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ABSTRACT

Blind equalization of transmission channel js important in communication areas and signal processing
applications because it does not need training sequence, nor does it require a priori channel information. The
linear prediction error method perhaps the most attractive in practice due to the insensitive to blind equalizer
length mismatch as well as for its simple adaptive filter implementation. Unfortunately, the previous one-step
prediction error method is known to be limited in arbitrary delay. Consequently, multistep prediction error method
has been suggested as a solution to the problem. In this paper, we induce the optimal delay, and propose the
multistep prediction-based adaptive blind equalizer using RLS- and LMS-type algorithm. Simulation results are
presented to demonstrate the proposed algorithm and to compare it with existing algorithms.

1. INTRODUCTION either periodically sent training sequences or blind

techniques exploiting higher order statistics (HOS).

Multipath propagation appears to be a typical Adaptive equalization using training sequence wastes

limitation in mobile digital communication where it the bandwidth efficiency but in blind equalization,

leads to severe inter- symbol interference (ISI). The no training is no needed and the equalizer is

classical techniques to overcome this problem use obtained only with the utilization of the received
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signal. Since the seminal work by Tong et al. the
problem of estimating the channel response of
multiple FIR channel driven by an unknown input
symbol has interested many researchers in the signal
processing areas and communication fields™"",

For the most part, algebraic and second-order
statistics (SOS) techniques have been proposed that
exploit the structural techniques (Hankel, Toeplitz
matrix, er al) of the single-input multiple-output
(SIMO) channel or data matrices. The information
on chamnel parameters or transmitted data is
typically recovered though subspace decomposition
of the received data matrix (deterministic method) or
that of the received data correlation matrix
(stochastic method), Although very appealing from
the conceptual and signal processing techniques
point of view, the use of the aforementioned
techniques in real world applications faces serious
challenges. Subspace-based techniques lay in the
fact that they relay on the existence of numerically
well-defined dimensions of the noise-free signal or
noise subspaces. Since these dimensions are
obviously closely related to the channel length,
subspace-based techniques are extremely sensitive to
channel order mismatch'®.

The prediction emror methods (PEM) offer an
alternative to the class of techniques above. PEM,
which were first introduced by Slock et al. and later
refined by Meraim et al. exploited the i.i.d. property
of the transmitted symbols and apply a linear
prediction error filter on the received data. The PEM
offers great practical advantages over most other
proposed techniques. First, channel estimation using
the PEM remains consistent in the presence of the
channel length mismatch, This property guarantees
the robustness of the technique with respect to the
difficult channel length estimation problem. Another
significant advantage of the PEM is that it lends
itself easily to a low-cost adaptive implementation
such as adaptive lattice filters. But the delay cannot
be controlled with existing one-step linear prediction
method B

In this paper, we propose a novel adaptive blind
equalizer algorithms based on multistep prediction
method. This paper makes two results. First, we

demonstrate that a multistep prediction method
which can be viewed as a certain generalization of
the previous PEM. Second, we detive an adaptive
algorithm for ZF blind equalization. Most notations
are standard: vectors and matrices are boldface small
and capital letters, the matrix transpose, the
Hermitian, and the Moore-Penrose pseudoinverse are
denoted by ()7, ()%, and ()*, respectively; I, is
the PxP identity matrix; E[] is the statistical
expectation,

This paper is organized as follows. In section I,
we present models for the channel and blind
equalizer, and we introduce the concepts of signal
vectors and matrices. In section I, we discuss
multistep prediction-based blind equalization with
flexible delay control and propose adaptive
algorithms based on least-squares method. In section
IV, we present simulation results comparing the
proposed method and existing algorithms. We
conclude our results in section V.

I. SYSTEM MODEL AND BLIND
ZF EQUALIZATION

1. Multichannel Communication Model
Let x($ be the continuous-time signal at the
output of a noisy communication channel

D= 35 WMt~ B+u?) m

where (k) denotes the transmitted symbol at time
kT, n(H denotes the continyous-time channel
impulse response, and o(¢) is additive noise. The
fractionally spaced discrete-time model can be
obtained either by oversampling or by the sensor
array at the receiver”, The oversampled single-input
single-output (SISO) model results SIMO model as
in Figure 1, The corresponding SIMO model is
described as follows

*AM= SIBRL =B+ ,(n).i=0,+,P=1 (2)

where P is the number of channel, and L is the
maximum order of the P channels.
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Fig. 1 A SIMO communication system model,

Let

x(m)=[xp(n)xp_(W]7T
h(n)=[h0(n)"'hp_1(n)]7: 3)
v(n)=[v(m)vp-r(m)]’

We represent x/{#) in a vector form as

x(n)=§‘;s(k)h(n—k)+ () @)

Stacking N received vectors samples into an
( NPx1)-vector, we can write a rmatrix equation as

Xy(n) = Hs(m)+ Vy(n) (&)

where H is a NPx(N+L) channel convolution
matrix, s(x) is (N+L)x1, Xy(n) and Vy(n) are

NPx] vectors,

s(m)=[s(m)s(n—L-N+2)]"

Xn(n)=I 2 () 2 (n=N+D17 6
T . ()]

Vil =[ v () o' (s=N+DI7

RO = B(IL=D -0

H= : . :
0 - RO

R(L—1)
We assume the following throughout in this

paper.

Al) The input sequence s(») is zero mean and
white with variance o2

A2) The additive noise o(#) is stationary with zero
mean and white with variance ..

A3) The sequences s(x) and »(n) are uncorelated.

A4) The matrix H has full rank, ie., the
subchannels 4,(#) have no common zeros to

satisfy the Bezout equation.
A3) The dimension of H obey NP>L+N.

2. Multichannel Blind ZF Equalization

718

The ith subchannel #(n) is equalizer by the
filter g{n), as shown in Figure 1. A ZF equalizer

whose subchannels are order L, is described by

_1 L1
58 hin=Bgb=on=D) ™
Above equation can be written in matrix form as
follows
& ! H=e g+1 ®

where ep,, is a (N+L)x] vector with a 1 as the
(D+1th element and zeros elsewhere”. A ZF
equalizer is proved in [3]-[5] and we consider
noise-free case. Using assumptions Al)-A3), we can

write the exact correlation matrix of Xy(n) as
R=H XyX¥1=c¢THH" ®
From (8), we induce the zero-delay equalizer

o K(0) 01R"

It

where H(0) is the first column of matrix H.
Considering that an arbitrary-delay blind equalizer, it
is proved in [5] that an equalizer g, with D-delay

can be obtained from g, as

gl=gl Ry R’ (10)

whete Rp=E Xy(n—D) X ¥n)]

. LS APPROACH TO MULTISTEP
PREDICTION AND BLIND
ADAPTIVE EQUALIZER

1. Multistep Prediction-Based Blind
Eaqualizer
A zero-delay ZF equalizer based on linear
prediction is proposed in [6]-[8]. We know that

gl= KO I — Pyl (12)

where — Py_, is Px P(N—1) prediction coefficient
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matrix. It is obtained by minimizing the prediction

error variance in [8] or using least-squares lattice

(LSL) algorithmm. And a D-step forward predictor

of order N produces an estimation of the received

signal x(») based on the N previous signal
xN(n—D)l“J.

(W= a, x(n—D)++ ayx(n—N-D+1) (13)

The D-step forward prediction error is given by

x(m)— %(n)
=[ Ip Opepn-ny —~Ap] Xyip(m)  (14)
= KD XN+D(”)

fD(n)

]

Using  well-known  orthogonality  principle
between prediction error and input sequences, it

comes from (5)

H Xy(n—D) f ¥m]
=E Hy sy(n—D) Xpip(n)] Kp

= HyE sy(n—D) s ;v{(n)] H g+n K, (15)
= Hyl 0o IN]HJ@+D K
=0

Hence, it produces

[ ONxD IN]HgH) Kl) =0
(16)
K § Hy.p=[ h(0)- R(D—1) 0~ 0]

then

SoN= K& Xup(m= "2 h(Dsn—p) (A7)

The D-delay blind equalizer method considered
here is based on the output of D- and (D+1)-step
prediction error filters. A D-delay ZF equalizer can
be obtained after acknowledging from (17)

for1(m) — fo(n)

=( Kpi— KD)HXg-wD(n) (18)
= 3 h(Dstn=1— 3 k()s(n—)
= r(D)s(n—D)

Therefore, the transmitted symbol can then be
extracted as follow

H
s(n—D)=”T”ug§—)”12—( fon(m= folw)  (19)

The predictor coefficients are selected such that
the mean square value of fp(n), ie., Ell fo(#)l%,
is minimized. Therefore, for any set of predictor
coefficients g, (1<k=N)

BE[ fp(n) f B(m)]

N
aa,,

=0, for 0<k<N (20)

Due to the linearity of the expectation and
differentiation operators we can interchange these
two operators and (20) can be written as

Al fo(mI*]
iarriale
E[{x(n)—“‘ﬁ“aivx(n—D—k-i-l}H

(a D (n-D~t+1) @1)
+{x(n)—g“a fx(n—D—-lH—l}
s aix(n—D—k+1)]

Therefore, from (20) and (21) we can write,
2 Re[( a f)”{ r(D+l—1)“ga fr(l—k)}]:O

= 7(D+1—1)— g"a ¥y (k—1)=0,1=1, N
(22)

We can rewrite above equation using matrix form
Ry ay = ryip (23)

where rysp=[ #(D) -« r(D+N—1D]7 and

ay=[ai - ajl’
Ry= E Xy(n) X8 1 (24)
r’§0) r(1) r(N—-1)
- 7 (1) r(0) - r(N-2)
AN A=) - (0)

where  7(i~)=E x(n+d x"(n+7]

To solve the prediction error filter coefficients
matrix in D-step predictor, it requires matrix inverse
calculation for Yule-Walker equation.

2. Proposed Method using Projection
Matrix

The D-delay equalizer g, in (11) can be

estimated by linear prediction. Consider the
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following LS method

ein) =x(n—D)~ p x(m)
eq41(n) = x(n=D-1)— p x(n—1)

e,”.N_l(n) ; x(n_D_N+1)_ ﬁNx(n‘"N”"].)
(25)

where p, is coefficients matrix for prediction at the
kth stage. Eq. (25) is rewritten with matrix form as

E(n) = Xy(n—D)— Py Xy(n) (26)

where E(n) is an PNx1 prediction error vector and
Py is a PNx PN projection matrix. The optimal
Py is obtained by minimizing as following cost

function.

7= tr{El E(n) E"(m]} 27N
Letting the derivative of (27) with respect to

projection matrix equal to zero as following

3
”a'IJLE:E[ —Xn(n—D) X ¥m+ (28)
Py Xy(n) X )]

So we get as

PyR— Rp =
N D 9 (29)
Py= R, R

Comparing (11) with (29) we get as following
equation.

Table 1. RLS algorithm for zero-delay blind equalizer.

Initialization the algorithm at time »=0(, set

Q(0) =8 Iny-p
Py (D) =0

For n=1,2,+ do the following
(1) First linear prediction computation,

Xn(n) = [ X 5, Xﬁ.ﬂ
_ A~ Ql(n—l) XMz(n)
Kin) = T T X0 () @u(n—1) Xz ()
e(n) = Xy ()= Py-1(n—1) Xy2(n)
Py_1(n) = Py_,(n—1)+ e(n) K {(n)
Qin) = A7 @ (n—-1) Kl(”)Xg,z Qi (n—1)

(2) Estimation of A(() in [10].
(3) Computation g, in (12).

gh=4gq Py (30)

It should be noted that the blind equalizer is
designed for transmitted signal recovery at a given
delay D. Thus, different delay can result in
difference performance. To get best delay choice,
[9] proposes the minimizing MSE is given by

MSE (D)=1— H(D) R* H(D) @31

where H(D) is (D+1)th block column of the
channel convolution matrix H, Hence, the optimum
delay can be found by

argmax , H' (D) R* H(D) (32

3. Adaptive Implementation

One advantage of the prediction approach is the
ability to develop computationally efficient adaptive
algorithm for estimating the blind equalizers,
Although the methods of [5] and [7] can be
implemented as adaptive manners, [5] requires the
sensitive  correlation matrix Moore- Penrose
pseudoinverse computations, whereas [7] may be
weak approach because equalizers of arbitrary delay
cannot be obtained. In this section, we propose the
adaptive algorithm for updating the multistep linear
prediction error filter coefficients.

Table 2. RLS algorithm for D-delay blind equalizer.

Initialization the algorithm at time »=10, set

Q0 = 8! Iny
Py(0) =0

For n=1,2, do following
(1) Projection matrix computation,

@G- X

Kl = T T X0 Q=1 Xn(m
E(n) Xy(n—=D)— Py(n—1) Xy(n)
Py(n) = Py(n—1)+ E(n) K #(n)

Q) = 27 @(n—1) Ky(n) X § @(n—1)

(2) Compuie the zero-delay blind equalizer g
(3) Computation gy in (30).
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To solve (30), we are required to compute the
first linear prediction in (12) and to estimate the
h(0). To estimate &(0), we use eigen-tracking
method in [10]. A zero-delay blind equalizer is
obtained in (12). The second linear prediction in
(26) is computed and then D-delay blind equalizer
can be computed in (30) with predetermined
zero-delay blind equalizer.

Zero-delay and D-delay blind equalizer are
obtained as described in Table 1 and Table 2. Also,
D-delay blind equalizer based on LMS algorithm is
described in Table 3.

Table 3. LMS algorithm for D-delay blind equalizer.

Initialization the algorithm at time xn=0, set

Py (0) =0
Py(0) =0

Compute z=1,2,-+ do following
(1) First linear prediction computation.

Xy(m) =[X%, x5,]
e(n) = XMl(n)— PN-1(72'“1) XN,Z(”)
E(n) = Xy(n—D)— Py(n—1) Xn(n)
Py (n) = Py \(n—VD+p eln) X{\{.z(ﬂ)
Py(n) = Py(n—1)+m E(n) X 1{(n)

(2) Estimation of %(0) in [10].
(3) Computation g, and g, in (12) and (30).

V. EXPERIMENTAL RESULTS

In this section, we use computer simulations to
examine the performance of the proposed method
described in previous section. In addition, we
compare the performance of the proposed methods
with some existing SOS algorithms and CMA for
blind channel equalization. In this simulation, as an
approximation of a three-ray multipath environment,
the channel impulse response is given by

h D) = o(1,0.45) WO +0.8c(¢—0.25T.0.45)
Wt—0.257) = 0.4c(t—2T,0.45) W t—2T)

where o(t,a) is a raised cosine pulse with the

roll-off factor o, and W#) is a rectangular window
of duration 6 symbol intervals spanning
[—0.857 5.147]. There are four subchannels, As
a performance index, the MSE of symbol estimation
is defined as in [3].

MSE= E[| §(n— D) — s(n)|?] (40)

For the simulations, the SNR is defined to be at
the input to the equalizer in Figure 1.

MSE

—— SNR=20dB
Al SNR=30dB ‘
W2 4 & 8 10 1z 14 16 18
Delay
Fig. 2 MSE curves versus the different delay D under

SNR=20dB and 30dB.

" CMA
e Hatford
o === Taylor{FPEF)
107} | == Proposed Ii
& 10"
=
L
10°%
10° . ‘ e
0 1000 2000 3000 4000 5000

Samples

Fig. 3 Comparison of MSE curves for existing algorithms
and proposed algorithm under SNR=30dB,

. E] a(n) 2
SNR = [ )P “h

For each simulation, we have used an iid. input
sequence drawn from a 16-QAM constellation, The
noise is generated from a white Gaussian
distribution at varying SNR's.
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An MSE of the blind equalizer is affected by a
different selection of delay D. In Figure 2, we whow
the MSE of the output for different delay D and the
MSE obtained from (32) under SNR=20dB and
30dB. The number of subchannels is four. Let the
equalizer order be L,=8. In this simulation, we
compare the proposed algorithm with FS-CMA, RLS
algorithm proposed by Halford er al. (denotes
Halford algorithm)[5}, and LSL algorithtn with
forward prediction error filter (FPEF) proposed by
Taylor et al. (denotes Taylor algorithm)m. Let the
equalizer order be L, =8 for proposed method,
L,=12 for Taylor algorithm, and L, =18 for CMA
in each subchannels. To verify optimal equalizer
length, see [5] and [7]. Figure 3 and 4 show the
MSE curves for MSE of the proposed RLS and
existing algorithms under SNR=20dB and 30dB,
respectively. It is shown that the proposed algorithm
has faster convergence speed than the others,
whereas the Taylor algorithm has poor performance
because equalizers of arbitrary delay cannot be
controlled. This simulation tests the BER
performance of proposed algorithm together with
existing algorithms under various levels of SNR.
The result of the simulation is shown in Figure 5.
The data input signal is iid. 16-QAM and
oversampling factor is P=4. The number of output
data samples is N=5000. We can see that BER
performance of the proposed algorithm is better than
the others.

10 e _ —_—
i Taylor(FPEF)
—— CMA
—s— Proposed
—a—__H.alfOl‘d o
10°}
m
)
=
10"
10° : ‘
0 1000 2000 3000 4000 5000
Samples

Fig. 4 Comparison of MSE curves for existing algorithms
and proposed algorithm under SNR=30dB.
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40¢| | & CMA
—a— Proposed

—e— Halford

~—+— Taylor

0o 5 10 15 2 25 30
SNR

Fig. 5 Comparison of BER curves of existing algorithms
and proposed algorithm.

V. CONCLUSIONS

This paper presents adaptive blind equalizer based
on multichannel linear prediction with optimum
delay. We have developed RLS- and LMS-type
algorithm for updating prediction coefficient matrix
as projection matrix. Our proposed method ensures
flexible delay control and provides flexibility for a
practical implementation since various well-known
adaptive filtering algorithms, including RLS and
LMS, can be used to implement the method.
Furthermore, our algorithms are robust to channel
order overdetermination in nature of linear
prediction characteristics, and do not need channel
length estimation. Simulation results show that our
algorithms have good performance in channel
equalization. Compared with HOS-based algorithm
such as CMA, our algorithms are based on SOS;
thus, faster convergence can be achieved. Out future
works include the extension to multi-input multi-out
(MIMO) blind equalizer for multiuser detection
applications and the development of lattice structure
for multistep prediction error filters.
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