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ABSTRACT

Blind adaptive channel identification of communication channels is a problem of important current theoretical
and practical concerns. Recently proposed solutions for this problem exploit the diversity induced by antenna
array or time oversampling, leading to the so-called, second order statistics techniques. And adaptive blind
channel identification techniques based on a off-line least-squares approach have been proposed but this method
assuming noise-free case. The method resorts to an adaptive filter with a linear constraint. In this paper, a new
approach is proposed that is based on eigenvalue decomposition. Indeed, the eigenvector corresponding to the
minimum eigenvalue of the covariance matrix of the received signals contains the channel impulse response. And
we present a adaptive algorithm to solve this problem. The performance of the proposed technique is evaluated
over real measured channel and is compared to existing algorithms.

I.MZE

In recent years, the interest in blind channel
identification problem has received considerable
attention, The basic blind channel identification
problem involves a channel model where only the

observation signal is available for processing in
the identification channel.’ Earlier blind channel
identification approaches mostly depend on higher
order statistics (HOS), because the second order
statistics  (SOS) does not contain phase
information  for  stationary  signal[1]-[4]. In
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HOS-based methods, because the performance
index as the optimization criterion is nonlinear
with respect to estimation parameters and these
methods requite a large amount of data samples.
These methods have the disadvantage that their
computational complexity may be large. See, for
example, (3] and references therein. Since the
seminal work by Tong et al. the problem of
estimating the channel response of multiple FIR
channel driven by an unknown input symbol has
interested many researchers in signal processing
and communication fields. This is achieved by
exploiting assumed  cyclostationary  properties,
induced by oversampling or antenna array at the
receiver part[3]{4). Up to date, the implementation
of the SOS based methods have been mostly
block based algorithm rather than adaptive
algorithms. Most communication channels are
time-varying in practice. Therefore, the algorithms
should be able to track the change of the channel
impulse response. Moreover, in a fast fading
channel, the multipath channels in wireless
communications vary rapidly, and we only have a
few data samples cormesponding to the same
channel characteristics. The adaptive algorithms
for blind adaptive channel identification based on
SOS have been shown. Blind channel
identification technique has been developed in
adaptive algorithm based on vector-correlation
method[7]-[9]. But most algorithms neglected the
effect of channel noise.

In this paper, a novel adaptive blind identifi-
cation algorithm 1{s proposed by exploiting a
constrained adaptive filter in noisy environment.
We show that the minimization of the error
vatiance, subject to a specific constant norm
constraint, permits the derivation of asymptotically
noise-free case. And it can be implemented
adaptively at low cost using LMS-like algorithm,

Most notations are standard: vectors and
matrices are boldface small and capital letters,
respectively; the matrix transpose, the complex
conjugate, the Hermitian, the Moore-Penrose
inverse, and convolution are denoted by W5, O,
O (), and ®, respectively, Ir is the PXP
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identity matrix; E[ -] is the statistical expectation.
This paper is organized as follows. In section I,
we review the multichannel blind identification
problem and block LS approach. And the existing
adaptive algorithms of the block LS methods are
described also. A  novel blind channel
identification technique based on eigenvlaue
decomposition and adaptive implementation are
proposed in section III. Simulation results with
real measured channel are performed in section
VL. Section V concludes our results.

I. PROBLEM FORMULATION AND
LS APPROACH

1. Channel Model and Assumptions
Let x(# be the signal at the output of a noisy
channel

x(t) =3 s(k(t~kT)+v(r) W
i

where s(k) denotes the transmitted symbol at time
kT, h() denotes the continuous-time channel
impulse response, and h(#) is additive noise. The
fractionally-spaced discrete-time model can be
obtained either by time oversampling or by the
sensor array at the receiver. As shown in [3], the
single channel system can be considered as the
multichannel system by the sampling the received
signal at a rate faster than the input symbol rate.
The source signal s(n) then passes through M
equivalent symbol rate linear filters. And as
shown in Fig. 1, x(n) denotes the output from
the ith chanmel with the noisy FIR channel
impulse response fi(n), which is driven by the
same input s(n), Clearly, for linearly modulated
communication signals, x(n), ai(n), s(n), vi(n), and
hi(n) are related as follows:

x(n) = i h(k)s(n~k)+v,(n)
)
=a,(m+v,(n), i=1L,A M @)

where L is the maximum order of the M
channels.
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Fig. 1 SIMO model with M subchannels.

The blind identification problem can be stated
as follows: Given the observation of channel
output, determine the channels and further recover
the input signals. As in classical system
identification problems, certain conditions about
the channel and the source must be satisfied to

ensuted identifiability. In the multichannel blind

identification case, three conditions are shared by
many different approaches. We assume the
following throughout in this paper about the
channel and source conditions.

Al) Subchannels do not share common zeros, or
in other words, they are coptime.

A2) The noise is zero mean, white with known
covariance, no cochannel correlation, and
uncorrelated with source signal,

A3) The channel has known order L.

Assumption 1 provides the necessary and
sufficient condition to the unique solution for the
blind channel identification problem.  This
condition has been regarded as the major
difficulty of blind algorithms using the SOS[6).

The assumption that L is known may be
practical. To address this problem, there are three
approaches[6]). First, channel order detection and
parameter estimation can be performed separately.
There are well-known order detection schemes
that can be used in practice such as Akaike’s
information criterion. Second, some statistical
subspace methods require only upper bound of L.
Third, channel order detection and parameter
estimation can be petformed jointly. Similarly, the
noise variance 2 may not be known in practice,

x(n)
— hin) hi(n)

1{n) *
hj(n) h(n)

Fig. 2 The cross-relation between two subchannels,

but it can be estimated in many ways. For
example, the noise variance estimation and
channel order detection can be performed using
singular values of the estimated covariance matrix.

2. LS Approach to Blind Channsl
Identification

In this paper, consider a special case, when the
channel output is two times oversampled or there
are two antennas at the receiver, this is equivalent
to . two channel representation (M=2). From the
Fig. 2, in the absence of noise, it is apparent that
the output of each subchannel is

x,(n)y= h(n) ® s(n)
x,(n) = h,(n) ® s(n) ?)

Then

hy(n)® x,(n) = by (n) @[y (n) B s(n)]
=k (n) @[h,{(n) ® s(n)]
=h(n)®x,(n) 4)

Obviously, the above equation is not applicable
for a single channel system. We can write (4) as

h,(n)
X (L) X,y =
[X,(L) -Xy( )][hl(n)} 5
where Hu=[An(L), - ha(L)]", m=1,2, and
x,, (0) A x, (L)
X (L)= M O M
x,(N-L) A x,(N) ()]
Let us define as follows:
h=[h] h]]", X=[X MX,T" %)

In the noise free context, h is the null space of
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X, and equivalently (5) can be written as
follows[5]

X(Lh=0 (8)

Equation (8) provides the unique solution for the
identification problem if and only if subchannels
are coprime, ie., they do not share any common
zeros. When the channel is corrupted by additive
noise, we can estimate h by solving the following
LS problem

. )
min I X(L)hli ©

where fi is subject to nontrivial constraints, e.g.,

Ihil=1 or ¢*fi=1 for a constant vector c.
Although the treatment of the noise is in (9) may
be statistically optimal, it is perhaps a natural
simple way of formulating this problem.

3. Existing Algorithms

It is well known that all blind identification
methods suffer from a possible scale ambiguity[5].
Therefore, some constraint must be imposed while
minimizing (9), as discussed earlier. In this
section, we review existing adaptive channel
identification algorithms that use linear constraint.

3.1 Heath’s Algorithm'®

In [8], the algorithm has been developed by
firstly assuming that A(0)=1. This implies that a
linear constraint, This is reasonable because in
practice, the unknown scale factor is typically
overcome by employing automatic gain control
andfor differential encoding, With this assumption,
the last column of Xp(L) is removed, forming,

X, (L), and place this column on the order
side, thus (5) becomes

h x,(L)
k. -% <L>][ ’} M
I 2 l"i’
! %x,(L)
. 2 (10)

= X, h=x

where ’iilz[hl (L), "',hl(l)]T
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The batch LS formulation in (10) leads
natyrally to a recursive formulation, since the
channels are coprime and assuming N-L+122L+1,
the (N-L+1) X(2L+1) matrix Xy, is full rank.
With this assumption, we can write the following
LS batch method for finding estimated channel

h=X"X)"'X"% (11)

Let  X(m)=[xi(n-L),-x1(n),-x2(n-L), - xa(n+ 1))
be the regression vector at each time n and let
x:(n) be the addition to x. Following similar
derivation for the LMS algorithm in [1], (11) can
be solved in an adaptive manner using a
stochastic gradient descent algorithm. An error can
be formed the difference between the predicted
and the actual value of the (n+1)th data point
x2(n) from the other channel as in

e(n+1)=x,(n+1) - X" (n+1h(n) (12)

This weighted error is then used to update the
channel estimate

h(n+1) =h(n) +pe’ (m)X(n+1) (13)

3.2 Yoshito’s Algorithm'®

In [9], it has been shown that the cost function
is a quadratic form and has the unique solution.
To achieve a blind system identification, a cost
function as mesn square error (MSE) of output
signal x((n) and xi(n) as follows:

J=Elle(n)I*]
= E[l x,(n)~ x,(n) ] (14)

Let M=2 in (1) and substituting (1) into (14), we

get
2
} (15)

L L
J=E{Zhi(k)xl(n—k)—th(k)xz(n—k)

k=0 k=0

To avoid trivial solution as described in Heath’s

algorithm early, we also assume that A (0)=1
which implies that a linear constraint. Then we
get

www.dbpia.co.kr
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. 1
(16)

We now rewrite (16) in matrix and vector form
as follows:

x, (m)+ 3 h(k)x(n—k) =3 by (k)x,(n—k)
k=0

k=l

J = Ell x (m)+ by X () ~ 1 X, () ) an
where

%, (n) =[x (n~D,A ,x(n- L)
x,(m =[x (.A , x,(n- L)
h =[h,,A ,h1,L]T
h, =[hyoA by, Y . (18)

We denote x(n) and h as follows:

x(m)=[-%{ (1) x;m]", h=[h, h,] (19)

Therefore, we may write (17) as

J=E[lx(n)~h"xP]
= E[ x2(n)~2x,(mh7x(n) +hT x(n)x” (m)h]
=0 ~2h E[x(mx(m]+h E[x(mxmh  (20)

Equation (12) has same form as a cost function
with ordinary adaptive filters. In order to
minimize (20), let partial derivative with respect
to h to be zero. Then we get the Wiener
solution. Then it directly leads to the LMS
algorithm as follows:

h(n+1)=h(n)+ue’ (n)x(n) (19)
. PROPOSED METHOD

As described earlier, to avoid the trivial solution
to minimization problem a proper condition must
be selected, In this section, a new approach is
proposed that is based on eigenvalue decom-
position. Indeed, the eigenvector corresponding to
the minimum eigenvalue of the covariance matrix
of the received signals contains the channel
impulse response. This approach is based on the
unit norm constraint that is apart from the linear
constraint introduced in the previous section,

1. Principle of the Proposed Algorithm

We assume that the channel is linear and time
invariant within small time interval; therefore, we
have the following relation as described in (4)

X/ (mh, =x3 (Wh, 22)

where
x,(n) =[x,(n),A ,x,(n-L+ 1)]T Jd=12 23)

and the channe] impulse response vector of length
L are defined as

h, =[h, hmA hi.L—l]T’i =12 (24)

This linear relation follows from (5). The
covariance matrix of the two received signals is
given by

R =|:Rxlxl quz]

* R Row (23)

x2x1

where Ryiy=E[xd(n)x;"(m)], i, j=1,2
Consider the 2L %1 vector as follows:

-[3)
~h, 26)

From (22) and (25), it can be seen that R;h=0
which means that the vector h is the eigenvector
of the covariance matrix R« cormresponding to the
eigenvalue 0. Moreover, if the two channel
impulse response h; and h: have no common
zeros and the autocorrelation matrix of the source
signal s(n) is full rank, which is assumed in the
rest of this paper, the covariance matrix Ry has
one and only one eigenvalue equal to zero,
Consider the noisy channel case as described in
(2) and let M=2. It follows from (1) that

L L
" (mh =Y X (n =k (k) =Y x} (0~ k)hy (k)
k=0 k=0

L L
=Y vi(n=Rhy (k)= Y vy (= k) (k)
k=0 k=0

=v¥ (mh @n
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where x(m)=[x;" x." 1, v(my=[v," v.* |

If the correlation matrix of the vector x is
denotes by R,, a direct of conclusion of (27) will
be

R h = E{x(n)x(n)” Th= Elx(n)v(m)" Th
=E[v(n)v(n)"Th=R h=0h (28)

We note from (28) that h is the eigenvector of
the correlation matrix R, and ¢, is the
corresponding eigenvalue of R, The knowledge of
¢ % is not require in the practical case, but it can
be obtained as a by product if wanted

" h"h 29)

2. Adaptive Implementation

In practice, it is saimple to estimate iteratively
the eigenvector cortesponding to the minimum
eigenvalue of Ry, by using an algorithin similar
to the Frost algorithm that is a simple constrained
LMS algorithm[11]. In the following, we show
how to apply these techniques to out problem.
Minimizing the quantity h’R,h with respect to h
and subject to |h|*=h"h=1 will give us the
optimum weight hop.

Let us define the error signal

h” (n)x(n)

= 30)

where x(m)=[x;’ x2’ 1". Note that minimizing the
mean square value of e(n) is equivalent to
solving the above eigenvalue problem. Taking the
graidient of e(n) with respect to h(n) gives

1 _ h(n)
Ih(n) u{x(") ) by uj 31)

and we obtain the gradient-descent constrained
LMS algorithm

Ve(n)=

h(n+1) =h(n)—pe* (n)Ve(n) (32)

where g, the adaptation step-size, is a positive
constant.
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Substituting (30) and (31) into (32) gives

1
h(n+1)=h(n)~p oY .
h(n) 2 _h(n)
( x(mx? (n)—— oo T —le(ml “_llh(n)ll} (33)
and  taking  statistical  expectation  after

convergence, we get

()
xIIh( so) il

h(e)

=Elle(m| ]Ilh( o)l (34)

which is what is desired: the eigenvector h(o)
corresponding to the smallest eigenvalue E[le(n)lz]
of the covariance matrix R, In practice, it is
advantageous to use the following adaptation
scheme

h(n) - pe’ (n)Ve(n)

b D = o = pe’ (n)Ve(n) l (35)

The algorithn (35) presented above is a little bit
complicated and is very genemal to find the
corresponding  to  the
eigenvalue of any matrix Ry If the smallest

cigenvector smallest

eigenvalue is equal to zero, which is the case
hete, the algorithm can be simplified as follows:

e(n) =h" (m)x(n) (36)

h(n)—pe" (n)x(n)
Th(n)—pe" (nyx(n) i 37

h(n+D)=

Note that this algorithm can be seen as an
approximation of the previous one by neglecting
the terms is ez(n), which is reasonable since the
smallest eigenvalue is equal to zero. In this
application, the two algorithms (35) and (37)
should thave the same performance after
convergence even with low SNRs,

V. SIMULATION RESULTS

Computer simulations were conducted to
evaluate the performance of the proposed
algorithm in comparison with existing algorithms.

www.dbpia.co.kr
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Table 1. Channel coefficients for simulations.

Channel 1
i=1 i=2
h(0) +0.7 -0.0326-30.0022
h(D) | +0.1657-70.0443
h{2) | +0.0333+570.0184

+1.0259+30.0060

+0.0145+50.0013

hi(3) | +0.0152+570.0005

hi(4) | +0.8451-50.0331 +0.4411+370.0236
Channel 2

i=1 =2

hi(0) | +0.2636-70.0113 | -0.0276-30.0073

-0.1020-70.0180

h(1) | -0.0186-70.0059 | +0.0350-50.0067

h(2) | -0.0065+70.0039 | +0.0147+350,0020

hi(3) | +0.0236-50.0035 | +0.8760+70.0329

hi(4) +0.7826-370.0113 -0.2025-30.0015

h(5) | +0.0754-70.0090 -0.0225+370.0073

h(6) | +0.0134+70.0010 | +0.0134-30.0023

h(7) | +0.0042-50.0012 +0.0042-370.0128

In all the simulations, two channel SIMO model
is assumed. This means two times oversampling
or two sepsors at the receiver in real situation.
The input signal is 4-QAM. For simplicity of
comparison, we assumed that the channel order L
is known. The performance index is achieved by
examination the root mean square error (RMSE)
that is defined as [5].

I 1 x e
E=—— |—>» Ilh, —hl*
h? \) N,g’ ® (38)

where N, is number of Monte Carlo wials, and
h, is the estimate of the channels from the ith

trials. We used two different channels to test our
algorithm. The first one (denotes channel 1) has
order L=3 and the coefficients were chosen
randomly, whereas the second channel (denotes
channel 2) is a length-16 version of an
empirically measured 7)2-spaced digital microwave
radio channel (M=2) with 230 taps, which we
truncated to obtain a channel with L=7. The
microwave channel chanl.mat is founded in [13]
The shortened version is derived by linear

—+— Heath [8]
= Yoshito [9]
—_— _P(p_osed

RMSE [dB]
3 3 3 3

10 4 .
0 05 1 1.5 2
Sample vint
10' , = o
—s- Heath [8] }
= Yoshito [9]
—=— Proposed
10°
3
w
2
10”
10° ‘ -
0 0.5 1 15 2
Sample vint
10' e -
—e— Heath {8]
- Yoshito [9]
—=— Proposed
10° . .
&
h=2
g
[
w0l
10° ‘
0 0.5 1 1.5 2
Sample x10°

Fig. 3 RMSE comparison of the proposed and existing
algorithms for channel 1 under SNR=30dB, 20dB,
and 10dB.

decimation of the FFT of the full-length
T/2-spaced impulse response and taking the IFFT
of the decimated version (see [12] for more
details on this channel). The channel coefficients
for both sets of channels are listed in Table 1. A
total number of 50 independent ftrials were
performed. All algorithms were initiated at h(0) =
[1, 0, =+ 0, 1, 0, -, 0]" with the step size, g
=0.01.
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Fig. 4 RMSE comparison of the proposed and existing
algorithms for chanmel 2, under SNR=30dB,
204B, and 104B.

Fig. 3 and Fig. 4 show the RMSE of the
channel estimates from existing algorithms and the
proposed algorithm for channel 1 and channel 2,
respectively. From this figures, we can see that
the proposed algorithin always performs better
than others because we use the unit normm
constraint for weight update. But previous
algotithms are assuming that linear constraint
which is needed gain control. The proposed
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Fig. 5 The estimated and the magnitude of the channel
1 under SNR=20dB, (a) real part estimation, (b)
imaginary part estimation, and (c) magnitude of
the estimation at 50 trials.

algorithm converges very fast to a good channel
estimate. Moreover, it is very robust to noise
even with an SNR=10dB. By inspection, we can
observe that RMSE values of the proposed
method are decreased more or less 8-14dB,
6-10dB, and 1-2dB under SNR=30dB, 20dB, and
10dB, respectively, on both channel 1 and channel
2, From Fig, 5 to Fig. 8, figures show the 50
estimates of the channel and the magnitude for

www.dbpia.co.kr
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Real

Tap

Magnitude

Tap

Fig. 6 The estimated and the magnitude of the channel
1 under SNR=10dB, (a) real part estimation, (b)
imaginary part estimation, and (¢) magnitode of
the estimation at 50 trials.

channel 1 and channel 2 under SNR=20dB and
10dB. In all figures, solid line denotes the
original channel, dotted line denotes the averaged
estimates +standard  deviation, and the square
symbol represents the mean value of the 50
estimates. Clearly, we can observe the significant
improvement of the proposed algorithn over
existing algorithms for both random and
real-measured channel.

0.04

0.02

Imaginary

0 15
Tap

Fig. 7 The estimated and the magnitude of the channel
2 under SNR=20dB, (s) real part estimation, (b)
imaginaty part estimation, and (c) magnitude of
the estimation at 50 trials.

V. CONCLUSION

In this paper, a new and simple approach to
adaptive blind channel identification has been
presented. The method is based on adaptive
cigenvalue  decomposition. The  eigenvector
corresponding to the minimum eigenvalue of the
covariance matrix of the received signals contains
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Tap

Fig. 8 The estimated and the magnitude of the chamnel
2 under SNR=10dB, (a) real part estimation, (b)
imaginary part estimation, and (¢) magnitude of
the estimation at 50 trials,

the channel impulse response. And we use a
simple constrained LMS algorithm to estimate
iteratively the eigenvector comesponding to the
minimum  ¢igenvalue. Simulation results have
demonstrated the performance improvement of the
proposed algorithm. In comparison with other
algorithms, the proposed one seems to be more
efficient in a low SNR channel and much more
accurate. Our future works include the extension

1224

to blind multi-input multi-output (MIMQ) channel
identification and the development of the
constrained RLS algorithm for fast convergence.

References

[1] 8. Haykin, Adaptive Filter Theory. Englewood
Cliffs, NJ: Prentice-Hall, 1996,

[21 L. A. Baccala and S. Roy, “A new blind
time-domain channel identification method
based on cyclostationarity,” JEEE  Signal
Processing Letters, vol. 1, no. 6, pp. 89-92,
June 1994,

[31 L. Tong, G. Xu, and T. Kailath, “Blind
identification and equalization based on second
order statistics: A time domain approach,”
IEEE Trans. on Inform. Theory, vol. 40, no. 2,
pp. 340-349, Mar. 1994,

[4] L. Tong, G. Xu, B. Hassibi, and T. Kailath,
“Blind chamnel identification based on
second-order statistics: A frequency- domain
approach,” IEEE Trans. on Inform. Theory,
vol. 41, no, 1, pp. 329-334, Jan. 1995.

[51 G. Xu, H. Liu, L. Tong, and T. Kailath, “A
least-squares approach to blind channel
identification,” IEEE Trans. on Signal Process-
ing, vol. 43, no. 12, pp. 2982-2983, Dec. 1995,

[6] L. Tong and S. Perrcau, “Multichannel blind
identification: from subspace to maximum
likelihood methods,” Proc. of the IEEE, vol.
86, no. 10. pp. 1951-1968, Oct. 1998,

[71 D. L. Goekel, A. O. Hero, and W, E. Stark,
“Data-recursive algorithms for blind channel
identification in oversampled communication
systems,” I[EEE Trans. on Signal Processing,
vol, 46, no. 8, pp. 2217-2220, Aug. 1998.

[81 R. W. Heath Jr., S. D. Halford, and G. B.
Giannakis, “Adaptive blind channel identifica-
tion of FIR channels for viterbi decoding,” in
Proc. 31th Asilomar Conf. Signals, Syst., and
Comput., 1997.

[91 Y. Higa, H. Ochi, S. Kinjo, and H. Yamaguchi,
“A gradient type algorithm for blind system
identification and equalizer based on second
order statistics,” IEICE Trans. on Fundamen-

www.dbpia.co.kr



T/ AE AR B LaEER )4 ARE Felklm A Uy

tals, vol, E32-A, no. 8, pp. 1544-1551, Aug.
1999.

[10] D. Gesbert and P, Duhamel, “Unbiased blind
adaptive channel identification and equaliza-
tion,” IEEE Trans. on Signal Processing, vol.
48, no. 1, Jan. 2000,

{11] O. L. Frost I, “A algorithm for linearly
constrained adaptive arrays,” Proc. of the
IEEE, vol. 60, no. 8, pp. 926-935, Aug. 1972.

[12] T. I. Endres, S. D. Halford, C. R, Johnson, and
G. B. Giannakis, “Simulated comparisions of
blind equalization algorithms for cold startup
applications,” Int J. Adaptive Comir. Signal
Process., vol, 12, no, 3, pp. 283-301, May
1998,

[13] http://spib.rice.edu/spib/mictowave.html.

ot d S(Kyung-seung Ahn) A5
FEAletE =] A 259, A $BE FE

H{ 2 &(Eul-chool Byun) n)3¢l

20004 24 : YFchshaL
BABY 4

20000 39 ~3A) : HEREL
Al Ak
ki

<FRA Fol A3AlsAe, Eepele d 4

% 5

B % 7|(Heung-ki Baik) 23]
FEAIEE =] A 25¢, | 8B =+

1225

www.dbpia.co.kr



