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The Filtered-x Least Mean Fourth Algorithm for Active Noise
Cancellation and Its Convergence Behavior

Kang Seung Lee* Regular Member
ABSTRACT

In this paper, we propose the filtered-x least mean fourth (LMF) algorithm where the error raised to the power
of four is minimized and analyze its convergence behavior for a multiple sinusoidal acoustic noise and Gaussian
measurement noise. Application of the filtered-x LMF adaptive filter to active noise cancellation (ANC) requires
estimating of the transfer characteristic of the acoustic path between the output and emor signal of the adaptive
controller. The results of the convergence analysis of the filtered-x LMF algorithm indicates that the effects of
the parameter estimation inaccuracy on the convergence behavior of the algorithm are characterized by two
distinct components : Phase estimation error and estimated gain. In particular, the convergence is shown to be

strongly affected by the accuracy of the phase response estimate. Also, we newly show that convergence behavior

can differ depending on the relative sizes of the Gaussian measurement noise and convergence constant.

I. Introduction

In active noise cancellation, the acoustic noise
to be cancelled is often genmerated by rotating
machines and thus can be modeled as the sum of
a fundamental sinusoid and its harmonics. In this
paper we are concerned with cancellation of fan
noise based on ANC filtering. Fan noise is
frequently generated in the consumer electronic
products such as air conditioners, vacuum cleaners

and so on. Adaptive approaches have widely been -

used in ANC applications in which the unwanted
noise sound is adaptively synthesized with the
equal amplitude but opposite phase, resulting in
the cancellation of the acoustic noise as shown in
Fig. 1", In Fig. 1, the input microphone can be
replaced by other non-acoustical sensors such as
tachometers or accelerometers in which case the
possibility of the speaker output feedback to the
input microphone is removed. The adaptive filter
output drives the loudspeaker in such a way that

the acoustic noise and the loudspeaker output can
be summed to null at the error microphone.

Although any adaptive algorithm can be used in
Fig.1, the least mean square (LMS) algorithm has
been the most popular one'™™. It has recently
been found that the LMF algorithm in which the
error raised to the power of four is minimized
has better convergence properties® . It is noted,
however, that the direct application of the LMS
algorithm in Fig. 1 is not appropriate. The reason
is that the acoustic path between the filter output
and summation point of the error signal is
frequency sensitive, which acts to distort the
phase and magnitude of the error signal.

In turn, the distortion of the phase and
magnitude in the error path can degrade the
convergence performance of the LMS algorithm.
As a result, the convergence rate is lowered, the
residual ermror is increased, and the algorithm can
even become unstable. For these teasons, it is
necessary to use the so-called filtered-x LMS
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Fig. 1 Basic adaptive active noise canceller configuration.
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Fig. 2 Rearranged form of the canceller under linear
system condition.

algorithm™'? for which the transfer characteristics
between the output and the error signal of the
adaptive canceller must be estimated.

In this paper, we propose a new filtered-x
LMF algorithm for active cancellation of fan
noise. It is noted that the fan noise can be
modeled as the sum of a fundamental sinusoid
and its harmonics, We first derive an adaptive
canceller structure and then analyze its
convergence behavior when the acoustic noise can
be modeled as the sum of a fundamental sinusoid
and its harmonics. The convergence analysis is
focused on the effects of parameter estimation
inaccuracy on the performance.

Following the introduction, we give a brief
description of the underlying system model in
Section II.
analysis and the simulations are presented in

The results of the convergence

Sections IIl and IV, respectively,
make a conclusions in Section V.

Finally we

x(m
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i ) Error
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Fig. 3 The diagram of adaptive active noise canceller
system under study.

II. ANC System Model and
Algorithm

Since the loudspeaker-air-microphone path of
Fig. 1 is linear, one can easily get the equivalent
system as shown in Fig. 2. When the noise
consists of the multiple sinusoids, which is the
case of fan noise, the acoustic and loudspeaker-
acoustic-microphone can be described by the
multiple in-phase (J) and quadrature (Q) weights
as shown in the upper branch of Fig. 3.

For the m-th sinusoidal noise, the adaptive
canceller structure also becomes to have two
weights w;,.(n) and wg,(n), with I and Q
inputs, x;,(#) and xgy,(n), respectively. Thus
the output of the m-th canceller, y,(n) is

expressed as
VB ={ w0 (1) Xy (M) + 2 (W wow(m)} (1)

where

Zm(m)=A, cos(@pn+ ¢,) 2 A, cos T, (n),
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xom(m=A,sin(w,n+ 8,) 2 A, sin¥,, (n),
m : branch index = 7, 2, 3, ... M,
n : discrete time index,
A : amplitude,
@ : nommalized frequency,
¥ : random phase.

Also, referring to the notation in Fig. 3, the
error signal e(n) is represented by

) = 3 Lerm Eun(n) + cam Sqn(m]+ o)
—— 3 Al g o8 Bo) + o, msin T ) g () = )

— mﬁlem[ €7 m SN (1) — € €08 T m) H{wg (1) = g )

+ 7w V3]

where

(w2 5 = 2 (dalm) = yalm) ),

eo(m) ¢ 90" phase-shifted version of &;(»)
7(n) : zero-mean measurement noise.

Assuming that w;,(n) and wgy,.(n) are
slowly time-varying as compared to x;,(») and
X o.m(m), the phase-shifted output is giver from

(1) by

yeln) = ”ﬁfl(wm(n) g mn) — wom{m) x; (7))}

= 3 Ay () SinUn(n) = wgn(n) cos Ty(m)).
3

It can be shown from (1), (2) and (3) that
minimizing the fourth power error and using a
gradient-descent method yieldsm a pair of the
filtered-x LMF weight update equations for each
m as

Wi awln+ 1) = wy (7)) +2 1t M {Cpm Xy m( M)+ o m X m7)}
Wom( P+ 1) = weoml ) +2 1 (M L €1 m X m( M) — Cam 1w}
@
where £m is a convergence constant.
It is noted that to implement the filtered-x
LMF algorithtm of (4), the values of ¢,, and

com Mmust be estimated. In the following, we

2052

analyze the effects of replacing ¢;, and
com in (4 with ¢,, and ¢,, on the
convergence behavior of the canceller,

In the following, we analyze the convergence
behavior of the mean and summed variance of
weight errors of the filtered-x LMF algorithm
using a new analysis method.

M. Convergence Analysis

A. The mean of weight error
(Magnitude)

To see how the adaptive algorithm derived in
(4) converges for inaccurate ¢;, an Cg., Wwe
first investigate the convergence of the expected
values of the adaptive weights. To simplify the
convergence equation, we may introduce two
weight errors as

vy, m( n) & wy, m( n) — w'; my

*

UQ.m(n) = wQ,m( n — we, m (5)
Then, from (2), (5) and Fig. 3, we get

erm () = — 0100 2 (1) — vgm(m) xg m(n),
Eom(m) = — vpw(m) xgm(n) + vg () xpm(n).

(6)
Inserting (5) into (4), we have

V(BT D) =0y (1) + 200 @ { ComZrnmln) + Comrgulm))s

Vom( T D= vgw(n) +20, (0| Crmxgmn(n) — Eqmti{m].
@]

Rearranging (7) with (2) and (6), taking
expectation of both sides of the resultant two
weight-error  equations, we can  get the
convergence equation based on the independent
assumption on the underlying signal
tm(m), 7(n), vi.(x) and 9y, (n).

The moment terms of order greater than 1
decrease much faster than the first order moment
term in E[v; ,(#)] and Elvg..(m)]. Therefore,
ignoring the moment terms of order greater than

1, the convergence equation becomes
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E[vl.m(n+l)] - Ay ﬁm E[UI.m(n)]
E{”Q,m("+1)] - [—-Bm (/3™ EI”Q,M(")]]
where

Ay21— 3#mA%ngm EMO%]COSAGC,,",,
BmﬁB#mAgngm ﬁm UquinAec.m -

Here, defining gain and phase response parameters
as

/2 2
EnZV CimTCom s
-~ / ~ 2 -~ 2
gmé Crom + Com »

— [
B m 2 tan 1 (_Ji.l) .
Crm

/91.‘,1» £ tan_l (Jﬂ) 3

m

2 ¥R
~

Agc‘mé Hc.m - ﬁc.m .
Now, using the similarity transform to make
Elv;,(nw)] and E[vg.,(n)] in decoupled forms,

(8) can be expressed as follows.

lE[ v mn+1)]
H 5Qm(n+1)]

1_/{1_,,, 0 lE[ 171,,,(’2)]
[ :| EI EQ,m(n)]
®

0 lﬂ'{Qm

where

Aim= 3 N fm Bm [ COS 20, = jsinAG, ], i=1,Q,

Since A;, In (9) is a complex number, the
transformed weight error is also complex. When
a complex number is given, wc consider its real
and imaginary parts individually or investigate the
convergence of magnitude of transformed weight

€ITOr.

FE Lvim(nt DI = M= 201 Eloadnll, i= 1 @
(10)

As it is clearly seen in(10), the magnitude of
weight error converges exponentially to O under
following conditions.

[1—ml <1 Vim (=1 0. 1

Squaring both sides of(11) and rearranging the

terms, the stabilizing condition are obtained.

2cosLd,

S 12
O(I—lm<3A%“gmgmazvor0<xm./<1 ()
where

n Bn ALEn En 0,
Ems = 2cos Af,

We see that stabilizing condition of (12), unlike
the filtered-x LMS, is affected by variance of
measurement noise signal’?. In a sufficiently
large time constant ; domain, time constant ¢
for exponential convergence can be simplified and
is derived[3).

e Mam e g L 14 L =1 @ (13)

Tiom
From (10) and (13) the time constant is

1
i~ ry -~
1V 1= 622,422, Emh COS NG, mt1ASEE, Bl 0

Li=1Q

1 14
1-vV1-—4 Xy (L= ) cos?08, ., 14

B. Summed variance of weight errors
Next we investigate the convergence of the

mean-square error (MSE), E[&(#)]. Using (2)
and (6), we can express the MSE as

ElE)] = 3 én) + &

1S aem+ 4 as)

where

En(m) & E[v,, (m1+ E[v . (m],

o 2 E[7 (w)].

From (15), we find that studying the
convergence of MSE is directly related to
studying the sum of &,(#). Inserting (1) and (2)
into (5), and assuming that input signalx,(»),
measurement noise  g(x), and weight errors
v, (1), vo.{n) are independent of each other,

we take the statistical average of both sides to
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obtain  two equations for  E [(n+1)], between E [v% (n)] and  E[o} (w)] of the
E[v5 (n+1)]. Since there two equations are Gaussian random variable[13] to amive at the
- symmetrical, we add them and assume that following equation.
E [t}m (n+D]ZE [vhm (n+1]. Thus,
_[_" _ ] [,Q' ] o Vit 1)+ oh(n+1)
eliminating the subscripts / and Q to simplify the \
second moment equation of weight error and =5un A& Bn (Va(m+965,(n) Vi(n)
rearranging the terms yields + 18 0%(7) Vi(m) + 6 05(n)}
—(3 mA‘}n 'mAm A8.::»:‘ zmAﬁ m Amz
E(n+1)] Bttm Ay & B 08 20, —~ M50 A5 0 Em )

. AV + 4 0500 Vi(m) +2 03(m)
= B2 AL 3, (B 1+ 3B A ELob(n]) P T e

+(l _Gl-‘mA%ngm §m U%ICOSAec.m-'_ goﬂgnAéng%n gmz 05,)

'"g_/-‘mAI}ng&x Em COSAGC_,,,{EIvé,,(n)]-i— (ET.vf..(n)])Z} . {V‘?”(n) + pfn(n))
; ; . 2 2 a2
+8 L AL &' BP0 Bl + (Bl ())?) + 30 i As Em 0. (18)
+{1 — 64nAL &, 8m ElPX(n)] cos 84, _— — , i}
+ 3014, AL g2 8 Bl ()]} ElvA() L
+ 245 A% 2. Bl (m)]. (16)

o
@

Assuming that #7(x) is a Gaussian with zero
average and  w;,(n), wgn(n) are Gaussian

o (b) -‘

o
=

Measuremen! Moise Variance
o =3
W )

variables, u,(x) is also a Gaussian variable.

°
!u

Thus, (16) can be simplified by expressing
E[v¥ (n)] as E[+5 (0] Although E [v, (#)]

decreases very rapidly, it is no zero from the 008 BT G100k 0e 08 o4

A @ |increasing

o

»(a)

beginning.  Thus, a Gaussian random variable

Aw, (n) with zero average, and its variance are Fig. 4 Dominant term decision diagram for filtered-x
LMF algorithm of sumtned variance of weight
errors at the transient-state.

[point (a) : ,,=0.3 and ¢=0,1. point (b) :

adapted as follows:

AWy (n) £ v,(n) ~ V,(n), #n=0.2 and ¢2=0.5. ]
E o5 (m)]= Vi(n)+ o} (n) a7
(1) Convergence during the transient
where  V,, (n) 2Ev, (n)], state
ok, (n) 2E[ &%w,(m)]. The convergence equation (18) may be

examined for two different cases. First, o%(#n)
From (17), we find that during the transient

) L ) and the last term of (18) can be removed for the
state, i.e. from beginning to the moment just

transient state. Thus, the transient convergence

g .
before the steady state, p2(n) is much smaller equation is given by

than V2(#n) and E [v,, (#)] can be regarded as

VE(m). On the other hand, p%(n) becomes Vi(nt1) =545, A% g &n Valn)

dominant over V%(x) in the steady state and —(Bum AL & B 0506, = 4504 A% &' 3.0 ) Vi)
E [v,, (n)] can be regarded as o%(x). Now, we F (1= 6t AL gy G 008 A Oyt WL ALGE B 0h) Vi)
apply (17) to (16) and use the relationship (19)
2054
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On the right side of (19), either Vi(x) or
Vé(n) becomes a dominant term in extreme
cases. When the two terms have same values,

we can write V2(#) as follow

” “\/ 1= 6um AL Bu 008 A, + 0L AL B o
m.th .

StmAntn Gn

(20)

Note that A, ,, does not affect V% 4 In (19),
the first term V8 (») acts as the dominant term
when V2(n) is greater than V% ,. If 172 is
smaller than V% ,, then the last Vi(») term
becomes dominant. Fig. 4 is given to illustrate in
terms of the convergence constant zm and the
variance of measurement noise o2, which of the
two terms, the first term V5(n) and the last term
VE(n), is dominant when V2, ,(n) = 0.8. Point (a)
is a region in which the term V%(») dominates
over the other and point (b) is when V2(») term is

the dominant one. Therefore, the transient

convergence equation (19) can be written as:

el AL LS Bl Vi(m)
VP Vaa (2la)

Vot DE (1 — 64, AL g Emicos 26,
+O0E AL Bndh) ViR
L VR KV (20b)

Now, from (21a) we may derive the conditions
for stability and the time constant by rewriting it
as
Vi) = (54 A%, 2.0 A0
= T AT g 7 (BumAbgh G VaOF

(22)

Thus, (22) is stable under the following condition:

[ VB AL 20 VRO 1 € 1,

1

Note from the conditions for stability in (23)
that the initial value of weight ermor acts as a

limiting factor, along with the amplitude of input
signal, the gain of the secondary path and the
estimated gain of the secondary path. And, (21b)
is stabilized when it satisfies the condition below;

08 A0, pm
0 < pw <15Ai.gm§fmd?,or0< Xms <1
(24)
where
™~ 15”Fx,mAgngm é\'m azgz
x E
m.s cos 88, ,, ‘

From (13) and (21b), the time constant is given
by,

1
B4 A%y By B O (COS 20, = 150 Ay B 05 )

Tms =

- 2 25
zxm'sCOSerc,m{l_xmlg) ) ( )

(2) Convergence in the steady state

In the steady state, V2%(#) becomes sufficiently
small and the terms that include o%(#n) and
o%(n) can be ignored in the convergence

equation (18). The equation is then simplified as

PLn+ D=1~ 64, AL gn ﬁmoz,,.cos N
+ 9045 AL gl Bl 0h) 0%(m)

+ 3045 AL 2. O (26)

And, the summed variance of weight errors in
the steady state, £,(c0) is 2p,(c) and it can
be written as

10t Em O
Zm (0820, = 15pm AL g Em 0}

6"‘(00) = ZPm(OO) d

_ 20 Xy
T 3ALE (1 Kt

@n

(3) Comparison of the filteredx LMF
(FXLMF) and filtered-x LMS(FXLMS)
algorithm

Comparing the performance of adaptive

algorithms usually involves two methods. The
first method is to compare the state of
convergence after setting equal values for the
steady state, and the other one involves
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comparing the steady state values for same rate
of convergence,

Like (18) in [12] the summed variance of
weight errors of the FXLMS algorithm is a
geometric series and the time constant can be
defined while that of the FXLMF algorithm (18)
is not a geometric series and therefore, the time
constant may not be defined. Then we set the
steady state values of the two algorithms equal
and compare the convergence rates. From (27)
and (20) in [12] we obtain following equation.

10 e mirxriE) &m 0
Em (COS A Hc.m'_ ]-Sl-‘m(FXLMF) Agngm Em a%; }

H ol FXLMS) ﬁm lf;
Emlcos A8, —‘llg K rxius) Amlm &n (9 cos248, )}

@8

where p, rxr g 804 pocexr e are the convergence
constants of FXLMF and FXLMS algorithms,
respectively.

When the convergence constants . pxrum and
Umrxiys Satisfy the stability conditions, the
second terms on both sides of (28) are
sufficiently smaller than the first terms and they
are ignored to yield the following equation.

Py = LOSEALHS. ST (29)
7

IV. Computer Simulations

In this section, we present the results obtained
from computer simulation along with the
theoretical analysis of FXLMF algorithm in the
previous section.

We set the frequencies of the first and second
sinusoidal signal at 120 Hz and 240 He,
respectively, and selected 2 KHz for sampling
frequency.  The input signal x(») and desired
signal d(n) are given by

x(n) = ,ZIIA,,. cos (@2 + o)

=VZ (cos (Z0E™ + 4))+ cos(HOE 4 4,)),

2056

d(n) = 3 (whnin + Whmtan)

=0.6x51(n) — 0.1xg(#) + 0.3x72(n) ~ 0.3xg2(n).
(30$)

The secondary path is modeled as g,=g,=1,
6,1=—45 and 6 ,=45 . The simulation was
carried out by setting 0.001 and 1 as the
And the

initial value of weights is zero. The simulation

variances of measurement noise o

averaging 1000 independent runs.

Fig. 5. showed the summed variance conver-
gence curve of weight error for the FXLMF
algorithm that resulted from the simulation when
tyexomsy = 0.2, & = 0001, and |26, |=15
We see that V() is the dominant term duting
the transient state whereas p%(#n) becomes
dominant during the steady state.

Fig. 6. showed the summed variance
convergence curve of weight error that resulted
from the simulation when the phase estimation
emor |A@, ., is (1) 0°, (2) 45° , (3) 60° , (4)
75° under the same value in the steady state. It
can be seen that the larger phase estimation error
is, the slower the convergence speed is, and that
the steady-state value is not affected by the phase
estimation error (A4, |

0 y T T r
o E(w
-10 coocoaeao LV 2 (n)
B S I %))
.20] !
o
k=2
@ -30¢
3
? 40
8
-

50 Bw " 1
+ )
hud Frogr H el
80} #-hj o Wﬁfﬂﬁf N
+ @ % om
o] o]
0 o o0 oy
70 5

1000 2000 3000 4000 5000 6000 7000 8000
Number of Adaptations

Fig. 5 Leaming curves for filtered-x LMF algorithm of
summed variance of weight errors when the
convergence behavior are divided between V.(n)
and p*(n)

[ smxram = 0.2, £2=0.001, and lag,,1=15"] 1
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b & o L
=] =1 S = o

log scale [dE]

&
)=

&
o

1000 3000 3000 4000 5000 6000 7000 8000
Number of Adaptations

Fig. 6 Leaming curves for filtered-x LMF algorithm of
summed variance of weight errors. [ uypxam = 0.2

and % = 0.001 |1 ()]2ad,. =0 . () |26,
= 45° . (3) 186,,] = 60° . () |86, =75

We have compared the convergence behavior of
FXLMF algorithm and that of algorithm FXLMS
through simulation. The convergence speed of
the two algorithm were compared after setting the
steady-state  values equal. The convergence
constants of FXLMF and FXLMS algorithm were
carefully chosen so that they satisfy the conditions
given in (29) for a given variance of measure-
ment signal. To be specific, we selected 0.2 and
0.0002 for sy to make the steady-state valucs
of two algorithm equal when 4 is given as 0.001

and 1 and ppyuy s 0.002.

0 T T T T . + T

h'\\
-10 ".‘:\\ —- : FXLMF 1
e : TXLMS
20 S ) L ]
* "’2"‘-‘\\-\.-%\1“???.\;/‘.\);’\'/\"*"\1‘7\}?:}/
ﬁ‘ ™, . 8] M o
R S )
@ "
@407 S
2 Sl
ol e, ]
ety
(@ " e
80t
-70

000 2000 3000 4000 5000 6000 7000 8000
Number of Adaptations

Fig. 7 Comparison of the FXLMS and FXLMF
algorithm learning curves of the summed variance
of weight errors,

(a) /l(b'xLMS)=U-002. 2 exrmm =0.2,,

2=0.00, |26, /=45 and V3=0.558

(b) « (rxrps = 0.002, #¢rxiury = 0.0002,
Ai=1, 148, =45 . and VH=558.

In Fig. 7, the convergence behavior curves of
summed variance of weight error obtained from
simulation are compared with each other when the
phase estimation error |ag,,| is 45° . It has
been newly found that for some region of
z and &, resulting in sufficiently small v% values
compared to unity as the curve (a) of Fig. 7, the
initial convergence of the FXLMF algorithm is
much faster than the conventional FXLMS
algorithm. Later on, the FXLMF convergence
looks similar to the FXLMS case. On the other
hand, when v3 is large as the curve (b) of Fig.
7, the FXLMF algorithm converges geometrically
at a rate a bit slawer than the FXLMS case.

V. Conclusions

The convergence result of the filtered-x LMF
algorithm indicates that the effects of the
parameter estimation jnaccuracy on the conver-
gence behavior of the algorithm are characterized
by two distinct components: Phase estimation
error and estimated gain. In particular, the
convergence has been shown to be strongly
affected by the accuracy of the phase response
estimate. Also, it has been found that the mean
square convergence behavior can differ depending
on the power of Gaussian measurement noise and
the size of convergence constants.  Accordingly,
the transient behavior can be characterized by one
of the two cases: (1) initially, the filtered-x LMF
algorithm converges much faster than the
filtered-x LMS, but soon after that, it converges
almost linearly on logarithmic scale like the
filtered-x LMS algorithm; (2) the filtered-x LMF
algorithm converges linearly and at a slower rate
than the filtered-x LMS. To sum up, different
convergence behavior was observed depending on
the variance of Gaussian measurement noise and
the magnitude of convergence constant.
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