DEri=

== 01-26-6A-14 B2] 016 Vol.26 No.6A

ZIA=Z 7] Aul2 LSy

A = A g

Service Creation Environment: A Framework-based Approach

Sehyeong Cho* Regular Member

2 o

Aew Auls AR AFUE e AL e BT Aula Ak Xk s e
M A2 AMpls S]] UYEE (SIB) 9] =512 413 AEsb) A% Algle] ottt g} Wl vm
2 FR4F A7t o1 siBe 7]‘—'*% %-a‘i—?ﬂ.‘zi ATY 5 A=F WA HrlEe 2 SIBE o|4si
o] 7led Ejehe A2 Aulag AFshe AL AY Az A BAolth & =Eolde AA =H¢
51-4 ez aule AEHAE ’éﬁl@—iﬁi *Hi—r SIBS] 7)s-& AlHle /o] &1 %‘-7}‘% AF

& Hglom o] 7ide] ded 9% 7 Asle} g 275 sl gick

ABSTRACT

While service creation environment was intended for component-based, re-usable development environment, the
development of a new SIB is still considered a task only for specialized engineers. Even if we had the capability
of executing the new SIB in the network platform, it is not easy to modify the SCE platform so that we can
design and create a new service logic program using the new SIB. This paper describes a framework-based
approach to service creation environment, This approach enables the evolution of a service creation environment,
by being able to add support for new SIBs into the service creation platform, without any modifications to the
SCE platform. We also discuss automated tools used for creation of new SIBs.

I. Introduction

A servicc-independent building block, or a SIB,
is an abstraction of certain network capability for
network!, SIBs were
originally created as a tool for defining the

use in an intelligent

capability of a new network, but also can be used
as reusable service components when designing
new services”. In the latter case, a SIB is the
basic unit of service logic specification and
implementation. In the past, the service- indepen-
dent building blocks were hard-wired in a service
creation environment. Therefore it was not possible

for ordinary SCE users to modify the service
creation environment to incorporate new SIBs.
The SCE developers, in order to add a new SIB
to the SCE, should modify the code for graphic-
editing capability of a new SIB, simulation
capability of the SIB, code-generation capability
of the SIB, and so on and so forth. The code for
these are normally grouped by functions, not by
SIBs (Figurel). This forces the SCE developer to
modify the whole source code for SCE, resulting
in a completely new implementation., From a
software engineering point of view, it is a bad
practice because it fails to localize the potential

* 2] Eka ARlA B EA R (shcho@mijv.ac.kr)
EEHE K01025-0118, A=} : 200191918

¥ £ ATE AR Adar d7AYdAR sgEgdauc

1034

www.dbpia.co.kr

=T/ 2N 7] Al R

instability, but introduces it throughout the whole
system.

In this paper, we propose an architecture for
SIBs in a framework-based SCE, and introduce
the tools for creating SIB components to be used
in the evolving SCE. Using SCE framework, it is
easier to add or delete SIB’s to the SCE.

Section 2 introduces the concept of framework,
and surveys related work. Section 3 discusses a
framework-based SCE architecture. It describes in
detail how the framework is structured and how
SIB applications are developed. Section 4 discusses
the implementation issues. Finally, section 5
discusses the implication and future work.

I. SCE and Framework Technology

Object-oriented paradigm provides a sound basis
for reusing software. This is so because objects
are greater in cohesion, and gives out simpler
ways of interaction with the rest of the system
(ie., lower coupling). While objects are reused
“individually,” frameworks”™ provide an organized
environment for running a collection of objects. It
also provides tools that let you construct
components that are willing to play by the
framework’s rules. When we use simply objects,
we need to modify the main thread of control for
using the new object. On the other hand, when
we use framework, the framework - which is a
sort of 'main program’ - doesn’t need to change
when we add new objects or components, just
like we add a new plug-in for a Web browser.
Therefore frameworks provide a simpler and safer
way of incorporating new components into exiting
software.

It would be desirable to have an architecture
for service creation environment based on the
concept of framework, and also automated tools
to help developing SIB application programs.
Frameworks have a structure for easier installation
and removal of new components. In a framework-
base service creation environment, the set of
functions that supports a SIB can become a
component. All information about the SIB(i.e., the

graphic editor
: A code for SIB 1

simulator . code for SIB 2

A code for SIB 3

- (P

Fig. 1 Conventional SCE: the code for a single SIB is
scattered throughout the system

data part), and the service specification operation,
code generation operation, etc. (i.c., the operations
part) constitute an application program (compo-
nent) for a SIB support. When it is necessary to
support new SIB capability, we do not re-code
the SCE, but we simply register a new
component, which is developed by using
automated tools independent of the SCE
framework. Once the SIB support component is
registered, all SIB-dependent operations are
performed by the SIB support component, while
SIB-independent function are performed in the
framework, which includes relations among SIB
instances, event processing, and coordination.
When for any reason a SIB is no longer used in
the SCE, we simply de-register the SIB, and the
service creation environment no longer supports
the deleted SIB.

Recent work in TOSCA (TINA Open Service
Creation Architecture) adopted framework approach
[4,11]. In TOSCA, service components are created
in three distinct phases: specification, design, and
coding. In TOSCA, component API and behavior
are distinguished, and API is defined by IDL, or
ODL, and behavior is defined by using C++
language. TOSCA is aimed at TINA
architecture™, and the service which are developed
in TOSCA is framework-based. The usage of
framework in TOSCA differs from our case: in
TOSCA the service software is framework based,
in our case, the tool itself is framework-based.

[51

1035

www.dbpia.co.kr

-ZEA 33 =F2) '01-6 Vol.26 No.6A

STBA, SIBA,

SIBA factory
(automation tool)

Fig. 2 OpenSCI framework and SIBA component

Outside the telecommunications world, there is
OpenDoc'®, a pioneering work in object
framework, although not much used currently.
OpenDoc is based on SOM, or System Object
Model, which is OpenDoc’s own object bus.
Microsoft’s OLE(Object Linking and Embedding)
is a framework based on Common Object Model,
or COM™, In these frameworks, development of
a component is carried out in two parts, the API
and the behavior. The API is defined by IDL,
and the behavior is defined by using the
templates, or skeleton, generated by the IDL
compiler,

The development of SIB presented in this paper
also consists of specification phase and coding
phase. In the specification phase, we use
form-based GUI to define he SIB APIL In the
coding phase, C++ code is automatically generated
based on the SIB specification. The generated
code becomes the basis for further enhancement
by the programmer. By using SIB automation
tools, SIBs can easily be developed to be
included in the service creation environment,
saving a great deal of time.

M. OpenSCl Architecture

OpenSCI(OPen ENvironment for Service
Component Integration) is based on a framework
architecture, where adding new components or
deleting an old, unused components is easy. The
functions provided in OpenSCI include SIB-based

1036

editing of global service logic, storage, SLP code
generation, SIB registration and deregistration. In
order to provide these features, OpenSCI
framework comprises the OpenSCI container and
OpenSCI components. SIB-specific features and
information are contained in a SIB component
called a SIB agent, or a SIBA for short.
GSL-related storage, editing and code generation
features are included in the container. Figure 3

shows the class hierarchy.
ComponenCopy
r CulFdt [ermnlﬂm
ChnponeniDelete:
CorponentMove
— Contziner —| UserFirvenst
B mm{mmﬂm

|- SpCakGen

%m_[:w

Fig. 3 Constituent Classes of OpenSCI

OpenSCI components comprise SIB components
and link components. Link components are objects
that are used to chain the SIBs together to form
a service logic. The components, technically
speaking, are independent application programs
and do not alter OpenSCI framework in any
ways. Components can be added or deleted at
will. One who wishes to create a new component
will do so by subclassing the 'component’ in the
class hierarchy shown in Figure 3. Currently
OpenSCI is targeted to CS-2 SIB’s, and tested on
a CORBA-based IN CS-2[1] simulated environ-
ment. Using OpenSCI, one can create a SIB-
based service specification and can automatically
produce object-oriented Service Logic Programs.

1. The Structure of a SIB Agent
A SIBA(SIB Agent) is the application program
for a specific SIB class. A SIBA consists of

www.dbpia.co.kr

/=R 3 FPEe) Al e

attributes, operations, and events. Attributes and
operations which are publicized to the OpenSCI
framework are used by the framework. Those that
are not publicized are used inside the SIBA.
SIBA attributes include visual attributes that are
used by the graphical user interface, logical input
and output, and the IPC") parameters. Figure 4
illustrates the operations of a SIBA.

SIB Data management operation initializes the
SIB instance attributes, assigns new values, or
manages the storage for some atuributes. Visual
processing operation takes the responsibility of
visualizing SIB instances on the screen of the
service creation environment. SIB parameter
editing operation implements the GUI that
interacts with the user to assign appropriate values
for the SIB instance to behave the way it is
intended. SLP creation operation produces part of
the service logic that will be combined with the
rest of the code that is pertinent to the global
service logic and other SIB’s. The generated code
uses IDL(Interface Definition Language). OpenSCI
framework itself is the container and has the
responsibility of coordinating the code generation
for the global service logic. It traverses the
service logic graph, producing the overall control
structure, and indivisual SIBA’s (the componenets)
provide SIB-specific code generation when
requested by the framework. Figure 5 shows the
relation between the framework and the
components while doing the code generation.

SIB visual
processing
SIB registration
SIB storage

sib data
management

Event processing

X

| Access Management J

request cvcna result

[v

OpenSCI framework

Fig. 4 SIBA Operations

framework
SIBA
SLP creation SLP creation
=
ﬁ % SIBA
.".ﬁ. creation|
. Toad Operation

Fig. 5 Relation among SIBAs and framework in SLP
code generation

Event processing operation is a set of actions
that are. related to external events. SIB registration
operation is responsible for registering the SIBA
into the OpenSCI platform when adding new
SIBA, as well as for deregistration, when no
longer necessary. SIB storage operation serializes
and stores the SIB instance to or reads from
external storage. This is done when there is a
request from the storage coordinator inside the
framework. Like the code generation coordination,
the framework is responsible for storing the
global information, while SIBA storage operation
is responsible for the storage of the individual
SIB instance. Currently, SIBAs communicate with

the framework by using MicroSoft’s
COM(Common Object Model)"™.
client server

SIBA,
OpenSCI proxy fou SIBA,
SIBA,
Framework

proxy for SIBA,
SIBA

COM

olo

Fig. 6 How OpenSCI framewotk communicates with SIBAs

Inside the OpenSCI framework, opetrations are
performed using a client-server model. The
framework container is the client, and the SIBAs
are servers, The container forms proxy objects in
the client area and communicates directly with the

1037

www.dbpia.co.kr

=243 = E 4] 01-6 Vol.26 No.bA

proxy, not the SIBA., The proxy, in turn, uses
COM to communicate with the SIBAs, giving the
illusion that the client(framework) is directly
communicating with the server (SIBA).

2. SIB Automation Tool

The SIB Automation tool produces the
application program of which the structure is
shown in section 3.1, It also produces the
resource file that characterizes the graphical user
interface. The procedure for using the tool to
create a new SIBA is shown in Figure 7.

| In/Out parameter name, category, type |

'

| produce SIB App code in C++ l

Refine source code

Fig. 7 SIB development using the SIB Automation Tool

User
I
v
[user event processing operation |
v : v v
input Input Input Input
param IPC IPC param
processing processing processing | | processing
operation operation operation operation
Ty ¥ ¥
SIBA application Resource generator
Program generator
T |
SIBA Resource file

Fig. 8 Structure of the SIB Automation Tool

First, the user specifies the name of the new
SIB, and then defines the name of the SIB
parameters. When defining the [JO parameters and
IPC parameters, the user specifies whether it is a
service support data (SSD), call instance data

1038

(CID), or service instance data(SID). Also the
types of the data (string, integer, etc) are
specified, so that appropriate dialog is created and
memory is allocated, When all data are specified
by the SIB developer, SIB automation tool creates
the SIBA application program and the resource
that characterizes the GUIL The SIB developer
also can modify the generated source code for
additional features. After compiling the program
together with the resource file, it is registered to
the OpenSCI framework, Figure 8 shows the
structure of the SIB automation tool.

The SIB application program created using the
tool inherits SIBA class and ComHandler class
that are in the hierarchy of OpenSCI shown in
Figure 1. SIBA class is the class that implements
the basic SIB structure template and all common
operations. ComHander is the class for communi-
cation between SIBA and the framework(ie., the
container). In terms of implementation, Com
Handler is implemented by inheriting Microsoft
COleControl class. All SIBs are defined by
subclassing SIBA and ComHandler.

V. Implementation

Current implementation of OpenSCI is MS
Windows-based. Instead of implementing the
whole framework from scratch, we used
Microsoft’s ActiveX control and the container for
rapid implementation. Only the automation tools
are built from scratch,

A SIBA is created by using Microsoft’s Visual
C++ and the SIBA definition tool introduced in
the previous section. The MS Visual C++ ActiveX
Control wizard s used to create ActiveX control
programs and ActiveX control resource files. Using
ClassWizard, various properties are added, includ-
ing SIBA name, SIB editing method signature, and
user Events. The SIB application program is
inserted into the ActiveX control program. The
control program is then refined as necessary. Also
the SIB application can be refined if desired. They
are then compiled and registered to the OpenSCI
framework. Technicaily, this is accomplished by

www.dbpia.co.kr

R/ 2992 7hike] Aujs g

using the Windows system registry.

Figure 9 shows the snapshot of defining an
input parameter ’Screen list name’ for Screen
SIB.

On the left side of Figure 9, Screen list name
will act as either an SSD or a CID, as this was
chosen, and the data value will be of type string.
The right side of the Figure shows the dialog for
defining an output IPC 'POI-Initiate’, for Initiate
Service Process SIB.

Figure 10 shows the SCE platform before and
after registration of a new SIB agent. The new
SIB inserted is Compare SIB, which compares
two strings and makes branches according to the
comparison result. The graphical icon in the
toolbar (rightmost one) is for the selection of
Compare SIB. The Global ‘service logic shown in
Figure 10 is part of a Video-On-Demand service,

Fig. 9 Input and Output Parameter definition using the
autoration tool

Fig. 10 SCE platform before (left) and after(right) regist-
ration of “Compare” SIBA. Note that a new
button has been created in the toolbar.

which consists of two service processes. The
VOD service created has been tested to run on a
CORBA-based IN CS-2 platform.

V. Conclusion

Object framework technology can be used to
build a flexible service creation environment. We
presented a framework structure for a service
creation envitonment, and demonstrated that an
SCE can be extended to support new SIBs
without complete overhaul of the SCE implement-
ation. We also intoduced an implementation of
such SCE and the automation tools for developing
new SIB capabilities that are to be included in
the existing SCE.

In OpenSCI, a SIB becomes a component, and
the component is an application that comprises
the SIB-specific data, service specification
operation, code generation operation, and so on.
By using SIB automation tools, a SIB in this
framework can easily be developed. This enables
fast evolution of service creation environment.

The implication is this. First, as we alluded to
above, it is easier to create a SCE that is more
robust, in terms of modifications and addition of
new SIBs. Second, SIBAs can even be executed
remotely, with slight modification (using Distribut-
ed COM). Finally, using this architecture, SIBAs
can be developed independent of the platform and
then integrated. This means a change in the value
chain of service creation: not only services are
developed by third parties, but service components
and service creation components can be developed
by third parties. Although the methodology has
been tested only in the IN CS-2 domain, it is
equally applicable to CS-3®l, TINA, or other
network API’s including Parlay [9] and JAIN
[10].

However, we only dealt with the framework-
based implementation of 'high-level SCE’, that is,
the GUI-based composition tool, but not the entire
service creation process, such as requirement
analysis, deployment and testing. In order to be
more effective, it is also desirable to incorporate

1039

www.dbpia.co.kr

=541 33 =-F] "01-6 Vol26 No.6A

tools for such processes in a tightly integrated
manner. This, at the moment, is left as a future
work,

(1

(2]

(3]

[4]

[5]

[6]

[7]

(8]

91

[10]

(11

1040

References

ITU-T Recommendation Q.1223: Global
Functional Plane for IN Capability Set 2,
ITU-T, Geneva, Mar. 1997,

Sehyeong Cho, “Service Creation Environment
- principles and practice,” Tutorial Notes, IEEE
Intellipent Network Workshop, Melbourne,
Australia, May 1996

Robert Orfali, Dan Harkey, Jeri Edwards, “The
Essential Distributed Objects Survival Guide”,
John Wiley & Sons, Inc., 1996,

TOSCA Deleverable 6. Service Creation: The
TOSCA Paradigm and Framework Approach,
August 1997,

TINA-C, Service Architecture, June 1997.
IBM, “OpenDoc programming Guide”, hitp://
doofus.ml.org/OpenDOC/html/guide/
Microsoft, “COM specification.” On-line
developer library, http://msdn microsoft.com/
library/default.asp?URL={library/books/inole/s1
0d8.htm

ITU-T Recommendation Q.1233: Global
Functional Plane for IN Capability Set 3,
ITU-T, Geneva, Mar. 1999

Parlay API Business Benifits White Paper,
version 1.0, June 1999, the Parlay Group

D. Tait, J. de Keijzer, and R. Goedman ,
“JAIN: A New Approach to Services in
Communication Networks,” IEEE Communi-
cations Magazine, Januvary 2000

R.O.Sinnott, “Frameworks: the future of formal
software development?,” Computer Standards
and Interfaces 19 (1998) pp.375-385

X M ¥ (Sehyeong Cho)

1981 24 : Agojg
AfEEa &

1983 24 : A-goidta
AAREA g} A}

199243 59 : slAuh]e}
Fdiel ua}
(A4t

<FHY Hop FBAlAM~, Bakaz], Q3RS

www.dbpia.co.kr

b

