :5 and V=dV K —H.
1T

Fropasation Constunts

[

clized g
o

Horm
o

Fig 4.2 Propagation constant g as function of
the normalized frequency V for dielectric

1113114 ;
ML n=2.1,

rectangular  waveguide.

7= ny=n=n;=1,0 and b=1.5d. The normalized

2 _ g2
ﬁ='§z :5 and V=d VK —FK.
17 R

Propagatien Constants

b=2d s
. s
=t

[35,]

o [
D oosf - Ty

'
= Eh=H AtEIM
£1, of LIM
Ciz
1

Tt 0t M
Elp of EIM

0.0 40 HO Ay 160 20.0

Fig. 4.3 Propagation constant £ as function
of the nommalized frequency V for dielectric
[hEL4 A=21,

rectangular  waveguide.

my=ny=n=ns=1,0 and b=2d. The normalized

2_ 2 i
= ﬁz 2’5 and Vv=d VE—R.
17 ~2

Comparing with the propagation constants of
E}, and E}, Modes which are

276

Br=\ k% = kszE_ yTM and Br=V k% - kngM— kaTE

U and EIM  whose propagation constants are

By of EIM =V K — Frp— Forne  Whete  kypy, s
tank b: Zkﬁdkékéaz
¥

714 TR
koks = &g kyas

2
Eel=51_k”TE: and  B,=V k%“kzxm_kzym the

K
8 mode of EIM for =21,
ny = my=ny= nz=1,0 , slightly different results are
observed in Fig 4.1, Fig 4.2 and Fig 4.3 for the
dielectric rectangular waveguide. Therefore the

obtained from

EIM can be considered to be more accurate than
the Marcatili's method in £}, modes but no
improvements are obtained in Ej; Modes due to
the analytical method of EIM itself. That is the
reason why the Ej; Modes did not appear in
EIM. Increasing the aspect ratio while holding the
other constants produces closer agreement between
the exact solution and EIM. However, as E}, of
EIM coincides with Ej, of Marcatili’s, it deviates
slightly more from the exact solution. Note the
normalized 4%, and g, approach that of TE and

TM modes as the aspect ratio % becomes larger

and larger.

V. Conclusions

An exact analysis of dielectric rectangular
waveguide structures is presented which s
formulated in terms of the simple wave equation
for quasi TE modes and quasi TM modes in each
region. This leads to eigenvalue problems which
are free from the troublesome problem of spurious

modes ME

Our analysis does not hold near
cutoff since the fields discomnect themselves from
the core and reach strongly into the shaded
regions of Fig. 3.1. The analyzing procedures of
this manuscript are very complicated but the
results are as simple as those of Ej, and Ej
Modes and EIM. Therefore the propagation
constants of quasi TE and quasi TM modes can

be used for comparison with other methods such

www.dbpia.co.kr
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as FDM or FEM in various structures and for
dielectric waveguide fabrications.

We can apply these results to the well known
directional couplers formed with two dielectric
rectangular  waveguides and the nonlinear
distributed feedback laser array. The coupling
dielectric
waveguides can be derived very easily by

coefficients between two adjacent

introducing the quasi TE and quasi TM modes.
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