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On the Loci of the Input Reflection Coefficient of a
Loaded Transmission Line on the Smith Chart

Chang-Soo Eun®* Regular Members

Qo

of welAi Falul A¥ Qi A% ARe] Wolrk MBE A% WAL ARsh 2vls GE el
A el e Mg e fean Asel el 4% 4Rsl 54 dadsoh st dan sl
i e AHe 28 el e A8 A WA Fe peke] qud st A4 Hze) By
Aol Sjal AR o) Aiki vhelmgny dRg Abgstel A% HEE 4A W Aol
Zoloh vul% 247 Aart U A% F450 489 & sk

91 Sle] wbap A A ASAR. vhol i arglekel Al

ABSTRACT

We present the derivation of the loci of the reflection coefficient of a loaded transmission line on the Smith
chart as the length of the transmission line is varied. The results show that the loci constitute a circle when the
characteristic impedance of the transmission line differs from the normalizing one, whose center and radius are
determined by the impedances of the load and the transmission line. The results can be used in the matching

circuit design using microstriplines when line width and length should be compromised.

I . Introduction programs are not available. Moreover, it is su

bstantial to understand the behavior of the tr
When designing a matching circuit using ansmission lines of different impedances. Micr
microstriplines, one often encounters a case i ostriplines of arbitrary impedances have been

n which the width and length of the microstr nsed as a quarter wave impedance transform
mline are 1 : 31 are 2y [20 3. 4 . . .
ipline are unfit to the board size or arc unrea or T or as a segment of transmission li

listic 1o implement. One way around this situ ne whose impedance transformation is calcula

ation is to use a transmission line of characte ted on the Smith chart by changing the norm

ristic impedance different from the normalizin
50 W. Even though o
ne can do this using a simple CAD program

g one which is usually

such as in [1). it is necessary that we can de

sign matching circuits even when such CAD

alizing impedancem.

The use of transmission lines of arbitrary
characteristic impedances provides us with fle
xibility in the microstripline matching circuit

designs. FFor example, we can design a match
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ing circuit on the Smith chart not only along
the constant- resistance or conductance circle
s and/or the concentric circles (i.e., constant-
reflection coefficient circles) but also along th
e loci derived for the microstripline of arbitra
ry impedance.

In this paper, we present the derivation of
the loci of the input reflection coefficient of a
loaded transmission line on the Smith chart a
s the length of the transmission line is varie
d. The characteristic impedance of the transm
ission line and the load impedance are assum
ed arbitrary with respect to the normalizing i
mpedance.

In Sec. 2, we derive the relations between
the input reflection coefficient and the normali
zed load and transmission line impedances, w
hich is a circle on the Smith chart. We will
also derive the relation between the transmiss
ion line length and the corresponding angle o
n the circle.

In Sec. 3, we will summarize the result an

d conclude.

I. Derivation of the Equations

1. The Loci of the Reflection Coefficient

Assume a circuit consisting of a source, a
section of transmission line, and a load. In Fi
g. 1, we show such a circuit in which the so
urce impedance is Z,, the transmission line i
mpedance Z;, and the load impedance 7. We
will take Z. as the normalizing impedance an
d the transmission line is assumed to be loss

less.

Fig. 1. A circuit consisting of a source, a section of
transmission line, and a load.

The input impedance Z; looking into the transmiss

. . . . 6
ion line is given by '®

Z 4+ Z tanpe
Z,¥j Z tanfe

Z(4)=2, (H

where ¢ is the length of the transmission line se
gment and £ is the propagation constant of the tr
ansmission line. Normalizing the impedances with

Z,, we can re-write Eq. (1) as

_ _ _z/tjztanfs )
2T AT iz tanfe @

where z;, z, and z; are the normalized impedances
of Z( ¢), Z;, and Z,, respectively. We drop the ar
gument ¢ for brevity. The input reflection coeffi
cient I'; looking into the transmission line is give

n by

Z—Z, z,-1
F=z+z,"7Z27x1- ©®

2

If Z; = Z, that is, the source impedance equals t
he characteristic impedance of the transmission lin
e, the magnitude of the reflection coefficient shou

Id be constant regardless of the length ¢, i.e

2" 2y i
—t— =ye”, 4
2Tz, @)

where r is a constant and given by

4

7+Z

y=

Z+Z

:‘»—21_ 24 )

z2,+ 2z,

and #is a function of ¢. Solving Eq. (3) for z,

we obtain
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1+7;
z,= 1*14 . (6)
Substituting Eq. (6) into Eq. (4), we get
z,—1
r——
i + )
. !
1= z,+1

Taking the magnitude squares of both sides,

we have
r—yi? R
el W
where
21l Z—Z
=T ZAZ, ©)

Solving Eq. (8) for T; leads to

A=) P A
FI 1_772 72 (1_ 7272)2 ’ ( )
| ''—d*= R*, (1D

where

1Ry
R:AI—-_QL_% (13)
1=y

The result shows that the loci of the reflection co
efficient looking into the loaded transmission line
of length ¢ whose characteristic impedance is dif
ferent from the normalizing impedance constitutes
a circle on the Smith chart whose center and radi
us are given by Eq. (12), (13), respectively. From
Eq. (12), we find that the center of the circle lies
on the real axis since y and r are real such that
C is real. In addition, the location of thecenter is

determined by y that is, the center lies on the ne

234

gative side of the real axis if y is negative, and
vice versa. This means the center is on the negati
ve side if the characteristic impedance of the tran
smission line is smaller than the normalizing impe
dance, and on the positive side if the characteristi
¢ impedance is larger than the normalizing imped
ance. In Fig. 2, we show the variation of the loc
ation of the center and radii with respect to g an
d r. We can verify the discussion mentioned abov
e from the figure: if y is positive, the center is o
n the positive real axis, and vice versa. We also
observe that, when the center is at +1, the radius
of the loci is zero. This means that the reflection
coefficient remains always less than one if the loa
d is passive. The loci of the reflection coefficient
s never go out of the unit circle when the networ

k is passive.

2. Relation between Angle and Length, «¢)
We now investigate the relation between the lengt

h of the transmission line and the phase of the re
flection coefficient measured at the derived circle.
We define ¢ as the angle made by the real axis
of the Smith chart and the line connecting the ce
nter of the circle and a point on the circle. In Fi
g. 3, we show the definition of the angle ¢ The
circle shown represents the loci of the reflection ¢
oefficient on the Smith chart whose center and ra
dius are given by Eq. (12) and (13).
From Eq. (11), we have

I'—C=Re”, (14)
On the other hand, from Eq. (7), (9), we

have

=’ (15)

Solving Eq. (15) for Gi, we obtain
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Location of Centers

where * denotes the complex conjugate. From

Radii

Fig. 3. Definition of the phase ¢.

Replacing Eq. (16) for G; and Eq. (12) for C in
Eq. (14), and using Eq. (13) , Eq. (14) reduces

to

Im{[}

»

'
>
constant-resistance
circles /

! gl
1 : ]
Y C /

locus circle

Smith Chart

e+

1+pe” —Re”.

a7

The numerator of the left side of Eq. (17) is

manipulated to

e+ = (1 +me 7%

this result and Eq. (17), we obtain tlhe angle

relation as

¢=0—2 2(1+yre’)

—p_ e _ysing
=0 2arctan< 1+yrcos @

)

The relation between the two angles is shown in

(19

Fig. 4 for several values of r and y. We see here
that the relation between & and ¢ is not linear.
We can also see that as @ approaches +m, the var
iation of ¢ becomes steeper. As the value of r an
d y increases, the nonlinearity becomes more evid
ent. If we let the length of the transmission line

be /, and let the reflection coefficient when £

= 0 be ré”, then (¢ =v0) is given by

Fig. 2. The variation of the center and radius of the loci. (a) The variation of the location of the
center with respect to y and r. (b) The variation of the radius with respect to y and r.

yrsind, )
= 6)— - 2
$o= 0, 2arctan( [+ 7res0, |- (20
When the length of the transmission line is
4 and Zs = Z,, the reflection coefficient is
re! Vo TRBY =yl 00280 [v3))
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Therefore, when the length is ¢, H/Z) is

given by
The relation between @and ¢
3 i
r=01 y=0.1
2 ¥
r=05 y=05~
1 i B
= X
E‘O i !
A r=09, =09
-1
2
-3 .
-3 2 1 0 | 2 3
@ [rad]

Fig. 4. The nonlinear relation between & and ¢.

The relation between ¢ and 6

> r=09, y=09 “ }
4 N
. V' r=01, y=0.1
%0 P r=05 y=05
@
-1
-2
3. . :
-3 -2 -1 0 | 2 3
¢ [rad]

Fig. 5. The nonlinear relation between ¢ and 6.

yrsin(6,—28¢)
1+ 7rcos(8,—28¢) I

(22)

HLYy=0,—28¢ f2arctan[

Fig. 4 shows, depending on the initial angle

é, ther curvature of the 6 ¢ curve varies.

3. Relation between Length and Angle, ¢(d
Next, we find the the variation of the length

¢ as the phase ¢ varies on the Smith chart.

From Eq. (14) we get

I =Re”+C. (23)
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Substituting Eq. (23) into Eq. (15), and replacing
Eq. (12) for R and Eq. (13) for C, we are led to

. — By * .
re ]¢ML = e JH‘ (24)
1—yre”

Similarly as with Eq. (17), from Eq. (24), we

obtain the angle relation as

9=¢—22(1—ye”)

:¢+2arctan(%>. 25)

We see here that Eq. (25) is the inverse of Eq.
(19). In Fig. 5, we show the relation between g a
nd ¢ for several values of r and y It is found th
at, as ¢ approaches +m, the variation of @ becom
es slow, which is the inverse action of Eq. (19).
Assuming 6 = &, ¢ = ¢ when /= 0, we have,
from Eq. (25),

yrsin(dy+ 24)

6, —28¢ = ¢+ L¢+2arctan mm s

(26)

where A¢ is the angle of the movement on
the locus circle. Solving Eq. (26) for ¢, we
get

Wsm(¢0+ A¢)
1*7’7’(3@((1504' Ag)

90*% - A¢*2arctan[
28

¢ =

@7n

Eq. (27) gives the corresponding length of the tra
nsmission line (with a characteristic impedance dif
ferent from the normalizing impedance) when we

move on the locus circle on the Smith chart by

Ag.

1. Conclusions

This paper presented the derivation of the locus

on the Smith chart of the input reflection coeffici
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ent of the loaded transmission line the characterist
ic impedance of which is arbitrary with respect to
the normalizing and the load impedances. The res
ult shows that the loci of the input reflection coef
ficient constitute a circle whose center and radius
are determined by the normalized load impedance
and the characteristic impedance of the transmissio
n line. The angular variation on the loci on the S
mith chart corresponding to the length variation is
not linear: as the deviation of the impedances of
the transmission line andfor the load from the nor
malizing impedance increases, the nonlinearity
becomes more evident. The relative magnitude of
the characteristic impedance of the transmission li
ne with respect to the normalizing impedance dete
rmines the location of the center: if the characteri
stic impedance of the transmission line is larger t
han the normalizing impedance, the center resides
on the positive side of the real axis, and vice ver
sa.

The results will be useful in the matching circu
it design using microstriplines when the length or
width of the lines should be compromised for real
ization or for the board size, even more when a

CAD program is not available.
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