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A Fuzzy-ARTMAP Equalizer for Compensating the Nonlinearity
of Satellite Communication Channel

Jung-Sik Lee*

ABSTRACT

In this paper, fuzzy-ARTMAP neural network is applied for compensating the nonlinearity of satellite
communication channel, The fuzzy-ARTMAP is made of using fuzzy logic and ART neural network. By a maich
tracking process with vigilance parameter, fuzzy ARTMAP neural network achieves a minimax learning rule that

minimizes predictive error and maximizes generalization. Thus, the system automatically learns a minimal number

of recognition categories, or hidden units, to meet accuracy criteria. Simulation studies are performed over

satellite nonlinear channels. The performance of proposed fuzzy-ARTMAP equalizer is compared with MLP-basis

equalizers,

I.AM&

For the purpose of efficiency, power amplifiers
used in communication systems are very often
operated near the saturation region such that the
signals are distorted due to that nonlinearity™.
The traveling wave tube (TWT), used in
microwave signal power amplification, introduces
nonlinear distortions, in both amplitude (AM-to-
AM conversion) and phase (AM-to-PM conve-
rsion), When combined with a transmitter or a
receiver filter, the system constitutes a nonlincar
system with memory,

To deal with the nonlinearity, many researchers
concemed  with

networks, such as multilayer perceptrons (MLP)
[5.6]

have been applying neural
and radial basis functions (RBF), to equalizer
The basic idea of applying neural network to
equalization comes from the fact that channel
equalizer problems can be regarded as patterns
classification (detection), However, each of these
networks internally has significant shortcomings.
MLP equalizers typically require long training and
arc sensitive to the initial choice of network
parameters (especially initial weights). Also, they

need to decide by trail and error how many
hidden units are needed. RBF equalizer is simpler
and fast to train, but usually require a large
number of centers, which increases the complexity
of computation, In addition, it is not easy to
determine both the number and the location of
centers required for training, Recently, Lee et al.
introduced a fuzzy -ARTMAP to equalize the
lincar channels”. The paper presents the
superiority of fuzzy -ARTMAP equalizer to other
neural network-basis equalizers.

In this paper, a fuzzy-ARTMAP neural network
is, also, proposed to compensate the nonlinearity
on satellite communication channel. The main
purpose of an proposed fuzzy-ARTMAP equalizer
is to overcome the obstacles, such as complexity
and long training, in implementing the previously
developed
fuzzy-ARTMAP js made of using fuzzy logic and

neural  basis  equalizers. The
adaptive resonance theory (ART) neural network.
By a match tracking process, the fuzzy-ARTMAP
neural network achieves an new minimax learning
rule that minimizes predictive error and maximizes
the predictive generalization. Also, it automatically
learns a minimal number of recognition categories,
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or hidden units. In simulation studies for satellite
channels, QPSK signals with Gaussian noise are
generated at random from Volterra model.

Section II presents background of fuzzy-
ARTMAP neural network. Section III presents
nonlinear modeling for digital satellite channel.
Section IV gives the stucture and leaming
procedure for the fuzzy-ARTMAP equalizer.
Experimental results are provided in Section V,
and Section VI gives the conclusion,

I. Fuzzy ARTMAP Neural Network

1. Background

ART networks are biologically motivated and
were developed as possible models of cognitive
phenomena in humans and animals. Also, ART
nets are designed to allow the user to control the
degree of similarity of pattemns placed on the
same cluster, and provides the desirable
characteristics of fast training and user control of
network complexity.

Since the advent of ART as a cognitive and
neural theory™, a number of ART neural network
architectures have been progressively developed.
These models include ARTI, ART2,
ARTMAP"", ARTI networks require that the
input vectors be binary. ART2 networks are
suitable for processing analog patterns, On the
other hand, ARTMAP is a class of neural
network that perform incremental supervised
learning of recognition categories. The first
ARTMAP system was used to classify inputs by
the set of features they possesses, that is, by an
ordered o n-tuple of binary values representing
the presence or absence of each possible feature.

For several decades, the fields of artificial
intelligence (AI), neural networks, and fuzzy logic
were  developed by intellectual
communities. Recently, a growing number of

separate

models computationally synthesize properties of
neural networks, and fuzzy logic.

2. Function of Fuzzy-ARTMAP
Fuzzy-ARTMAP, a generalization of ARTMAP,

map flald Fee

Fig. 1. Sructure of Fuzzy ARTMAP

is a neural network architecture that performs
incremental  supervised  learning  recognition
categories and multi-dimensional maps in response
to arbitrary sequences of analogue or binary input
vectors, and learns to classify inputs by a fuzzy
set of features, or a pattern of fuzzy memberships
values between 0 and 1 indicating the extent to
which each feature is present. As shown in Fig.
1, fuzzy-ARTMAP system includes a pair of
fuzzy ART modules (ART, and ART,) that
create stable recognition categories in response to
arbitrary sequences of input pattems. During
supervised learning,

ART, and ART, receive a stream of input
patterns. These modules are linked by an
associative learning network and an internal
controller that ensures autonomous system
operation in real time, Fuzzy-ARTMAP realizes a
minimax learning rtule that conjointly minimizes
predictive error and maximizes generalization. As
a result, the systern automatically creates the
minimal number of recognition categories needed
to meet accuracy criteria.

In fuzzy ARTMAP, the input and stored
prototype are said to resonate when they are
sufficiently similar, When an input pattern is not
sufficiently similar to any existing prototype, a
new node is then created to represent a new
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category with the input patterns as the prototype.
The meaning of similarity depends on a vigilance
parameter p, with 0<p<1. If p is small, the
similarity condition is easier to meet, resulting in
a coarse categorization. On the other hand, if »
is chosen to be close to 1, many finely divided
categories are formed. A  fuzzy-ARTMAP
increases the network architecture (number of
clusters) to the minimum level necessary for
perfect performance on the training data. By
selecting the desired level for the vigilance
parameter, the wuser has control over the
performance of the network,

The learning algorithm of fuzzy-ARTMAP is
explained in Section IV. The reader is referred to
[14], for a complete description of fuzzy-
ARTMAP.

. Nonlinear Channel Modeling for
Digital Satellite Links

Fig. 2 shows the block diagram of the
bandpass-equivalent nonlinear satellite channel.
For an M-arry PSK, x(#) is denoted as

wm)=e™ |, —coin(e ¢))
) yin)
_.< WA N
Fllter Filter
semples
Zﬁt—rﬂj

Fig. 2. Block diagram of nonlinear satellite channel

where ¢, is the transmitted phase belonging to

{m%l@}’m=o,l,

nient model of a nonlinear telecommunication
channel with memory, a Volterra model, the
kemels of which were obtained by Benedetto et
al., is used. By referring to [1], the symbol-rate

—1. As a conve-

P

sampling of receiving output can be represented
as

1080

W)= iﬂ% . 'Z”_lx(n—nl)- .

x(n—‘ﬂk)x‘(n_'nk+1) - 'x’(n“*ny,-_l)

H D 4 e(n) )]

where g(n) is a complex Gaussian down-link
noise, and 2k—1(k=1,..) denotes the non-
linearity degree of a channel.The reduced Volterra
coefficients, after reduction and deletion of the
smallest, are shown in Table 1.

Table 1. Reduced Volterra Coefficients

Linear Part

HY=1.22+70.646
H{"=0.063 -7 0.001
H{Y=—0.024—7 0.014
H{Y =0,036+7 0.031
3rd Order Nonlinearity

H§3=0.039—7 0.022
HE=0.018—70.018
H&=0.035—70.035
HZ=—0.040—7 0.009
HE=—0.01+70.017
5th Order Nonlinearity

HEn=0.039—70.022

IV. Implementation of a Fuzzy
ARTMAP Equalizer

1. Training Patterns for Fuzzy
ARTMAP Equalizer

In this study, the network is trained to
reconstruct the original QPSK signal based on the
signal received after transmission over a nonlinear
satellite channel, Therefore, input training patterns
for fuzzy-ARTMAP network consist of received
signals, and the cormesponding target pattems are
the originally transmitted signals, Fig. 3 shows the
block diagram of the fuzzy ARTMAP equalizer.
As shown in (2), the satellite channel exhibits the
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Fig. 3. Block diagram of a Fuzzy ARTMAP Equalizer

temporal behavior where the output has a finite
temporal dependence on the input. Thus, the first
form of input patterns for a fuzzy-ARTMAP
equalizer is represented as

y(m)=(n), (n—1),, {n—N+1))7 &)

whete N is the number of tap delay element in a
fuzzy ARTMAP equalizer. Equation (3) can be
rearranged as

y()=( ¥(n), y(n);¥(n—1),%Xn—1);

=N+, n—N+1);)7 “)

Where, y(#), , ¥{n); are the real and imaginary
prat of y(n), respectively. However, this training
vector, as shown in (4), is not the proper type of
input values for operating with fuzzy-ARTMAP
network, since (%) is not the correct range of
fuzzy-ARTMAP. To deal with this problem, the
binary sigmoid function below is used to convert
the given any range to [0, 1],

T ®
Here o is the steepness of sigmoid function,
the x is the genmeral function parameter, not
related with x(») from (2). Arbitrary range of x
can be reduced to [0, 1] by (5). In this research,
a variety of converting functions were chosen,

and used with training. As a result, sigmoid
function produced the best result for recon-
structing the originally transmitted symbols, The
proper range of g value is [0.7, 1.0]. In addition,
the property of using complement-coding in
fuzzy-ARTMAP leads to the final form of imput
training vectors, ¥ (n),

Y(im=(y(m,, y(mi)7 (6)

where, y(n), is the y(»n) vector after

transformation by (5), and y(»){ denotes the

complement part of y(#),

¥(m) = ¥, Yo", Ve, Y, " o VN=1n YN 1/ )s

v i=( 1=y 1wy, 1=l — v,

o l—wyo = yn-1) N
1
="W:T i —aWn—k); »
ST A e v S
k=0,1,,N—1 3]

As described in [14], complement coding, called
preprocessing, used on-cell, and off-cell responses
to prevent category proliferation. Complement
coding normalizes input vectors while preserving
the amplitudes of individual feature activations.
Without complement coding, an ART category
memory encodes the degree to which critical
features are consistently present in the training
exemplars of that category.

Next thing for making the training patterns for
fuzzy-ARTMAP equalizer is find the target
patterns. For example, QPSK symbols are
wansmitted, the possible target vectors, T'(#), are
(1.0,6,007,  0,1,0,07,  (0,0,1,07, and
(0,0,0,1)7. A cortesponding target for a symbol
could be arbitrarily determined.

2. Training Rules

If pure training patterns were available, they
could be used directly, but if neural networks,
including fuzzy-ARTMAP, are trained with noisy
signals, preprocessing is necessary to prevent the
network from leaming the noise. In this study,
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the action of noisy transmission path is simulated
by adding Gaussian noise to the received signal
after each possible transmission sequence is
passed through the Volterra channel model. Then,
the y(m) with free noise is estimated by
applying the supetvised K-means clustering
algorithms., Details of the K-means are given in

(71

Training algorithms:
(1) Determine the input pattern for ART,, ¥(n)
and output (or target) pattem for ART,,
T(n)

(2) Create the categories

When training starts, no category is created,
For this reason, in the beginning, a category can
be made without any competition by fuzzy rule.
However, when more than one category have
already been created and a new input comes to
fuzzy-ARTMAP equalizer, the category will be
created by the following rule,

_ Y(n) A w; |
CL ¥(m) = a+ T wl 9)
C] = max{TJ =1 Ny }

where the C, is choice function, and ~,, denotes

the total number of categories created.

(3) Check if resonance occurs

When | ¥Y(m) A wy| | Y(n) |7 is greater
than or equal to p, a match happens. Otherwise,
a mismatch occurs. Despite that a match happens,
the corresponding target for the introduced input
pattern may not be matched with the sclected
category. In this case, the vigilance parameter is
increased until it is slightly larger than
| Y A wy| | ¥ | 7. Then, the search for
another category starts, except the previously
selected categorics. The search process continues
until the chosen category satisfies the above
conditions. If all the trial fail, a new category is
created.

1082
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Fig. 4. Constellation of QPSK due to TWT

4) Update weights
Once search ends, the weight vector is updated
according to the equation

w}uew)=‘8( Y(n)/\w;alaﬁ)+(l_ﬂ)wj(ald) (10)

where, J denotes the selected category index.
When g is set to 1, that leads to the fast
learning.

(5) stopping condition

If any new category is created for all pattems
thronghout the steps(1-4) above, retraining for all
patterns begins until no category is created.

V. Simulation Results

For convenience, QPSK signal is generated
using  Volterra series. Fig. 4 shows the
constellation of QPSK signal with nonlinearity
effect. The reduced Volterra coefficients are used
to generate those signals, In this swudy, the
capability of fuzzy ARTMAFP equalizer for
determining  the boundary (or
reconstructing original symbol) is compared with

decision

that of contentional MLP equalizer. As shown in
Fig. 5(a), MLP equalizer requires a large number
of input patterns and training epochs. Fig. 5(b)
illustrates  the different  boundaries for fuzzy
ARTMAP equalizer due to the number of training
input patterns. In contrast to MLP equalizer, the
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decision boundaries for fuzzy ARTMAP equalizer
are properly determined with just a few number
of random input patterns and training epochs.
Despite of MLP equalizer’s many training inputs
and epochs to make decision boundaries, it’s
performance is not as good as in fuzzy ARTMAP
equalizer. In the Fig. 5, -, *, ., and + represent
the possible areas of corresponding QPSK

S s
symbols, ¢*%, e¢*, ¢*, and & !, respec-

tively, and ranges of x axis and y axis are both
(-3, 3).

Fig. b. Decision boundary of QPSK (a)MLP (1000
inputs, 2000 epochs) (b)Fuzzy-ARTMAP (15
inputs, 3 epochs)

Training efforts in the fuzzy ARTMAP
equalizer are compared with the MLP equalizer.
MLP equalizer required four, eight, and two
number of units in the input, hidden, and output
layers, respectively. In fuzzy ARTMAP equalizer,
the number for input, category, and output units
were cight, four, and one respectively. It is seen
that the number of input wunits for fuzzy
ARTMAP equalizer is double times as big as in
MLP equalizer. This comes from the fact that
fuzzy ARTMAP uses complement coding in input
process.

The values of sigmoid steepness parameter were
used in the range (0.7, 1.0). The value of the
vigilance influences the number of categories (or
clusters) formed, but fuzzy ARTMAP networks
increase the vigilance, if required, to ensure that
the training data are learned perfectly. The value
for proper vigilance parameter used in simulation
was higher than 0.75, resulting in four number of
categories.

—&— Fuzzy-ARTMAP equalizer
154 @ MLP equalizer
20+
5
g 254
,E, -3.04
e
§’ 354
=40+
T T T T
4 8 8 10

Signal to Nolsa ratio (SNR)

Fig. 6. Comparison of Eaqualizer Performance

Fig. 6 shows the comparison of error rate
performance between fuzzy ARTMAP and MLP
equalizer. Simulation results above show that the
training of fuzzy-ARTMAP equalizer is much
easier and faster than that of MLP equalizer,
while maintaining better error rate performance
than MLP equalizer.

Vi. Conclusions

In this paper, a new fuzzy-ARTMAP equalizer
system is developed for mainly for solving the
problems of long time of train and complexity,
which are often encountered in previously
developed neural-basis equalizers such as MLP
and RBF equalizers. The fuzzy ARTMAP
equalizer is fast and ecasy to train and includes
capabilities not found in other neural network
approaches; a small number of parameters, no
requirements for the choice of initial weights, and
capability of adding new data without retraining
previously trained data. By a match tracking
process with vigilance parameter, fuzzy ARTMAP
equalizer discovers on its own the categorical
hidden units. Also, learning is stable because all
adaptive weights can only decrease in time.
Throughout the simulation studies, it was found
that an fuzzy ARTMAP equalizer performed
favorably better than MLP equalizer, while
requiring just a few number of training inputs and
training epochs. The main advantage of the fuzzy
ARTMAP equalizer is fast training due to the
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structural simplicity of fuzzy ARTMAP. Training
speed of fuzzy ARTMAP equalizer was
approximately one seventh times that of MLP
equalizer. These features of an fuzzy ARTMAP
equaliter makes its implementation more feasible.
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