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LP-Based Blind Adaptive Channel Identification and
Equalization with Phase Offset Compensation

Kyung-Sseung Ahn*, Heung-Ki Baik** Regular Members

ABSTRACT

Blind channel identification and equalization attempt to identify the communication channel and to remove the
inter-symbol interference caused by a communication channel without using any known training sequences. In this
paper, we propose a blind adaptive channel identification and equalization algorithm with phase offset
compensation for single-input multiple-output (SIMO) channel. It is based on the one-step forward multichannel
linear prediction error method and can be implemented by an RLS algorithm. Phase offset problem is inherent
part of any second-order statistics-based blind identification and equalization. To solve this problem, we use a
blind adaptive algorithm called the constant modulus derotator (CMD) algorithm based on constant modulus
algorithm (CMA). Moreover, unlike many known subspace (SS) methods or cross relation (CR) methods, our
proposed algorithms do not require channel order estimation. Therefore, our algorithms are robust to channel order

mismatch.

Key words: Blind equalization, blind identification, multichannel linear prediction, phase offset Compensation

1. Introduction multiple FIR channel driven by an unknown input

symbol has interested many researchers in signal

In recent years, the interest in blind channel processing and communication fields. This is

estimation problem has received considerable achieved by exploiting assumed cyclostationary

attention. The basic blind channel estimation properties, induced by oversampling or antenna

problem involves the channel model where only array at the receiver part [3], [4]. Among many
SOS-based methods, the subspace (SS) methods
[5], the cross relation (CR) method [6], and the

linear prediction (LP) methods [7]-[11] are the

the observation signal is available for processing
in the estimation channel. Earlier blind channel
estimation approaches mostly depend on higher

order statistics (HOS), because the second order three main categories. When the channel order is

statistics  (SOS) does not contain  phase known, the SS-based approaches can provide

information for stationary signal [1], [2]. Using accurate estimations. However, SS-based methods

HOS-based methods, it has been shown that the
performance index as the optimization criterion is
nonlinear with respect to estimation parameters
and these methods require a large amount of data
samples. Therefore, these methods have the
disadvantage that their computational complexity
may be large. See, for example, [1], [2] and
references therein.

Since the seminal work by Tong et al., the

problem of estimating the channel response of

lay in the fact that they relay on the existence of
numerically  well-defined  dimensions of the
noise-free signal or noise subspaces. Since these
dimensions are obviously closely related to the
channel length, subspace-based techniques are
extremely sensitive to channel order mismatch
[12]. However, the LP-based methods are very
robust to order overdetermination. Moreover, with
respect to computational complexity, the SS-based

methods require eigenvalue decomposition, and the
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high computational complexity becomes
disadvantageous for their adaptive implementation.

The LP-based channel
equalization, which was first introduced by Slock
et al. [7], followed by Slock and Papadias [8],
[9], Meraim et al. [10] and, more recently, by Li
and Fan [11]. The work discussed by Slock et al.

mainly focused on blind channel equalization. The

estimation or

approach presented in [10] is a block based
algorithm  rather than  adaptive  algorithms.
Therefore, the computation of the correlation
matrix and its inverse problem is inevitable. Li
and Fan proposed a blind channel estimation
algorithms as a by product of an blind channel
equalizer [11], but the channel estimation was
performed after the equalizer was obtained.

Up to date, the implemeniation of SOS-based
methods has been mostly block based algorithm
rather than adaptive algorithms. Most
communication channels are time-varying in
practice. Therefore, the algorithms should be able
to track the change of the channel impulse
response. Moreover, in a fast fading channel, the
multipath channels in wireless communications
vary rapidly, and we only have a few data
samples corresponding to the same channel
characteristics.

In this paper, we propose a blind adaptive
channel identification and equalization algorithm
for SIMO channel. The proposed algorithm is
based on multichannel linear prediction that is
less sensitive to the channel order length. Most
notations are standard: vectors and matrices are
boldface small and capital letters, respectively; the
matrix  transpose, the Hermitian, and the
Moore-Penrose pseudoinverse are denoted by (.)T,
), and (.)f , respectively; Ip is the PxP identity
matrix; E[.] is the statistical expectation.

This paper is organized as follows. The system
model is presented in Section IT. In Section I,
we discuss multichannel linear prediction problem
for blind channel identification and equalization.
Simulation results are presented in Section V.

Section V concludes our results

I. System Model and Multichannel
Linear Prediction

Let x(t) be the signal at the output of a noisy
channel at time k7, T; being the symbol period.
The continuous time received signal is

XM=Y, CRK-KT)+ D) "

where s(k) denotes the transmitted symbol at time
kT,, h(r) denotes the continuous-time channel
impulse response, and w(r) is additive noise. The
fractionally-spaced ~discrete-time model can be
obtained either by time oversampling or by the
sensor array at the receiver [3). Here we consider
the oversampling technique. With an oversampling
factor P, x(r) is sampling at r=nT/P. The received
signal is

N ol _ al,
x(n)_glb(k)/{ » kI}L-{ » j 2

The ith subchannel response is defined as Ai(n)=
h(t+iT/P+nTy), n=0,---,L, where L is the sub-
channel length. Its output signal x(n)=
x(t+iTyP+nTy) is

x(m)=Y b(ks(n—k)+v{(n) 3

where =0, ---, P-1 and the symbol period is
normalized to Te=1. The received signal
x(nT/P) is cyclostationary, which enables blind
identification and equalization of the channel from
the SOS of the received signal, if the subchannels
hin) have no common zero [3].

Let

x(m=[x,(nm), -, x,_ (D]
h(n =[4(n). -, h,_ ()]
v(m=[v,(a), v, (D] 4)

The scalar cyclostationary process x(n/T;) is thus

transformed into a wide-sense stationary vector
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process. We represent x;(n) in a vector form as

X(n) = 2 s(h(n—k)+v(mn) )

Staking N received vector samples into an

(NPx1)-vector, we can write a matrix equation as
X (m=Hs(m)+v () (6)

where H is a NPx(N+L) block Toeplitz matrix,
s(n) is (N+L)x1, xpn), and va(n) are NPx1

vectors.

s(n) =[s(n),-, s(n—L— N+1)]"
xy(m)=[x"(n), -, x" (n= N+1)]
v (my=[v (n),,v (n— N+1)] (7)

and

h(0) ---h(L) -~ O
H=| : . i
0 ---h(0) --- h(l) (8)

We assume the following used through the paper.

1) The input sequence s(n) is zero-mean and
white with unit variance.

2) The additive noise v(n) is zero-mean and white
with variance ¢,

3) The sequence s(n) and v(n) are uncorrelated.

4) The matrix H has full rank, ie., the
subchannels A(n) have no common zeros to
satisfy the Bezout equation [3]. Also, 4(0)=0
for some i.

5) The dimensions of H obey NP=>N+L
Let us define r(k) = E[x(n+k)xH(n)] and Ry =

Elxn(n+k)xy"(n)]. Using assumptions A1)-A3), we

can write the exact correlation matrix of xw(n)

as
Ry= Ex (nmxy(m]=HH" +oly, C)]

An one-step ahead forward predictor of order N

produces an estimate % () of the received
signal x(n) based on previous signal xyi(n-1). The

one-step ahead forward prediction error is then

386

f(z) =x(0)=[px(n=1)+---+p . X(11— N=1)]
=[I, -Pylxy(n)=Ax,(n) (10)

where -pi for k=1,---,N-1 are PxP matrices of a
FPEF of order N-1. The FPEF coefficients are
selected such that mean square value of f(n), ie.,
E[|f(n)2|], is minimized. The filter coefficients Py

are obtained from the Wiener-Hopf equations
P, :erT\/I'»J (1D

where ri=[r(l), r(2), --- ,r(N-1)]. When the FPEF
is optimum in the sense of MSE, the input signal
vector xy1(n-1) and the prediction error f(n) are
orthogonal. Consider the noise free case. As
shown in [7]-[11], we obtain

f(n) =h(0)s(n) (12)

. Blind Adaptive Equalization and
Identification Based on Linear
Prediction

1. Blind Channel Equalization and

Identification

We consider blind ZF-equalizer that are based
on multichannel linear prediction. A ZF-equalizer
can be obtained from (12) that in the absence of
additive channel noise. The transmitted symbol

can be extracted as following

s = RO

1h(0) |1 (13)
h(0) can be estimated from the correlation matrix
Pr = E[f()f (n)] [9]-[11]. Let us denote the unit-
norm eigenvector corresponding to the nonzero
eigenvalue of Py by u and the corresponding
eigenvalue A. In the absence of additive channel
noise, Py = h(O)hH(O). Then correlation matrix Py

is a rank-one matrix. Therefore, h(0) =] u

up to a unitary complex constant (h(0)=h(0)e") .
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Blind identification and equalization can only be

performed up to a multiplicative constant e’ so

that for ZF-equalization, the extracted symbol is
3(n)=s(n)e . This scalar rotation is an
inherent part of any SOS-based blind identification
and equalization [10], {11].

From (6), (10) and (12), we know that

(I, —-P, JHs(m)=h(0)s(n) (14)

Postmultiflying by s”(n) and taking expectation
ying by

operator, we get
I, -P,,JH=[h(0) 0 --- 0] (15)

Rewrite the matrix Py as Pyg = [p1, P2
pn-1]. Noting the special structure of H, we can
obtain

h(1)=ph(0)
h(2) =p,h(1) +p,h(0)
h(3)=ph(2)+p;h(1)+p;h(0)

h(D) =p(Z~1)+p;a(L-2)+--+pa0) 10
Suppose that Py, is the optimal multichannel
linear predictor, N>L; then channel coefficients
h(1), h(2), --- , h(L) can be determined from Py,
and h(0).

We propose the adaptive algorithms for
updating the multichannel linear prediction error
filter coefficients. We are required to compute the
multichannel prediction matrices Py, and to
estimate the multichannel prediction error f(n). In
order to fast convergence, we can use the RLS
algorithm to update the multichannel linear
prediction as following [15]

» Compute output:

x()=P,_ (mx, (n-1) amn
¢ Compute FPE:
£(n) = x(n)—x(n) (18)

* Compute Kalman gain:

AN

Hn)=s(me ' — 0 :]_'

Fig. 1. A single tap derotator.

Q(n—-Dx(n-1)

K(n)= 7
A+x7(n—-D)Q(n-Dx(n-1) (19)

« Update inverse of the correlation matrix:

Q(n—1)-K(mx"(n—1)Q(a-1)

» Update FPEF coefficients:
P, (n)=P, (n- 1)+f(n)KH(n) 21D

The term A(Q<A<1) is intended to reduce the
effect of past values on the statistics when the
filter operates in nonstationary environment. It
affects the convergence speed and the tracking
accuracy of the algorithm [15]. From the
covariance matrix of FPE in (18), its estimation

of adaptive manner is given by
F(n) = AF(a-D)+f(mnf"(n) (22)

Compared with (18), h(0) is the column of F(n)

with the largest norm.

2. Blind Phase Offset Compensation
The performance of channel identification
depends on the accuracy of h(0). An eigenvalue

decomposition of Py will allow us to identify
h©O)=h(0)e”  for noise-free  case.  Blind

identifi-cation and equalization can only be

performed up to a multiplicative constant e ~7% so
that for ZF-equalization, the extracted symbol is
n)= s(tmye” 23)

In order to estimated ¢ and directly remove this

phase offset, consider the single tap derotator
shown in Fig. 1, where % represents an estimate

of @. This can be viewed as the problem of
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equalizing a complex scalar channel. Moreover,
some HOS-based blind phase recovery methods
are proposed, but these ones are not appropriate
for adaptive implementation [13]. Therefore, we
use a blind adaptive scheme called the constant
modulus derotator (CMD) for removing phase
offset, which is based on constant modulus
algorithm (CMA) of [14].

In the absence of noise, and if B were exactly
equal to 4, then the projection of %(#x) onto the
real axis would consist of a collection of points
at the symbol values defined by the constellation
tfrom which s(#) were drawn. The projection will
consist of a number of clusters as these symbol
values. Similarly, when ¥ is offset somewhat
from @, the clusters widen. Thus, a criterion for
estimating ¢ is to try and minimize the
dispersion of the projection of the constellation
onto the real axis. Consider the cost function

J(6) = H(Re(3(m)e” ) —y)*] 24)

where y is any real constant and Re( - ) denotes
the real projection operator. For QAM or PSK
constellation, the 7 that minimizes /@) will be
equal to #. Using a stochastic gradient algorithm
to minimize (18) gives the CMD algorithm

B(n+1)=6(n) - u(Re((n)e” ™) —y)-
Re(3(n)e””™) Im(3(n)e”™) 25

See [14] for more details on CMD algorithm.
Table 1 briefly summaries the proposed algorithm,
in which the linear prediction is implemented by
using an RLS adaptation algorithm [6].

IV. Simulation Results

In this section, we use computer simulations to
evaluate the performance of the proposed
algorithm. The performance criterion is achieved
by examining the root mean square error (RMSE)
for blind channel identification.

Table 1. Summary of the proposed algorithm.

Initialize the algorithm at time =0, set
Q=071
P, (0)=0
F()=0
8(0)=0

Forn=1, , do the following
K(n= Qa-1)x, (n-1)

A+x5 (1= )Qa-x, (2-1)

f(a)=x(m)~P, (n-1)x, (n-1)
P, (n)=P, (n—D+f(mK"(n)
Q) =A"'Q(n—1)— 2" K(mx(n-1)Q(n-1)
F(n)=AF(n-1)+£(mf" ()

The column of F(r) with the largest norm is taken as
the estimate of h(0), h(0)

b (0)f(n)
B0y |

G = O(n—1)— u(Re(S(n-1)e™" ") — ).
Re(3(n—1)e”"™ ") - im(Hn—1)e®" ")y

B(0)= ¢ "h(0)

()= ¥ n)

b (1) =ah“ (D) +(1-a)p,h'"”(0)

b'"(2)=ah""(2)+(1-a)ph (1) +p B (0)]

M=

B (D) =ah'"(L)+(-alph”(L-1)+---+p,h' " (0)]

|h|¢ _Z” 26)

where N is number of Monte Carlo trials, h is
the optimal channel coefficients, and h; is the
estimate of the channels from the ith trial. A
total number of 50 independent trials is
performed. The coefficients of the impulse
response used in simulations is given in Table 2.
Subdividing the received signal (3) according to
x{n)=aln)+ v n), we can define the SNR as
EQla’MI[VENIV (1. For all simulation, the source
symbol is drawn from a 16-QAM constellation

Table 2. Channel coefficients for simulations.

ﬁT im0 i=1 |

V| 02890 — 0.0772] | 108011 - 0.2260;
(1) | F09616 + 0.2323] | +0.2557 + 0.0403;
27 | -0.1046 Z (03807 | —0.0219 + (L0030, |
3) | F00R78 + U0L0L; | —0.019T7 —0.0126;
}
5)
3 )

—0.0336 — 0.0036; | +0.0198 + 0.0077, .

+0.0000 + 0.0033] | —0.0109 — 0.001 1 |
FU003L + 00065, +0.0164 + 0.0060,

= 004 |

‘ (.‘) THOA030 4 0,002, | —0.0007 < 0.00205
with a uniform distribution. The noise is drawn
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Fig. 2 Scatter plots after equalized received signal
with phase offset and after phase offset
compensation.

from a white Gaussian distribution at a varying
SNR. Algorithm initialization parameters used in
RLS algorithm are §=10 "%, A=0.995.

We examine the effect of the first channel
coefficient on equalizer performance. Scatter plots
of the equalized received signal with phase offset
and its compensation are presented in Fig. 2 for

an SNR of 20dB. The convergence of Hh(() is

hi(0) is estimated
with the eigen-pair tracking algorithm and when it

shown in Fig. 3, both when

20—— - o

. Averaged estimate
at 50 trials

Degreas

o 200 Tano 600 800 1000
Number of data sample
=~ EXRCL IMAginary
Fig._oi Phase offset tracking.
“© 200 400 80 800 1000
Number of data samples

Exact mal

bm e m e e e e T

......... with phass offsst
- with phass correct

Magritude

02#

Exact imaginary

200 400 600 800 1000
Numbaer of data samples

Fig. 3 Real and imaginary part of the exact,
estimate and phase corrected estimate
value of the hg(0) and Ay(0).

is blind phase compensation with CMD algorithm.

Fig. 3 confirms that CMD algorithm compensates
the phase offset, while Fig. 4 shows that the
estimated phase offset track the true value
(6= n/12) well. Fig. 3 and Fig. 4 are presented
under SNR=20dB.

We investigate the performance of the proposed
algorithm for channel identification. When the
channel order is assumed to be known, Fig. 5
shows the RMSE curves as a function of the data
samples size for the proposed method under
SNR=16dB and 30dB. Convergence occurs after
approximately 600 and 400 samples, respectively.
Fig. 6 shows the performance of the proposed
method under  difference  SNR
Aforementioned advantage of the prediction-based

situations.

blind identification and equalization is robust to

channel order overdetermination.  Performing
experiment for an SNR of 30dB, we examined
the RMSE achieved after 600 samples for
prediction orders N=6,---,12. The channel order is

L=8. From Fig. 7, we can conclude that the exact

10° s o s s s - n e s
—O0— SNR=30dB |
] -0 SNR=16dB |°
@
=
w
w 1o
=
a
107 :
0 200 400 600 800 1000

Number of data samples

Fig. 5. RMSE curves for the proposed algorithm,

Qe e e e

RMSE [dB]

18 22 26 30
SNR [dB]

o2

Fig. Performance of the proposed algorithm

under different SNR.

order is not needed in the proposed method.
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Moreover, cross-correlation (CR) method as shown
in [17], this algorithm is sensitive to channel
order mismatch,

V. Conclusion

This paper presents blind adaptive channel
identification and equalization using multichannel
linear forward prediction error. A block-type
algorithm is developed the correlation matrices of
the received signal. Then, we have developed the
RLS algorithm for obtaining the multichannel
linear prediction error. Furthermore, we have used
the CMD algorithm for tracking the unknown
phase offset which is inherent problem of any
SOS-based algorithm. Our proposed algorithm do
not require the exact channel order estimation and
are robust to channel order mismatch. Simulation
results show that the proposed algorithm have

these advantages.

=O- Con. LMS [17]
-} Proposed

g 10
w
w
2 s
0 4 —p— -8 —0O— O —0
20
25 7 8 9 10 11 12
Order
Fig. 7 RMSE performance for several prediction
orders.
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