DEri=

=2 00-25-10B-4 FEZAIE 352 00-10 Vol.25 No.10B

CReMeS: A CORBA Compliant Reflective Memory based
Real-time Communication Service

Sun-Tae Chung* Regular Member
ABSTRACT

We present CReMeS, a CORBA-compliant design and implementation of a new real-time communication
service. It provides for efficient, predictable, and scalable communication between information producers and
consumers, The CReMeS architecture is based on MidART's Real-Time Channel-based Reflective Memory
(RT-CRM) abstraction. This architecture supports the separation of QoS specification between producer and
consumer of data and employs a user-level scheduling scheme for communicating real-time tasks. These help us
achieve end-to-end predictability and allows our setvice to scale. The CReMeS architecture provides a CORBA
interface to applications and demands no changes to the ORB layer and the language mapping layer. Thus, it can
run on non real-time Off-The-Shelf ORBs and enables applications on these ORBs to have scalable and
end-to-end predictable asynchronous communication facility. In addition, an application designer can select whether
to use an out-of-band channel or the ORB GIOP/IIOP for data communication. This permits a trade-off between
performance, predictability and reliability. Experimental results demonstrate that our architecture can achieve better
performance and predictability than a real-time implementation of the CORBA Event Service when the
out-of-band channel is employed for data communication; it delivers better predictability with comparable
performance when the ORB GIOP/IIOP is used.

Keyword: CORBA, Reflective Memory, CORBAservices, ORB, Real-time Systems

I.ME

The need to reduce the time and effort required
to deploy and maintain distributed real-time appli-
cations has necessitated a move towards using
off-the-shelf (OTS) distributed object computing
middleware based on open standards. OTS
middleware typically offer reliable distributed
system level support that allows the construction
of applications out of reusable software
components. The use of these types of compon-
ents not only reduces the complexity of building
the application, but also allows an application
designer to concentrate on solving application
domain specific problems.

The Common Object Request Broker Architec-
ture(CORBA)[10] specified by Object Management
Group (OMG) is beginning to gain acceptance as

such a standard middleware platform specification
for use even in distributed real-time applications.
Some of the problems one faces when using
CORBA as part of a distributed real-time
architecture arise from its communication primitiv-
es being based on method invocations and from
its lack of support for expressing and handling
timing constraints [19,20,23]. To provide support
for QoS requirements of real-time applications,
especially those that need communication beyond
method invocations, a Real-Time Event Service
[7,17] has been designed by extending CORBA’s
event channel abstraction [11].

The CORBA Event Service model was
originally intended for event dispatching and thus
it is only appropriate for applications where
asynchronous exchange of small size data message
is all that is required. Also, since all asynchron-

* School of Electronic Engineering, Soongsil University (cst@syscon,soongsil.ac.kr)

=5 E; 00255-0704, A=A} 20000 79 4

1675

www.dbpia.co.kr

FEA 52 =F 3] *00-10 Vol.25 No.10B

ous communication traffic is supposed to go
through the event channel, the event channel can
become a bottleneck as the number of producers/
consumers using a particular event channel or the
size of messages passing through the event
channel increases. However, if this bottleneck is
avoided by using multiple event channels, the
real-time scheduler associated with one event
channel may not be aware of messages being
exchanged by other event channels and their
resource requirecments and hence admission control
becomes a problem. Therefore, the RT Event
Service alone may have difficulty in providing
satisfactory end-to-end QoS. Furthermo- re, for
real-time applications requiring the trans- port of
large data sizes like audiofvideo, a more scalable
and predictable asynchronous communication
service is desirable.

In this paper, we propose a new scrvice archit-
ecture, called CReMeS (A CORBA Compliant
Reflective Memory based. Real-Time Communicat-
ion Service). CReMeS is based on the concept of
Real-Time Channel-based Reflective Memory
(RT-CRM) introduced in MidART [6]. It provides
for efficient, predictable, scalable, and flexible
communication between information suppliers and
consumers:

#CReMeS’ efficiency detives from the use the
Real-Time Channel-based Reflective Memory
(RT-CRM) abstraction [21] for communication
between nodes.

eCReMeS provides for end-to-end predictability
by utilizing MidART’s admission control at
both the supplier and consumer nodes, and the
user-level scheduling scheme for communicating
distributed real-time tasks [22].

®CReMeS is scalable since the scheduler in one
node handles the communication traffic relating
only to that node, as opposed to the scheduler
in the Real-Time Event Service which handles
all the traffic connecting to the event channel

oCReMeS® flexibility arises from the fact that
application designers can

- separately specify the QoS requirements for

suppliers and consumers, thus allowing

1676

different timing propertics to be met
independently.

- use a CORBA interface to applications, so no
changes to the ORB layer and the language
mapping layer are required. Thus, it can run
on non real-time OTS(Off-The-Shelf) ORBs
and enables applications on these ORBs to
have scalable and end-to-end predictable
asynchronous communication facility.

- use an out-of-band channel or the ORB
GIOP/IIOP for data communication. This
permits a trade-off between performance and
reliability,

There are two ways of incorporating new
functionality into CORBA., The first consists of
integrating the functionality into the ORB core
andfor the language mapping layer. But this
method loses portability (because the implementat-
ion is ORB-dependent) and interoperability (becau-
se both clients and servers have to use the same
ORB implementation). The second is a Service
approach [4] which does not require modification
of the ORB core and language mapping layer. In
this service approach, the module implementing
the new functionality is defined by only an IDL
interface and thus is independent of the ORB and
language mapping. The latter, service-based,
approach is CORBA compliant and hence is
desirable.

While a CORBA compliant adaptation of
MidART’s RT-CRM is desirable - since it is
portable and inter-operable, and thus can run on
any ORBs - it is not trivial to achieve. One of
the major challenges comes from the need to
achieve object location transparency while still
keeping the efficient shared memory based
mechanism that is optimal for intra-node commun-
ication, Other challenges include the design of
interfaces and adaptation of communication paths
of MidART while not losing the performance
advantages of MidART.

Keeping the goals of achieving performance,
predictability, and scalability in mind, we have
designed and implemented a prototype of the
CReMeS architecture using OmniORB2 version

www.dbpia.co.kr

=T /CReMeS: A CORBA Compliant Reflective Memory based Real-time Commumication Service

3.0.0 [16], an open source ORB, on Windows NT
4.0. Experimental results demonstrate that our
architecture can achieve better performance (as
measured by latency), predictability (as measured
by jitter and the ability to provide QoS
guarantees) and scalability (measured in terms of
the number of clients or size of messages
handled) than a real-time implementation of the
CORBA Event Service when an out-of-band
channel is employed. It displays superior
predictability and scalability while delivering
comparable performance when the standard two-
way synchronous communication of the ORB
GIOP/IIOP is used for data streams. This makes
our solution adapt to the needed reliability and
performance requirements for building performance
sensitive real-time applications in CORBA
environments,

This paper is otganized as follows: Section 2
provides a brief description of CORBA, and a
critique of its real-time capability. In Section 3,
we present a description of RT-CRM in the
context of MidART. The design and implementat-
ion details of CReMeS is presented in Section 4.
The experimental performance results of CReMeS
implementation are described in Section 5. Finally,
we conclude the paper and present a survey of
the related work in Section 6.

I CORBA in Real-time Environments

2.1 Overview of CORBA

CORBA, a middleware standard specified by
OMG (Object Management Group) [10], defines
how objects distributed across heterogeneous
distributed environments can be described and can
interact with each other. The main component of
CORBA is the Object Request Broker (ORB),
basically a software bus respon- sible for locating
objects and delivering clients’ requests to server
objects. An ORB provides object location and
object implementation transparency in addition to
communication infrastructure. CORBA Services,
another component of CORBA, are general-
purpose high level distributed services on top of

ORB to provide convenient functionality to
applications. The interface to CORBA Services is
defined by OMG. Adopted OMG Object Services,
collectively called CORBA services (COS) include
the naming service - which allo- ws clients to
find objects based on names, and the event
service - which supports asynchro- nous events
(data) delivery through appropriate event channel
implementations. In order to support a general
ORB interoperability, CORBA specifies GIOP
(General Inter-ORB Protocol) and IOP (Internet
Inter-ORB Protocol) which is the implementation
of GIOP over TCP/IP. “Requ- cst/Response” type
of operation invocations supported by CORBA are
usually implemented by a synchronous two-way
communication model where clients synchronously
wait for response from a server once they invoke
operations on server objects. While this type of
synchronous two-way communication model is
useful because of the similarity of semantics to
local object method invocation, synchronous
two-way communication can be too costly for
certain applications. For example, in industrial
control networks and multimedia applications
where timely delivery of message and continuous
media data delivery are rnecessary, time taken by
a client to wait for server response may cause
unacceptable delays. For these reasons, CORBA’s
Event Service was defined to provide asynchron-
ous communication facility for CORBA applica-
tions by decoupling between suppliers of (event)
data and consumers of (event) data. CORBA’'s
Event Service can provide anonymous, and
one-to-many Or many-to-many communication
among suppliers and consumers and make
connection configuration possible at run-time.
Also, recent- ly CORBA adopted Messaging
Specification [12], where type-safe Asynchronous
Method Invocation (AMI) model is introduced.
The CORBA AMI model alleviates some of the
problems with the CORBA’s standard synchron-
ous communication model, but it is confined to
one-to-one communicatlon, and not flexible
enough to be configured at mmn-time. Thus,
whereas AMI provides one-to-one two-way

1677

www.dbpia.co.kr

FrEEA &3 =R '00-10 Vol.25 No.10B

asynchronous communication, Event Service
provides one-way asynchronous communication
and allows group communication. Even though
AMI invocations can specify QoS requirements, it
does not provide anonymous asynchronous com-
munication and group communication.

2.2 Use of CORBA in Real-Time
Environments

High performance distributed real-time applica-
tions have QoS requirements such as high
petformance (throughput, low latency), low jitter,
and scalability. The successful deployment of
CORBA in such applications heavily depends
upon the ability of ORB to provide the necessary
QoS to applications. But there are both specifica-
tion and performance problems to consider,

Current CORBA specifications lack several real-
time features such as the standard interfaces
through which real-time applications can specify
their Qo$ requirements to the ORB, and configure
and control ORB resources appropriately for the
achievement of desired real-time QoS. Some of
these deficiencies have been alleviated with the
recent introduction of CORBA Messaging QoS
policy specification [12] and Real-Time CORBA
specification [13). But, these specifications are
aimed at soft real-time applications. Also, there is
still no standard way for clients to indicate timing
requirements like latency and jitter of their
requests.

Furthermore, compared to low-level program-
ming approaches, current ORB implementations
incur significant run-time overhcads affecting both
throughput and latency, and additional un-
predictability [19]. The overheads arise inevi-
tably from the mechanisms which are devised for
supporting CORBA features such as object
location transparency, object implementation tra-
nsparency, object method invocation semantics,
etc. These mechanisms necessitate presentation
layer conversion (Marshalling/De-Marsha- lling),
internal message buffering, data copying, demu-
ltiplexing, and intra-ORB virtual function calls.

These weaknesses have been studied exten-

1678

sively[19,20,23] and have lead to the develop-
ment of real-time ORB support. TAO [19] is a
high performance ORB (TAO) whose key
components include a real-time IJO system, real
-time inter-ORB protocol engine, real-time object
adapter, real-time scheduling and dispatc- hing
mechanism, an optimized IDL compiler which
generates efficient and predictable stubs and
skeletons. An alternative approach of Wo- Ife
etal. [23] involves extending the current ORB (as
opposed to designing a new Real- Time ORB like
TAQO) to deal with real-time needs. To this end,
they bave developed a Real-Time manager and
object services such as global time service,
real-time event service, global priority service, and
real-time scheduling to equip current ORB with
real-time capability. It should be noted that even
these RT-ORBs cannot get rid of all of
unpredictability because they don’t have complete
control of the resources that they need.

An alternative to above exiensions to the ORB
is to build a higher level CORBA service to
provide required QoS to applications. One such
service, is the RT Event Service [7,17] developed
to extend COS Event Service into real-time
application domain. RT Event Service extends
CORBA Event Service by supporting periodic
rate-based event processing and effic- ient event
filtering and correlation. Even though the
Real-Time Event Service provides the abo- ve
additional features and good performance under
light load conditions, it is not scalable nor
predictable under heavy load conditions. These
drawbacks of the Event Service are mainly due to
fundamental architectural coup- ling of each event
channel with all of its asso- ciated suppliers and
consumers, Our proposed CReMeS addresses these
shortcomings.

. Real-Time Channel-based
Reflective Memory (RT-CRM)

Since CReMeS is based on MidART's Real-
Time Channel-based Reflective Memory (RT-
CRM), in this section, we discuss the relevant

www.dbpia.co.kr

=% /CReMeS: A CORBA Compliant Reflective Memory based Real-time Communication Service

aspects of RT-CRM. Although RT-CRM provides
for predictable and scalable asynchronous commu-
nication infrastructure for applications, it is not a
standatrd middleware, The desire to make its
service widely available motivated us to develop
CReMeS by adapting RT-CRM for CORBA
environments.

RT-CRM was proposed as a service in the
MidART middleware. Figure 1 shows the high
level architecture of RT-CRM,

‘Writar's Node Rewder’s Node

Reflective Lol Refechry

Mrmery arm

Resder's Thread

Fig. 1T RT-CRM High Level Architecture

RT-CRM is a software-based reflective memory
- it provides data reflection with guaranteed
timeliness. Data reflection is defined as the
memory-to-memory data transfer among applicati-
on host memories in a networked environment.
Data reflection is accomplished by a Data Push
Agent (DPA) residing on the writer's node and
sharing the writer’s memory area. This agent
represents the reader’s QoS and data reflection
requirements. A virtual channel is established
between the agent and the reader’s memory area,
through which the writer’s data is actively
transmitted and written into the reader’s local
memory area by a Data Receive Agent (DRA).
RT-CRM provides efficient and flexible asynchr-
onous communication. The run-time communi-
cation model of a channel-based reflective
memory is defined by the data sending and data
reception semantics. Data sending can be either
Push-on-Write or Periodic Push, while data
reception can be either blocking or non-blocking.
Since DPA and DRA arc scparate threads of
control from the application threads, the data

sending and data reception semantics are entirely
definable and parameterized by the subscriber,
The combination of the data push and reception
semantics lead to several general models of
communications commonly found in distributed
real-time applications. For example, Table 1 lists
two possible models capable of supporting the
requirements of industrial control applications. The
two models are: PWB (Push-on-Write, Blocking)
and PPN (Periodic Push, Non-blocking).

Table 1. PW=Push-on-Write, PP=PeriodPush, B=Block-
ing, N=Non-blocking, G=Deadline Guaranteed,
NG=No Guarantee

Modes | Data Types | Deadline Application
PWB | Sporadic G Command issuing
PPN Periodic G Trend graph
PWB | Sporadic G Plant data
PPN Periodic G Video/Audio
PWB Sporadic NG Background

IV. CReMeS Architecture for CORBA
environments

CReMeS implements MidART’s RT-CRM as a
service for the CORBA environment. In this
section, we describe the principal design issues
and our implementation experience of CReMeS.

4.1 Design considerations and options

for CReMeS

Our design goals can be summarized as following:

1. Compatibility with MidART’s current usage.

2. Avoiding any performance loss compared to

using MidART without CORBA.

3. Providing the application with CORBA

development semantics.

We elaborate on how we achieve these design
goals in CReMeS below. CReMeS retains
compatibility with MidART’s original API and
theit semantics. In MidART, the interface to the
RT-CRM service is provided through a library of
APl similar to memory read-write syntax. In

1679

www.dbpia.co.kr

PB4 813 = 27] '00-10 Vol.25 No.10B

CReMeS, the interface to the RT-CRM setvice is
constructed as a CORBA object which is defined
by IDL and exposed to applications. This CORBA
object is called the RT-CRM Imterface Object
(RIO). Inside the RIO servant (i.e., the entity
implementing the CORBA object [10]), a mapping
to the reflective memory is provided. RIO methods
have the same invocation semantics as MidART’s
original API. Thus by invoking methods of RIO,
an application can set up and us¢ a RT-CRM
service. The RIO interface allows applications to
specify real-time requirements in terms of
deadlines, reader periods, writer periods, and
guarantee/non-guarantee mode, and to choose Push-
on-Write or Periodic Push mode of commu-
nication. This interface is intuitive and much
simpler to use than other CORBA communication
services such as the RT Event Service. The
procedures to use a RT-CRM se- rvice in CORBA
environments is similar to those in MidART
explained in [25]. The only exception is that an
application (writer or reader) now needs to obtain
the object referen- ce to RIQ before the applica-
tion can actually invoke any of the methods.

As for the second goal, there are many design
considerations, but two important ones are
described here,

o Location of RIO.

The location of RIO affects the performance of the
communication service. There are two options for
the location. One is to locate RIO in an address
space different from that of the application, and
the other is to locate the object in the same
address space as that of the application. If RIO is
located in an address space different from he
application which manages the reflective memory,
as shown in Figure 2, one natural choice of path
for data stream transfer between an application
(writer or reader) and the associated reflective
memory is the ORB GIOP/IIOP path. In this
design choice, even asynchronous one-way data
transfer needs to pass through the ORB GIOP/
IIOP path twice - once at the writer's end and
again at the reader’s end - before reaching its final
destination. This not only incurs overhead but also

1680

increases the jitter. From our initial experimental
resulis obtained with this design choice, the
potential for poor performance (increased latency
and high jitter) was obvious, especially when
transmitting data of large size. In order to achieve
performance similar to that of MidART, we need
to adopt the shared memory mechanism employed
in MidART for data stream transfer between the
writer/freader and the reflective memory that it is
attached to. In MidART, through the shared
memory mechanism, a writer (or reader) can ask
for data to be copied directly into (from) the
reflective memory in the same node without
additional overheads (such as going through IP
loopback or additional memory copies). Howev- er,
if the servant is located in an address space
different from the application, it is difficult to
make usc of the shared memory mechanism,
especially if we want to keep the same interface
semantics as MidART’s library API.

Thus, the best choice for the location of the
RIO is the application’s address space (Figure 3):
inside the servant of the RIO, a shared memory
mechanism for data stream transfer between an
application and reflective memory is provided.
This data transfer path does not incur much of

RaMA
Threaa " R0 DPA
ORB | .. | ORB

— data streams flow

Fig. 2 RIO outside Application

R S

Application ReMA DPA

Thread

ORB

—n e (@tA Streams flow

Fig. 3 RIO inside Application space

www.dbpia.co.kr

=%/ CReMeS: A CORBA Compliant Reflective Memory based Real-time Communication Service

the ORB GIOP/IIOP ovetheads since in most of
currently existing OTS ORBs (including
omniORB2 [16]), object invocation on an object
in the same address space (called “collocated
object™ is optimized to be a virtual function call.
e Communication path for data reflection
between reflective memories.

Since the ORB provides a communication infra-
structute, one can replace every communication
path (including data reflection between reflec- tive
memories) in the implementation of RT- CRM by
the ORB GIOP/IOP path. While the ORB
GIOP/IIOP provides reliable communication, it
incurs overhead at both the GIOP/ IIOP layer and
TCP layer which GIOP/IIOP is based on. From
our experimental results, in order to achieve
performance similar to that of MidART but under
CReMeS, we found that we need to use a
separate data channel for data reflection between
two reflective memories which does not make use
of the ORB GIOP/ IIOP path. To this end, we
make use of a separate UDP channel for this
path. It should be pointed out that we employ the
ORB GIOP/IIOP for setting up a RT-CRM
service since a reliable communication path is
desirable in this case. This approach of adopting
separate communica- tion paths in CORBA
environments is also seen in CORBA audio/video
service specific- ation [14]. There, for the
configuration and con trol of streams, it uses the
GIOP/TIOP of the ORB. Once the streams are
configured for an audio/video service, a different
communication channel, such as UDP, is used for
data stream transmission. However, there exists a
trade-off between gaining performance by adoption
of a separate UDP channel and losing reliability
due to not using the ORB IIOP.

In order to achieve the third design goal, the
design consideration that we faced can be
described as follows. In CORBA environments,
the location of the target CORBA object is
supposed to be transparent to a client. A client
usually contacts a naming server and obtains the
object references to the target CORBA object.
How can we achieve location transparency of the

RIO if the (target) CORBA object is located in
the same address space as the client? Our
solution to this conundrum is to place the (target)
RIO in the (dynamic) library to be linked with
the application. When the library is initialized, the
servant of the RIO is instantiated inside the
library, registered into the ORB, and the object
reference to the CORBA object is created and
registered into a naming server. The library to be
linked with the application at compile-time has
information about the servant of RIO, but the
location information is hidden from the applica-
tion. An application is given the IDL of the
interface at compile-time (and also the library to
be linked), and then it contacts the naming server
at run-time and obtains the object reference of the
CORBA object. One copy of RIO is created for
each application process and registered with a
unique name. The uniqueness of the name is
achieved by using process identifier as a part of
the name. Thus, applications using CReMeS will
have the same usage semantics that typical
CORBA applications do.

4.2 Components of CReMeS

CReMeS is composed of three basic modules:
the RT-CRM Server, a Library and the RT-CRM
Service Coordinator, The RT-CRM Server is
responsible for managing reflective memories,
scheduling messages and dispatching them to the
other RT-CRM Servers. The structure of the
RT-CRM Server contains a scheduler, a
dispatcher, and an admission control module. The
scheduler employs dual priority[2] user-level
scheduling scheme in order to integrate non
real-time data as well as real-time data by
providing fair bandwidth for non real-time data in
such a way that real-time communication is not
affected. The detailed str- uctures of scheduler,
dispatcher, and admission control are the same as
those in MidART (for details, the readers shou-
1d refer to [6]). The RT-CRM Server exposes two
CORBA objects, “Lib_Comm” and “CRM_Comm”.
Through the interface of “Lib_Comm” CORBA
object, the Iibrary can deliver setup messages to

1681

www.dbpia.co.kr

5541 82=Ex] '00-10 Vol.25 No.10B

the RT-CRM Server. “CRM_Comm” CORBA
object provides an interface to the RT-CRM
Server through which the other RT-CRM Servers
can deliver setup messages when necessary, The
RT-CRM server runs as a process in a node, one

copy per node.
The library supports mapping to RT-CRM for
applications (producers or consumers). An

important component of the library is the servant
of RIQ discussed in the previous subsection. The
library has the necessary support to allow RIO to
setup the shared memory area between an
application and the RT-CRM Server. Also, the
library is responsi- ble for locating and calling
the interface of the CORBA object “Lib_Comm”
that allows the transfer of data between an
application and the RT-CRM Server.

RT-CRM Service Coordinator provides a set of
administrative services such as registration, and
location of RT-CRM services for the entire
system. Its functionality and structure are basically
the same as those of the MidART’s Global
Server. It is implemented as a single process
throughout the entire system, and exposes one
CORBA object (“‘Glob_Comm”) to RT-CRM
Servers, This object is used by the RT-CRM
RT-CRM Service
Coordinator for administration (such as registration
and location) of RT-CRM services.

Server to request the

4.3 CReMeS Communication Structure
In CReMeS, three different kinds of
communication paths are supported.

1. A path to setup a RT-CRM service: All
communications for setup pass through the
ORB GIOP/IIOP path. The three modules (the
library, the RT-CRM Server and the RT-CRM
Coordinator) use this communicati- on path to
set up a RT-CRM service.

2. A path for data strcam communication between
an application (producer or consumer) and the
associated reflective memory (in the same
node): Producers write to their reflective
memory through the shared memory mechan-
ism, Similarly, making use of the shared

1682

memory mechanism, consumers read from the
reflective memories in the RT-CRM Server in
the consumer’s node.

3. A path for data stream communication between
producer’s reflective memory and consumer’s
reflective memory: Data streams written into
the reflective memory are scheduled and
dispatched by the scheduler and dispatcher
within the RT-CRM Server, and are copied ot
“reflected” into the reflective memory in the
RT-CRM Server in the consumer nodes
through a UDP channel (or the ORB GIOP/
IIOP path).

V. Experiments and Performance '
Evaluation

We have done extensive experimentation to
evaluate the real-time properties of CReMeS and
its ability to integrate real-time and non-real-time
tasks. This section presents some of these results
and compares the performance of CReMeS to
TAQ’s Real-Time Event Service [7]. We begin
with an overview of the experimental setup and a
description of the metrics used in the evaluation,
and then tum to the performance results.

5.1 Experimental Hardware and
Software

All of the experiments were carried out on
Pentium II PCs with Windows NT 4.0 operating
systetns over 100BaseT Fast Ethemet. We have
isolated the network segment from the rest of the
LAN while running all the experiments. The two
PCs we used in the experiments have processor
speeds of 333MHz and 266MHz respectively. The
faster machine is equipped with 128MB of RAM
and the slower machine has 64MB of RAM.

We ran the experiments described in this
section on two real-time communication services,
CReMeS and the Real-Time Event Service v1.9
which is included in the distribution of TAO
vl.1.

The current implementation of CReMeS uses a
robust, high-performance ORB, omniORB2 v3.0.0,

www.dbpia.co.kr

-5/ CReMeS: A CORBA Compliant Reflective Memory based Real-fime Commumication Service

developed by AT&T (16). This ORB implements
the specification 2.3 of the Common Object
request Broker Architecture (CORBA). It supports
the C++ language binding, is fully multi-threaded
and comes with a COS Naming Service. We
evaluated the CReMeS architecture under its two
data communication mechanisms: onme using an
out-of-band channel (UDP) and the other using
ORB GIOP/TIOP.

TAO's Real-Time Event Service is an
object-oriented, real-time implementation of the
CORBA Event Service intended to decouple
suppliers and consumers and allow asynchrono- us
event delivery in a predictable manner. RT Event
Service runs on top of TAO, a real-time ORB
end system that provides end-to-end quality of
service guarantees [7].

5.2 Metrics and Experimental Setup

We evaluate the benefits of our real-time
communication service as well as TAO’s RT
Event Service by measuring their performance and
predictability as a function of load. For this
purpose, we measure the latency and jitter
introduced by the communication service under
different load conditions. In addition, we also
determine how well the communication service
scales with respect to the sizes of messages using
the service,

We used two simple applications that we
believe are indicative of the type or real-time
load that is likely to be present in a distributed
industrial control system [9]. The following is a
description of these applications:
® Producer of sensor data: This application
represents a data acquisition device, such as a
Remote Terminal Unit or Programmable Logic
Controller, which gathers data from sensors and at
regular intervals sends information to an operator
waorkstation.

e Consumer of sensor data: This application
represents an operator’s workstation that processes
the data arriving from the sensors and displays
the results on the screen. In all of our
expetiments, this does not perform any processing

of the data.

In our experiments we ran the above
applications on two nodes connected via an
isolated mnetwork. In one node, the producer
application can be configured o run 1 to N
threads, ecach thread representing a different
device. In the other node, the consumer applic-
ation creates 1 to N entities to receive the
messages. Each producer thread, P, to Py,
sends messages through the communication service
to its corresponding consumer entity, C,to Cy, in
the other node. In cur experime nts, we vary the
size of message, the produc- tion rate of
messages and the number of producer/consumer
pairs to evaluate the real- time properties of the
communication channel in question.

5.3 Latency and .Jitter Measurements

The end-toend latency is an important
performance measure for any real-time commu-
nication service. High latency overheads intro-
duced by the communication service have a
negative impact in meeting deadlines. However,
high variance in the latency has a more
detrimental effect for real-time applications that
require end-to-end predictability, With this in
mind, this experiment is designed to measure the
latency and variance in the latency of our
communication service. For this purpose, we
configured the expetimental setup described in the
previous section in the following manner:

The producer application creates » threads for
each run. Producer thread P, sends a message
to its corresponding consumer C, every 50 msec
and it is assigned the highest priority. The other
producers, P, to P,, send a message to their
comresponding consumers, ¢, to C,, every 100
msec and are assigned a lower priority than 7, .

Both application programs first create their
application threads and set up the necessary
associations between producer and consumer by
contacting the communication service. All threads
block on a signal until all of the associations
between producers and consumer have been

1683

www.dbpia.co.kr

PR 818 =FA] °00-10 Vol.25 No.10B

accepted and established by the communication
service. The highest priority thread, F,, is
responsible for releasing all other threads. Once
the signal to run is given, threads are dispatched
according to their priority and the communication
service is respomsible for the scheduling of
messages between the two nodes.

In this experiment, each producer of data
includes in its message a timestamp. Upon
receiving the message, a consumer returns this
timestamp to producer via a separate UDP
channel in order to determine the round ftrip
latency of each message. At the end of the
experiment the average, maximum and minimum
latency is calculated. The jier is determined by
calculating the standard deviation of the latency
for a particular run. In each run the highest
priority producer sends 4000 messages and the
lower priotity producers send 2000 messages. We
vary the load in the experimental set up by
increasing the number of low priority
producer/consumer pairs from O to 50 and the
size of the messages from 1KB to 8KB. Each
messages is a sequence of values of type
CORBA::Octet.

Figures 4 and 6 show the average latency
produced by the high priotity producer/ consumer
pair for each of the communication services
evaluated (CReMeS using the out band channel,
CReMeS-ORB using omniORB2 and TAO
RT-Event Service) for message sizes of 1KB and
8KB respectively. The jitter results forthe high
priority producer/fconsumer pair with 8KB
messages for all the communications services are
shown in Figure 8. Due to space limitations, we

4
.‘ ———C R ad KA
- W -TAD EEAKE

—h —CRaMIIOARIKE

do not present the jitter results for messages of
size 1KB. However, it is important to note that
the jitter observed for all three communications
services under all load conditions is less than 0.2
msec for the high priority thread and less than 1
msec for the low priority threads.

——C Rl IR

- W TAG KGR

" ERAMAORE KB

e i i gy i -tk fprm e whh A e

0 B 10 0 a 40 50
Number of fow priority threads

Fig. 5 Latency for High Priority thread, 1KB

TR ——

- W-TAG RCAKE

P T TR

RTT Latancy {mesec}
e « B B oa m o N m @
[]

L

]

o 5 10 20 0 40 (2]
Nymbar of low priority thread

Fig. 6 Latency for High Priority thread, 8KB

[-
.‘ = CHaMa S AKB

[
I« maTAD RO4KE -

—h —ER4MsE-ORAB-IKE .t
ST E

LI T

=
L
Ay

RTT Latency {(maech
\
A

e

1 L] 10 25 30 40 (1]
Number of low priority threada

Fig. 4 Latency for Low Priority thread, 1KB

1684

1 8 10 20 an 40 L1
Number of low priority thréwds

Fig. 7 Latency for Low Priority thread, 8KB

Figures 5 and 7 show the average latency
produced by one of the low priority producer/
consumer pairs for each of the communication
services for message sizes of 1KB and 8KB

www.dbpia.co.kr

%/ CReMeS: A CORBA Compliant Reflective Memory based Real-time Communication Service

respectively, The jitter results for low priority

thread with 8KB size messages are shown in

Figure 9. Overall, CReMeS performed better than

the rest of the services tested:

® CReMeS has a lower latency, under most load
conditions, for both the high priority and the
low priority producer/ consumer paits than the
other services.

® Perhaps, more importantly the variance in
latency for CReMeS is quite low and remains
stable as the load increases.

As Figure 5 shows, for CReMeS, latency
values for the high priority producer range from
0.88 msec with no low prority producers to 0.99
msec (a2 12% increase) with 50 low priority
producers for 1KB. It ranges from 1.8 to 2.6
msecs (a 42% increase)
for messages of size 8KB.

@ For all load conditions the jitter observed for
the high priority thread when using CReMeS is
less than the one observed using the RT-Event
Service and similar to CReMeS-ORB. Figure 8
shows that jitter for the the high priority
producer/consumer pair ranges from 0.025 to
0.3 msec for 8KB messages.

TADEC
CAsMek-OAR
CRaeB

Nurmbar of tow priorhy Bhreada L

Fig. 8 Jitter for High Priority thread, 8KB

CReMas-ORS
TAo €0
CReMaa

“w
Hurmbar of low priority threads "

Fig. 9 litter for Low Priority thread, S8KB

® The jitter for the low priority producer/ consumer
pair is higher than the one recorded for the high
priority pair. However, as Figure 9 shows, the
jitter variations for 8KB messages for the low
priority pair are smaller for CReMeS than the
ones produced by other services.

The low variation in jitter for both high priori-
ty and low priority producer/consumers pairs
observed with CReMeS for different loads is an
indication of the high level of predictabil- ity and
scalability that CReMeS is capable of providing.
A predictable and scalable service is useful to an
application designer, since it allows him/her to
determine a realistic bound for the worst case
execution time incurred by the communication
service. Figure 10 and Figure 11 clearly illustrate
the above point,

Figure 10 shows a wace of the latency
measurements taken for the high ptiority producer/
consumer pair when 40 low priority producers are
active and sending messages of 8KB. Figure 11
shows a similar trace for the same load, but
instead of using CReMeS as the communication
service TAO’s RT-Event Channel is used.

ATT Latency
[resac)

0 800 1000 1500 2000 2800 3bo0 3500 4000
Sampie

Fig. 10 Latency for RT-Event Service

-

S N oe e ® O

RTT Latency {msac)

0 500 1000 1500 2000 2500 3000 3500 4000
Sampis

Fig. 11 Latency trace CREMeS

Figure 12 presents the average latency for the
high priority thread with 40 low priority threads
for each communication as a function of the size
of the message. Similary, in Figure 13 the

1685

www.dbpia.co.kr

FZ2AH =EA] "00-10 Vol.25 No.10B

average latency for one of the 40 low priority
threads for the same load, 40 threads, is shown
for the same messages sizes. Clearly, CReMeS is
the only commmmication service that scales, in
tertns of message size, for both high and low
priority producers.

Turning to the specifics of the performance of
the other threads, TAO’s RT Event Service results
indicate that this service is capable of providing
predictable performance only for small messages
or a small number of producer/consumer pairs,
Figure 4 shows that the latency for the high
priority producer increases 20%, from 1.9 to 2.3
msec, for 1KB size messages.

An increase in latency of 93%, from 3.1 msec
to 6.1 msec, is observed in Figure 6 for the high
priority producer/ consumer pair with 8KB
messages as the number of low priority producers
increases from 0 to 50. The percentage of
increase in latency for both messages sizes is
higher than the increase recorded for both
CReMeS and CReMeS-ORB. Similarly, the
latency for the low priority producer shows a
similar increase of 17% and 128% for 1KB and
8KB message sizes respectively.

e s e e e

Sixe of messags (Bytas)

Fig. 12 Latency for Low Priority thread

Al +
Stze of masangs (Rytus)

Fig. 13 Latency for High Priority thread

1686

The jitter results for the RT Event Service also
show a similar trend, however the increase is
more pronounced for the high priority producer/
consumer pair, as shown in Figure 8. The jitter
for the low priority producer/ consumer pair,
shown in Figure 9, increases considerably once
the mumber of low priority producer/consumer
pairs is greater than 10, but remains constant,
ranging from 1.8 msec to 2 msec from then on. |
These results indicate that TAO RT Event
Service scales poorly on our test platform.
However, our experimental results show that the
RT Event Service performance is acceptable when
the size of the message is low and the amount of
traffic passing through the event channel is
moderate. \

CReMeS-ORB provides similar latency and
jitter as CReMeS for the high priority producer/
consumer pair as CReMeS and similar to TAO’s
RT Event Channel for the low priority pair. The
results indicate that CReMeS -ORB consistently
provides lower latency than the RT Event
Channel for most of the loads evaluated, as
shown in Figures 4,56 and 7. However, the
results presented in Figure 9, indicate that this
communication service introduces more jitter for
the low priority producer/ consumer than the other
two service for most of the load conditions, One
possible reason for this is that CReMeS-ORB uscs
the two-way synchronous request, instcad of the
one-way operations used by RT Event Service. As
with the RT Event Service, this variation in jitter
once the load increases does not bode well for
systems that require predictable QoS.

VI. Conclusions and Related Work

In this paper, we have described our experience
with the design, implementation, and evaluation of
CReMeS, a CORBA compliant communication
service based on the concept of a Real-Time
Channel-based Reflective Memory abstraction.
CReMeS was designed as an alternative communi-
cation mechanism to the Event Service in order
to provide adequate end-to-end QoS.

www.dbpia.co.kr

=& /| CReMeS: A CORBA Compliant Reflective Memory based Real-time Compmmication Service

We have designed and implemented this service
and have tested our implementation under various
load conditions. Our experimental results demon-
stratc that our architecture can achieve better
petformance (measured by latency), predictability
(measured by jitter) and scalability (measured in
terms of number of clients or size of messages
handled) that a real-time implementation of the
CORBA Event Service when an out-band-channel
is employed. This results are important for applic-
ations that required asynchronous communication
of large size data. It is to be noted that these
results were obtained even though CReMeS was
implemented on top of an ORB which has not
been optimized for real-time applications.

We designed a variation of CReMeS to use the
ORB as the communication channel for the
reflective memories, instead of UDP. Qur results
indicate that CReMeS-ORB consistently provides
lower latency than the RT Event Service. We
plan to conduct further experiments and modifi-
cations in this architecture to improve its perfor-
mance. For some applications this variation may
be desirable since it enhances the reliability of
the communication because of ORBs use of TCP.
As part of our future work, we will focus on the
dispatching mechanism for the RT-CRM Server
module. Currently, CReMeS employs a single
dispatching thread. In [22], we have shown that a
single dispatcher thread can minimize priority
inversion, enable priority tracking and helps in
dealing with limited operating system priority
levels. However, this mechanism works well when
the sending thread is not blocked after passing a
message to the network layer. This is not the
case in our current implementation of CReMeS
-ORB, which may account for the difference in
performance between CReMeS-ORB and the RT
Event Service under heavy load conditions. One
of future direction is to include a multi-threaded
digpatching mechanism in CReMeS-ORB that
works in unison with our current implementation
of a dual priority user level scheduler.

We would like to conclude the paper with a
discussion of some related work. In distributed

real-time application environments, several research
efforts to design and implement communication
subsystem (middleware) have been reported.
ARMADA [1] is a middleware supporting fault-
tolerance and end-to-end guarantee for embedded
real-time distributed applications, but unlike
CReMeS, is not constructed om a standard
interface. Rajkumar et.al [18] propose Real-Time
publisher/subscriber model. This model is similar
to event service and the RT-CRM communication
paradigm wused in CReMeS in that they all
provide anonymous and group communication. But
one key difference between the RT-CRM
comrnunication paradigm and many of the current
publisher-subscriber commumications models is that
RT-CRM effectively achieves the decoupling of
the writer/publisher’s quality of service (QoS)
characteristics from the reader/subscriber’s QoS
requirement, This decoupling allows much more
flexibility in constructing distributed and/or
concurrent real-time applications. What this means
is that RT-CRM is not simply a multicast or
unicast data transport protocol. It is not restricted
to transmit the data to the receiversfreaders
immediately after the data is made available by a
writer. In contrast, it provides application
designers the facility to specify how and when
the data should be sent according to the
application’s specific needs.

Recently, OMG adopted a Notification Service
[15] which extends the COS Event Service by
adding event filtering, and event delivery QoS to
event service functionalities, However, this Notifi-
cation Service will have the same limitation as
COS Event Service since it employs the same
event channel architecture as COS Event Service
does.

In [8], TMOSM (TMO Support Middleware) is
developed as a TMO(Time-triggered Message-
triggered Object) execution engine in CORBA
environments, TMOSM is adapted from original
TMOQ execution engine to be used in CORBA
environments just as our CReMeS is adapted from
original MidART. Enabling or enforcing QoS
capabilities for CORBA to make CORBA

1687

www.dbpia.co.kr

548 =24 '00-10 Vol.25 No.10B

adaptable for QoS required applications has been
vigorously pursued by many researchers. DARPA
Quorum program [3] and associated projects
[5,24] are representatives
activities. Quorum program tries to build flexible
and adaptive real-time distributed object middle-
ware for mission-ctitical systems. QoS require-
ments considered in this program include mission-
critical attributes such as constraints, dependability,
and some security attributes as well as perfor-
mance measure such as bandwidth, latency, and
jitter. We believe that our work will contribute to
the goals of this program.

of these research

References

[1] T. Abdelzaher, and et. al, “ARMADA
Middleware and Communication Services,”
The International Journal on Time-Critical
Computing Systems, vol. 16, no. 2/3, pp.
127-153, 1999, Kluwer Academic Publishers.

[2] R. Davis and A. Wellings, “Dual Priority
Scheduling,” Proc. of 16th IEEE Real-Time
Systems Symposium, Dec., 1995,

[3] DARPA;1999, “The Quorum Program”, http;/
www.darpa.milfito/research/quorumy/index.html

[4] P. Felber, B. Garbinato, and R. Guerraoui,
“The design of a CORBA group communi-
cation service,” of the 15th IEEE
Symposium on Reliable and Distributed
Systems (SRDS’'96), Canada, Oct., 1996.

(51 W. Feng, U. Syyid, and J.S. Liu, “Providing
for an Open, Real-time CORBA,” Proc. of the
Workshop on Middleware for Real-time
systems and Services , San Francisco, CA,,
1997.

[6] O. Gonzalez, C. Shen, “Implementation and
Performance of MidART". Proc. of IEEE
Work-shop on Middleware for Distributed
Real-Time Systems and Services, San
Francisco, CA., Dec., 1997,

[71 T. Harrison, L. Levine and D. C. Schmidt,
“The Design and Performance of a Real-time
CORBA Event Service,” Proc. of OOPSLA
'97, ACM, Atlanta, GA, Oct., 1997,

Proc.

1688

(8]

9]

[10]

[11]

[12]

[13]

(14]

[15]

(16]

[17]

(18]

K.H. Kim, M. Ishida, and J. Liu, “An Efficient
Middleware Architecture Supporting Time-
Triggered Message-Triggered Objects and an
NT-based Implementation,” Proc. of IEEE CS
Int'l Symp. On Object-Oriented Real-time
distributed Computing, 1999, |
K. Ramamritham, C. Shen, O. Gonzalez, S.
Sen and S. Shirgurkar, “Using Windows NT
for Real-Time Applications: Expetimental
Observations and Recommendations,” Proc. of
4th IEEE Real-Time
Applications, Denver, Colorado, June, 1998.
Object Management Group, The Common
Object Request Broker: Architecture and
Specifica tion, OMG Document 99-10 ,
Object Management Group, CORBAservices:
Common Object Services Specification, OMG
Document 98-12.

Object Management Group, CORB Messaging
Specification, OMG TC Document orbos/
98-05-05

Object Management Group, Real-Time
CORBA Joint Revised Submission, OMG
Document ptc/99-05-03.

Object Management Group, Control and
management of Audio/Video Streams, OMG
RFP Submission, OMG TC Document telcony
97-05-07.

Object Management Group, CORBA Notifi-
cation Service, OMG TC Document telcony
99-07-01.

Technology and

omniQORB2, httpfwww.uk.research.att.comy
omniORB,
C. O'Ryan, Douglas C. Schmidt, D. Leving,

and R. Noseworthy, “Applying a Real-time
CORBA Event Service to Large-scale
Distributed Interactive Simulation,” Proc. of
5th International Workshop on Object-oriented
Real-Time Dependable Systems (WORDS *99),
IEEE, Monterey, CA., Nov., 1999,

R. Rajkumar, M. Gagliardi, and L. Sha, “The
Real-Time Publisher/Subscriber Interprocess
Communication Model for Distributed Real-
Time Systems: Design and Implementation,”
Proc. of Ist IEEE Real-Time Technology and

www.dbpia.co.kr

+% | CReMeS: A CORBA Compliant Reflective Memory based Real-time Communication Service

(19]

[20)

[21]

[22]

(23]

[24]

[25]

Applicat- ion Symposium, May, 1995.

D. C. Schmidt, D. Levine, and S. Mungee,
“The Design of the TAO Real-Time Object
Request Broker,” Computer Communications
Special Issue on Building Quality of Service
into Distributed Systems, Elsevier Science,
Volume 21, No. 4, April, 1998,

D. C. Schmidt, S. Mungee, S. Flores-Gaitan,
and A. Gokhale, “Software Architectures for
Reducing Priority Inversion and Non-
determinism in Real-tim¢ Object Request
Brokers,” to appear, The International Journal
on Time-Critical Computing Systems, 2000,
Kluwer Academic Publishers.

C. Shen and I. Mizunuma, “RT-CRM: Real
-Time Channel-based Reflective Memory,”
Proc. of 3rd IEEE Real-Time Technology and
Applica- tions Symposium, Montreal, Canada,
June, 1997.

C. Shen, O. Gonzalez, K. Ramamritham and I
Mizunuma, “User Level Scheduling of
Communicating Real-Time Tasks,” Pro. of 5th
IEEE Real-Time Technology and Applications
Symposium, Vancouver, Canada, June, 1999,

V. Wolfe, L. Dipippo, R. Ginis, M. Squadtito,
S. Wohlever, 1. Zykh and R.Johnston,
“Expressing and Enforcing Timing Constraints
on a Dynamic Real-Time CORBA System,”
The International Journal on Time-Critical
Computing Systems, 1999, Kluwer Academic
Publishers.

JLA. Zinky, D.E. bakken, and R. Schantz,
“Architectural Support for Quality of Service
for CORBA Objects,” Theory and Practice for
Object Systems, Vol. 3, no.1, 1997.

MidART User Guide, hip;//www.merl.com/
projects/midari/index. html

A 4 Elj(Sun-Tae Chung) A4

198313 24 : A-Soist=
A EA(FHAD

1985\ 124 : vl= w] A7k
g det) Z7] 2
Ztel-get At

19901 124 : vl w]A|ZE
wieta(tops]) 7] 9
ZFelFsta) At

1991 3 ~wA) : AN ARFANHA-FEY

e

<F@A ol AAZE Axd, FAF AxE], Qe

E Aag, tAE Ao

1689

www.dbpia.co.kr

